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Outline of topics

Elements of earthquake and fault system dynamical models

A few comparisons with observations and results from well-
established computation models

Earthquake rupture similarity

Interactions between slow slip events and earthquakes
Earthquake clustering

Rupture propagation at fault complexities

Future direction: earthquakes occurring off of explicitly modeled
faults



Modeling challenges — system dynamics

« Extreme range of time and length scales— New approach to EQ
modeling

= 10° years and >106 earthquakes
= High spatial resolution for range of earthquake magnitudes

« Space-time clustering of EQs — essential element of seismic
activity
= Added modeling complexity to incorporate time-dependent failure

 Fractal-like geometry of faults and fault systems —» Geometric
incompatibilities and modeling pathologies
= Uniform remote stressing does not work

= Finite strength requires off-fault failure (seismicity)
— Off-fault yielding alters slip processes on modeled faults
— Introduces additional time-dependencies



Simulation ingredients — 1) Fault model
UCERF3 fault model and slip rates

< ~ 290,000 triangular elements (~1km?2) in
simulations with deep fault creep (~ 260,000 no
creep)

“* Approximate range of magnitudes M,,= 4 to M,,= 8

< 120,000 years simulated time ~16x10° events
< Simulations may be restarted to span 108 years
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Loading conditions in systems with geometric
incompatibility — fault systems and non-planar faults

Slip in response to an applied uniform stress increment Ac,,

— Planar fault

Slip — Fractal fault

Shear stress

Fault profile

. ——

Dieterich and Smith (2009)



Fault slip and stress changes

Smooth fault Fault with self-similar roughness

Geometric incompatibilities form elastic barriers
Barrier stress produces a back-stress that inhibit slip

Back-stress increases with linearly with total slip resulting break- down of
slip scaling with rupture length and other pathologies

Dieterich and Smith (2009)



Simulation ingredients — 2) Loading conditions

To prevent long-term build-up of stresses resulting from geometric
incompatibilies the following condition must be satisfied at each element j
in the model

S+S +S

/ /\ \ Long-term average stressing

Direct tectonic rate from interactions among

stressing rate at Average stressing rate from the simulated fault elements
element j other sources (stress

relaxation processes and
slip of (unknown faults)



Simulation ingredients — 2) Loading conditions

External loading of Internal interactions
Long-term average stressing

modeled fault
elements
Direct tectonic /\ rate from interactions among
stressing rate at Average stressing rate from the simulated fault elements
element i other sources (stress
relaxation processes and
slip of unknown faults)

In the simulations

Sl.F =Kl.j(§]. ,wheregj is the long-term fault slip rate

Hence, the the long-term average loading rate of the external loading
sources is

Fr e §F KU(_ 5_]) BACKSLIP LOADING



Simulation ingredients — 3) Constitutive Law for fault slip
Rate- and state-dependent friction

Slip speed Coefficient of friction:
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Simulation ingredients — 4) Computational engine: RSQSim

Boundary elements — faults are represented as arrays of rectangular or
triangular elements

Simulations avoid repeated solutions of a large system simultaneous
equations — fast computation

Event driven computations based on changes of fault sliding state. A fault
element may be at one of three sliding states
= 0 - Fault is essentially locked — aging by log time of stationary contact

= 1 — Nucleating slip: Time- dependent accelerating slip to instability
Analytic solutions with rate-state friction

= 2 — Earthquake slip: quasi-dynamic — slip speed is specified as an input based on
shear wave impedance.

2 BAS —— Estimate of EQ stress drop




Simulation ingredients — 4) Computational Inputs

Fault system model —— (e.g. SCEC community fault model)

Long term slip rates

. — UCERF deformation model
Slip rake angles

Fault-normal stresses acting on fault elements — locally tuned to
given interevent recurrence times consistent with community

paleoseismic results

EQ slip speed (We typically use 1m/s, which is appropriate for stress
drops of ~4-5MPa)

Rate-state friction parameters (a, b, D,) at each element

Simulation parameters (dynamic overshoot, rupture tip parameters)



RSQsim — Dynamic finite element comparison

Normal Stress on Fault
(Background Stress = 120 MPa)
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Shear stress (MPa)
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Depth (Km)
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RSQSim — Fully Dynamic Finite Element Comparison
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RSQSim — Foreshocks and aftershocks

UCERF3 fault model
) independent mainshocks M=7
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Interevent Waiting Time Distributions

California Catalog: M5 to M6

California Catalog: M6 to M7

California Catalog: M7+
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California Catalog: M5-M6
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Rupture Branching

dt = 144; dt+ = 2e+05 days
izo)rev) max sl 360 m
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Rupture Similarity

Example of 1906-type earthquake on San Andreas Fault

Stress change (0ii/3)

408 0" 10%10" 100

100 km
Fault slip




Event similarity — N. section of San Andreas
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From an all-California
simulation by J. Gilchrist,
with cluster analysis on
along-strike EQ slip by K.
Richards-Dinger.

