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Introduction & Motivation



Approaches to modeling earthquakes

M TPV35

15 20 25 MPa Harris et al., 2018
Spontaneous dynamic ruptures
e Detailed single-event earthquake ruptures

e Successful code verification exercises and
ongoing validation efforts

e Imposed artificial prestress conditions and
ad hoc nucleation procedures

Dieterich and Richards-Dinger, 2010
Earthquake Simulators

e Able to simulate millennium-scale
seismicity patterns in fault systems

e Quasi-static approximation and
simplification of interseismic loading to
allow numerical tractability



What are SEAS models? Sequences of Earthquakes and Aseismic Slip

Fault Geometry & Material

Conceptual Model of Fault Zone
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Computational Methods
for Simulating

N S : Earthquake Sequences
slow tectoniw and Aseismic Slip

Observables

! !

seismogeni

Ground Shaking Aseismic Deformation
Dynamic Rupture Fault Locking & Creep
Coseismic Period (seconds) Interseismic Period (years)

o Input
Fault Friction & Bulk Rheology

Distinct features:

(1) Interactions between
earthquakes and
aseismic slip

(2) Capture detailed

earthquake rupture
process



Examples of SEAS models

Interplay between dynamic earthquakes
and fault creep on a fault plane
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Interactions between fault
creep, small and large events

e 3D models with a homogenous media (b)
e Fully dynamic rupture

e Postseismic stress relaxation

e Microseismicity microseismicity ~ interseismic
e Interseismic fault coupling (c)
e Compare with seismological, geodetic, £ 10]
and geological data =
® 201 56
e aftershocks interseismic events

-40 -30 -20 -10 0 10 20 30 40
Along-strike distance (km)
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How rheology or structure
influences earthquake patterns

e 2D antiplane models

e Quasi-dynamic earthquake ruptures

e Heterogeneous bulk material properties
o Off-fault plasticity

e Can further incorporate other inelastic
rheology and fluid processes

Erickson and Dunham, JGR, 2014; Erickson et al., JMPS, 2017
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Capability and complexity of SEAS models

e Transition from slow, quasi-static deformation to

dynamic, wave-producing slip and to postseismic and multiple time and space
interseismic deformation

scales
e Interactions between seismicity and aseismic transients
e Interactions with the deeper inelastic response, fluids,
and off-fault damage and healin ) )
, J B J , multiple physical factors
e Geometrical complexities and fault heterogeneity

SEAS (“seismic cycle”) models are now prevalent in earthquake research—

addressing key SCEC objectives—but remain untested



Outstanding questions

e Do our numerical models resolve the “true” fault behavior and its complexity?

e What model features may arise from numerical approximation and resolution issues?
e How do these physical factors influence the earthquake cycle? Do they matter?

e How to implement them with efficiency in 3D, larger scale simulations?

Verifying different computational codes is the first critical step

Community efforts are needed to address these issues
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Objectives for the SEAS initiative at SCEC5

e Lead the efforts on verification of SEAS models commu nity benchmark exercises

e Explore important issues in SEAS modeling

e Further advance our computational capabilities dlscussmnslworkshop

presentation/publication

e Promote robust and reproducible earthquake science

e Share experience and tools within the community (including SCEC working groups,
e.g., Dynamic Rupture group, Earthquake Simulators, Community Rheology Model)
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Early Results & Achievements



What we have accomplished

e Initiated a SEAS working group (10+ modeling groups; 40+ ppl on our email list)
e Developed our first SEAS benchmark problem in March
e Established an online platform for SEAS model comparison
e A SCEC workshop on April 23-24
e Jointly held with the dynamic rupture code validation group
e 60 Participants (online & remote) from 7 countries, half students & postdocs
e Talks on science & codes, benchmark results & discussions

Check out our SCEC poster (#192):

Erickson, Jiang, Barall, Lapusta, Dunham, Harris, Abrahams, Allison, Ampuero, Barbot, Cattania, Elbanna, Fialko,
Idini Zabala, Kozdon, Lambert, Liu, Luo, Ma, Segall, Shi, & Wei, The Community Code Verification Exercise for
Simulating Sequences of Earthquakes and Aseismic Slip (SEAS): Initial Benchmarks and Future Directions.
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Design benchmarks for code verification

e (Guidelines

(@)

Start simple & incrementally increase model complexity

o Draw collaboration experience from SCEC community, especially the dynamic rupture group
Building the community platform based on existing SCEC resource and our needs

o Design benchmarks that maximize participations

Tasks

(@)

o What model features should we compare?
o How do we assess agreements and discrepancies?

o What constitute successful code verifications for SEAS models?
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1st benchmark BP1
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rate-and-state fault /
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2D anti-plane problem

