Inference Spiral of System Science

Verification

- Model "does what's it's supposed to do" at a specified level of precision
 - Mathematics is correct
 - Physics is properly implemented
- Techniques
 - Comparisons with known (e.g., analytic) solutions
 - Cross-comparisons between different models
 - Consistency with observations (validation)
- Procedures need to be available on-demand throughout the modeling process
 - Difficult from a practical perspective
 - Facilitated by vertical integration of cyberinfrastructure

Validation

- Criteria for asserting model is credible representation of the real system, usable for forecasting behaviors (not that "model is true")
 - Consistent with knowledge of the system (includes verification)
 - Not too sensitive to initial conditions or unknown forcings
 - Aleatory and epistemic uncertainties are properly characterized
 - Consistent with relevant observations
- Substantiation that a model is sufficiently accurate in predicting system behaviors
 - within its domain of applicability
 - consistent with its intended purposes
- Techniques
 - Testing against observations (surviving *invalidation*)
 - Competition among models
 - Validation of model components
 - Improvement by data assimilation (inversion)