UCERF fault model and
slip rates, tuned to
paleoseismic recurrence
intervals




Event similarity — N. section of San Andreas
Comparison with 1906 San Francisco earthquake
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Event similarity — N. section of San Andreas

90% of all events L = 290km (~M=8) fall in one of these 3 clusters

Distance along strike (km)
0 100 200 300 400 500 600
| | 1 |

7 ©N __ s

Cluster 7 : 72 members

Slip (m)

7N

Cluster 4 : 94 members

205 EQs <

Slip (m)

N

Cluster 11 : 39 members

Slip (m)

| | I I |
100 200 300 400 500 600
Distance along strike (km)

o



Slip (m)

Slip (m)

Slip (m)

Event similarity — N. section of San Andreas
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Rate weakening SRS
(continuous creep) s — Boundary @ 25 km depth contour
Rate strengthening ———
(seismogenic) A,

Boundary halfway between 350°C and

450°C isoth fW t al. [2003
Rate weakening isotherms of Wang et al. [ ]

(continuous creep)
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Richards-Dinger, Dieterich, Wells (AGU 2014)



Cascadia mean recurrence interval M>8

|

Paleo-turbidite recurrence [Goldfinger et al., 2012]
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Cascadia mean recurrence interval M>8

/Simulation Paleo-turbidite recurrence [Goldfinger et al., 2012]
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Recurrence interval (yrs)
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Richards-Dinger and others (AGU 2014)
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\ Tuned simulation
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Slip and Coastal Subsidence in Great Cascadia Earthquakes
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Richards-Dinger and others (AGU 2014)



Vertical Deformation M>8

Comparison w/ data for the great earthquake of 1700
Leonard et al [2004]

Southern Cascadia Central Cascadia Northern Cascadia
§ §y

Subsidence (m)

Y/ % 4"
! AR \\v N
0 1.,_/‘/ ’ : \\. ﬁ
5 ) | Y 11442 00 N/ | ‘{'
3 | Y 1, M 0% ‘ ' W il”"; )
PR
1 unnn
\ Jvh L0 1“ “
-~~ = N
i Hq‘ y ~ A oA -‘""“/, \
: 'umrh- ., =7 0 n I \\
3 // B~ = "' —] _'n]. ". 2 \ 0 it
0 ' - "Qn r‘oim m ‘tllu- _‘_ : : ‘.h' .
\ﬁ A " 5ok K T | i
WY | O We W oW B O | et Vo
-1 ' I ‘ I I I I
4600 4800 5000 5200 5400

UTM zone 10 northing (km)

Richards-Dinger and others (AGU 2014)



517

50°

49°

48°

47°

46°

45°

44

43°

42°

41°

40°

Exploratory model for coupled interactions
between slow slip events and earthquakes
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Slow slip events

Necessary conditions:
1) Slip-rate weakening (b>a) at slow slip speeds
2) Mechanism to quench acceleration of slip before reaching earthquake slip
speeds
 Cut-off of state term in constitutive law — reversal from rate weakening at low
slip speeds to rate strengthening at higher speeds

= 4+ al (V)+bl (9+ )
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0.700 - Earthquake

Steady-state friction

0.650 |-

0.600 |-

0.550

Friction coefficient

0500 | | 1 ! 1 1 1 Il 1 !
106 10°% 10 102 102 10°' 10° 10' 102 10%® 10* 10°

Slip rate in units of Dc/s




Friction coefficient
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| Event 166976

Space — time plot of SSE
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SSE triggered by mainshock
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, Event 135761 |

Space — time plot of SSE
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Distance (km)

Space — time plot of complex SSE with mainshock

Event 593773.
2 1 <«+—— 59 foreshocks ——» ? G T —
(3) (2)(3) (_3) (4) 3 ©E) 2 EU)
o N ‘ ¥ ¥ v * Seismic
= y SSEs

I | | I | [
0 20,000 40,000 60,000 80,000 100,000 120,000
Time (sec)



Summary

Definitions
Large SSE: slip area > 75% of transition zone
Large EQ: slip area> 75% of seismogenic zone

Simulation times

Total simulation time 4.1x10'% s (1300yr)

Total time in large SSEs 1.78x108s (~0.4% of sim time)
Total time all SSEs 2.01x10° s (~5% of sim time)