1D vertical strike-slip fault in a
homogeneous half-space

Rate-and-state friction with the
aging evolution law
Quasi-dynamic earthquakes
Define a mathematical problem,
leaving computational
implementation up to modelers
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Online platform

e Code verification web server maintained by Michael Barall
e Building on the existing platform of dynamic rupture group

e Facilitate submissions and analysis of 20+ models from
11 model groups for BP1

Benchmark Descriptions

Downloads

http://scecdata.usc.edu/cvws/seas/index.html

Select Benchmark

Name

Date Description

Action

bpl 4/14/2018 8:08 AM | 2D Antiplane Shear

Select

Users

Select Modeler

Select Checked I Select All I

Name

Description

Action

abrahams

100 km X 80 km: Free surface outer BC

Select

abrahams.2

100 km X 80 km: Vp/2 outer BC

Select

abrahams .3

400 km X 200 km: Vp/2 outer BC

Select

barbot

Sylvain Barbot (Fortran90)

Select

barbot.2

Sylvain Barbot (Matlab)

Select

cattania

Camilla Cattania - fdra (bem)

Select

cattania.2

Camilla Cattania - fdra (fft, 160 km)

Select

cattania.3

Camilla Cattania - fdra (fft, 640 km)

Select
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http://scecdata.usc.edu/cvws/seas/index.html

Benchmark exercises -

Utilizing current online tools
long-term evolution of slip/rate/stress
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What constitute a successful benchmark?

e All models are qualitatively consistent
e Major quantitative discrepancies

o exist in interseismic loading, prestress,
and coseismic rupture speed

o due to boundary conditions and
computational domain sizes

e Minor discrepancies may be inevitable

o due to volume vs. boundary methods and
approximation of the half space

e Many models produce near-perfect match
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to computational demand
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What constitute a successful benchmark?

long-term slip rate evolution

e All models are qualitatively consistent
e Major quantitative discrepancies

o exist in interseismic loading, prestress,
and coseismic rupture speed

o due to boundary conditions and
computational domain sizes

\_

e Minor discrepancies may be inevitable
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Next Steps & Future Directions



Our Goals in SCEC5

® Achieve successful community code verification exercises

O

©)

O

Develop a suite of benchmarks and verification tools for use within the community
Establish best computational practices

Share results/lessons with the broader community

e Work towards validating SEAS models with real data

O

O

Verification is the first step - different models can accurately solve the problem

Validation is the ultimate goal - such models can capture “true” behavior of
earthquakes and faults

Determine clear input/output from/to other SCEC working groups

21



Upcoming benchmarks

e BP2: 2D anti-plane quasi-dynamic problem with smaller nucleation size (2018 Fall)
o  Microseismicity at the bottom of the seismogenic zone
o Understand event size variability due to physics or numerical procedures

NIl

larger event

smaller event

0 10 20 30 40 50

Cumulative Slip (m) 22



Upcoming benchmarks

® BP2: 2D anti-plane quasi-dynamic problem with smaller nucleation size (2018 Fall)
o  Microseismicity at the bottom of the seismogenic zone
o Understand event complexity due to physics or numerical procedures
e BP3: 3D quasi-dynamic problem for BP1 (2019 Fall)
o  More realistic earthquake propagation
o  Computational demand and resolution issues
e BP4: 2D in-plane quasi-dynamic problem with a dipping fault (2019 Fall)
o  The role of fault geometry

o  Computational domain size and boundary conditions
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Plan for future benchmarks

e Coupling with inelastic processes and/or fluids

- Relevance to Community Rheology/Thermal/Geodetic Models, etc.
e Fully-dynamic earthquake ruptures

- Further connection with Dynamic Rupture group, Ground Motion, etc.
e Heterogeneous frictional properties and event complexity

- Further connection with Earthquake Simulators

Opportunities to promote a new generation of more advanced SEAS models

24



Towards model validation with observations

® Use lab/field data to bear on the design/input/output of SEAS models

o

o

o

o

Rock mechanics: friction laws, bulk rheology, ...

Tectonic geodesy: co-/post-/inter-seismic deformation, aseismic transient, ...

Seismology: velocity structure, microseismicity, ground motion, ...

Earthquake geology: paleoseismic record, fault geometry, ...

e Explore specific cases with broad implications

O

o

o

Variable recurrence intervals of the Parkfield sequence
Variable earthquake sizes on the Imperial fault
What controls rupture termination - Earthquake Gates Initiative

e Advantages of group efforts

O

Ensemble study, model variability/uncertainty, etc
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Thanks!

Check out our SCEC poster (#192):

Erickson, Jiang, Barall, Lapusta, Dunham, Harris, Abrahams, Allison, Ampuero, Barbot, Cattania, Elbanna, Fialko,
Idini Zabala, Kozdon, Lambert, Liu, Luo, Ma, Segall, Shi, & Wei, The Community Code Verification Exercise for
Simulating Sequences of Earthquakes and Aseismic Slip (SEAS): Initial Benchmarks and Future Directions.

Contact us to join our email list (berickson@pdx.edu, jjiang@cornell.edu)
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