On the possibility of unstable slip on clay-rich faults

Dan Faulkner

Thanks to: John Bedford, Julia Behnsen, Carolyn Boulton, Sabine den Hartog, Takehiro Hirose, Tom Mitchell, Marieke Rempe, Catalina Sanchez Roa, Toshi Shimamoto, Marion Thomas

Rock Deformation Laboratory
Earth, Ocean and Ecological Sciences

Outline

- The character of major faults in the field
- Clay friction in the lab
- Possibility of clay faults becoming unstable
 - Temperature
 - Pore fluid pressure
- Rupture propagation through clay-rich faults

Evidence that this might be an issue

- Slip deficit on the creeping section of the SAF
 - Ellsworth and Malin, 2011, Geological Society, London, Special Publications, 359, 39–53.
 - Michel et al., 2018, BSSA
- The Tohoku earthquake 2011
 - Interseismic aseismicity in the trench, huge co-seismic slip

Tohoku-Oki earthquake, March 2011

Major faults in the nature

DFDP 1a - The Fault

Liverpool, ← ~12,742km away

Median Tectonic Line, Japan

From the field:

Major faults typically display a fault core that contains significant proportions of clay minerals

Friction and frictional stability of clays

- Weak
- Velocity strengthening

Figure 2. Friction rate parameter a-b as function of coefficient of friction for all gouges in this study.

Earthquake nucleation on clay-rich faults — T effects

Fluid pressure weakening in faults

$$\frac{\partial p}{\partial t} = \kappa \frac{\partial^2 p}{\partial x^2} + A$$

$$\kappa = \frac{k}{\beta_c \eta}$$

$$p = \text{pressure (Pa)}$$

 $t = \text{time (s)}$
 $\kappa = \text{hydraulic diffusivity (m}^2/\text{s)}$
 $x = \text{distance (m)}$

$$k = \text{permeability (m}^2)$$

 $\beta_c = \text{storage capacity (Pa}^{-1})$
 $\eta = \text{viscosity (Pa.s)}$

Compaction produced by shear produces high porefluid pressure which is mediated by fluid loss out of the gouge layer

Permeability of clays typically found in fault gouge

Behnsen and Faulkner 2011 JGR

Natural fault gouges also; Morrow et al. 1981 - SAF

Chu et al. 1981 - SAF

Faulkner and Rutter 1998; 2000; 2003 – Carboneras Fault, Spain Wibberley and Shimamoto, 2003 – Median Tectonic Line, Japan Allen et al. 2017 – Alpine Fault, New Zealand

Compaction weakening in experiments

Fluid pressure development can produce apparent velocity weakening behaviour

Compilation of friction data for montmorillonite in experiments

Morrow et al. 2017 JGR

From the lab (slow slip velocity):

- Clay-rich gouge is inherently velocity strengthening but under certain circumstances can become velocity weakening
- Future tests should establish
 - dilatant/compactive behaviour from 'steady state' pore volume conditions
 - Effects of temperature

Earthquake mechanics

High velocity tests (1.3 m/s)

- Pyrophyllite
- •Illite/quartz
- Sericite
- Talc
- Montmorillonite

High velocity friction tests (1.3 m/s)

Loss of fracture energy in wet tests

- energetically easier to propagate earthquake
- radiation efficiency ~1 (ignoring off-fault dissipation)

 Gabbro forcing blocks (v. low permeability)

Thermal pressurization

A = velocity weakeningB = velocity strengthening

Noda and Lapusta 2013 Nature

From the lab (high slip velocity):

- We need to constrain the properties and behaviour of clay-rich fault gouge at elevated slip velocity and higher normal stress
 - This requires confined high-velocity rotary shear experiments

There will be an answer...

Liverpool

Overall rotary shear apparatus

Brown

...let it be

Conclusions

- Clays are common in faults and frictionally weak
- Earthquake nucleation difficult on clay-rich faults
- Rupture propagation on clay-rich faults is possible with fluid involvement

Initial compaction?

Initial lab observations

Sepiolite gouge (Mg-silicate)

Velocity stepping, with pore fluid pressure

• a = 0.01; b = 0.004; D_c = 10 microns; stiffness = 1500 m⁻¹ (friction units)