Numbers of events
Large SSEs: 1766
Large EQS: 33
Large EQs with SSE before mainshock 14

42% of large EQs were preceded by SSEs
0.8% of large SSEs preceded large EQs




Large-earthquake cluster along southern San Andreas

Jacqui Gilchrlst, PhD Thesis (2016)



Large-earthquake cluster along southern San Andreas

Fault
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Jacqui Gilchrlst, PhD Thesis (2016)



Large-earthquake cluster along southern San Andreas
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Clusters of Large Earthquakes

F.uster 1S the fraction of M>7

events that occur within 4 years
of other M>7 events (in excess
of that predicted by a Poisson

model)

All Cal model — effect of a Fauster
M7

All-Cal, a=0.008 0.124

All-Cal, a=0.009 0.117
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All-Cal, a=0.012 0.171

California Catalog F sster

1911-2010.5, M=6 to M=7| (14

All Cal Simulation
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Rates of M>7 Earthquakes
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Aftershocks of Non-Clustered and Clustered M27 Events

Non-Clustered: Blue
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Aftershocks of Non-Clustered and Clustered M27 Events

Clustered: Red
Non-Clustered: Blue
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Aftershocks of Clustered and Non-Clustered M27 Events

L
5 Red - Aftershocks of Clustered Events
Black - Aftershocks of Non-Clustered Events
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Probability Additional Earthquake M>7 Within 50km of Earthquake M>7

Probability of M27 Event Given N Aftershocks
in Some Time Interval Following a Prior M27 Event
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Transition from aftershocks of a prior M>7 event to
foreshocks of an impending M>7 event

Accelerating Seismicity Prior Distance Between Aftershocks and
to Secondary Events Secondary Events with Time
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Single event simulations with forced nucleation
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Single event simulations with forced nucleation
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Multi-cycle simulations with evolved stresses and
spontaneous nucleation
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Immediate rupture jump probabilities
under evolved stress conditions
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Probability of immediate and delayed rupture jump

probability of delayed
jump within 4 years ~40%
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Stepover width (km) - Positive in Extension
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Rupture jump probabilities (instantaneous and delayed)
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Simulation of a complex fault system between
the Elsinore and Laguna Salada faults

Aftershocks of 2010 M7.2 El Mayor Cucapah EQ

33.5° | o Faults from Fletcher et al., (2010) and
triggered surface slip of Rymer et al. (2011)
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Kroll, (2016, UCR thesis)



Local fault model embedded in regional southern California UCERF3 model
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Aftershocks to Laguna Salada mainshock
similar to the M7.2 El Mayor-Cucapah earthquake

No through-going ruptures between Laguna-Salada and Elsinores faults
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Kroll and others (unpublished)



Looking Ahead: Simulations that incorporate off-fault seismicity
(as driven by tectonic stressing and on-fault slip history)

R =L. : dy=L[dt—de]

VS, ao

Background rate per yeat
(Dieterich, 1994) — :
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Kroll and others (unpublished)



Northing

Comparison of observed and modeled seismicity

® Seismicity between the M7.2 El Mayor- ® Seismicity between a simulated Laguna
Cucapah earthquake and the M5.7 Ocotillo Salada mainshock and a M5.9 aftershock (At=
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Hauksson et al., 2012; Kroll et al., 2013



Incorporating stress relaxation into simulations

Concept for stress relaxation: Assume stresses fluctuate around a
steady-state condition where the long-term growth of interaction
stresses due to fault slip is balanced by off-fault yielding due to slip on
minor fault.

Change of stress during earthquake Relaxed state (+ tectonic stressing)
At
_ Elastic response
Elastic response +

relaxation

//‘/l/:>/L/L/L/



Rate-State off-fault stress relaxation

Assume in the brittle crust that off-fault stress relaxation occurs through
earthquakes. Bulk relaxation rate is proportional to earthquake rate, where
I’

1
R= dy = —| dt —ydS*
?’S Y ao[ ¥ }
Relaxation rate of pressure and deviatoric components of the stress tensor
P ()= 67 (1)=~—5

() r” (1)

y v’
4y ==y (a7P")] ay” =—[dr=y" (8] :d0")]
ao

= ao
— /,\E/\E_
- l'j- lj_l.()

The functions A reflect the sign of the stress changes under steady-
state slipping conditions, and act to pull the solutions toward an
equilibrium stress state

where A" = sign( P“) where ‘

Smith and Dieterich (in prep)



Off-fault stress relaxation for a full earthquake cycle
t,.=11 yr, T=150 yr
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