Spectral correlations, polarization, and near-fault pulses in simulated ground motions

Jack Baker and Lynne Burks

Civil & Environmental Engineering Stanford University

Ground motion properties for validation

Properties we have studied:

- Spectral correlations ۲
- Velocity pulses in near-fault motions \succ To be discussed today ullet
- Polarization of response spectra ullet
- Inelastic response spectra
- Simple structural model collapse capacities ٠

We have targeted properties with the following characteristics:

- Simple and general, but of engineering relevance
- Relatively stable in recorded ground motions (so that we know the ۲ "correct" answer even for large or unusual events)

Stable:

- Little variation in empirical models across a range of magnitude/distance/site conditions
- Little variation among models from multiple researchers

Spectral correlations

Hypothetical response spectra having the same means and standard deviations.

Response spectra (max direction orientation)

Broadband platform simulations of M=7 Hayward events at $R_{rup} = I km$ URS rupture generator and low-frequency module

Velocity pulses in near-fault ground motions

Near-fault recordings from the 1994 Northridge earthquake

Comparable simulations and velocity time histories

The "correct" answer for this property is not well constrained empirically, but it is of engineering interest.

Response spectra (max direction orientation)

Broadband platform simulations of M=7 Hayward events at $R_{rup} = I km$ URS rupture generator and low-frequency module

"Flagpole" oscillator responses

J.Baker & L.Burks

Histograms of Sa_{RotD100}/Sa_{RotD50} from recordings

Results NGA -West2 data

Geometric mean $Sa_{RotD100}/Sa_{RotD50}$ ratios from simulations

Ground motion properties for validation

Properties we have studied:

- Spectral correlations
- Velocity pulses in near-fault motions
- Polarization of response spectra
- Inelastic response spectra
- Simple structural model collapse capacities

We have targeted properties with the following characteristics:

- Simple and general, but of engineering relevance
- Relatively stable in recorded ground motions (so that we know the "correct" answer even for large or unusual events)

Stable:

- Little variation in empirical models across a range of magnitude/distance/site conditions
- Little variation among models from multiple researchers

Ground motion properties for validation

Properties we studied this year:

- Spectral correlations
- Velocity pulses in near-fault motions
- Polarization of response spectra
- Inelastic response spectra
- Simple structural model collapse capacities

Our target properties for validation ideally have the following characteristics:

- Simple and general, but of engineering relevance
- Relatively stable in recorded ground motions (so that we know the "correct" answer even for large or unusual events)

J.Baker & L.Burks

SDOF Oscillator Response

T = 5s, RotD100/RotD50 = 1

T = 5s, RotD100/RotD50 = 1.41

SDOF Oscillator Response

T = 0.2s, RotD100/RotD50 = 1

- displacement / max displacement

T = 0.2s, RotD100/RotD50 = 1.42

J.Baker & L.Burks

Conclusions

- In this case, the UCSB rupture generator produces relatively smoother slip time histories than the URS rupture generator and the inverted source used by the validation module
- Simulations tend to have more pulse-like ground motions than recordings
- The elastic response spectra computed from simulations match recordings at long periods in general, but tend to underestimate responses at periods shorter than 1s
- Structural collapse capacities are inconsistent between simulations and recordings, even when the elastic spectral shape is matched

Thank you!

Extra Slides

Simulation Validation Example

Northridge Ground Motion Data

- Recordings from NGA database
- Simulations from SCEC Broadband Platform
 - Validation simulations
 - 6 realizations of simulations using the rupture generator

Ground Motion Set	Туре	Rupture Generator*	Short Name
I	Recordings	N/A	NGA
2	Simulations	Validation	VAL
3	Simulations	URS	URS I
4	Simulations	URS	URS 2
5	Simulations	URS	URS 3
6	Simulations	UCSB	UCSB I
7	Simulations	UCSB	UCSB 2
8	Simulations	UCSB	UCSB 3

*URS method was used for low and high frequency and site response

- Rupture
 - $M_{\rm W} = 6.67$
 - Dimensions = 20 km by 25 km
 - Dip = 40°
- Ground Motions
 - 40 stations
 - Within 20.5km of fault rupture

- Rupture
 - $M_{\rm W} = 6.67$
 - Dimensions = 20 km by 25 km
 - Dip = 40°
- Ground Motions
 - 40 stations
 - Within 20.5km of fault rupture
- Slip Time History
 - Validation simulations = source inversion

- Rupture
 - $M_{vv} = 6.67$
 - Dimensions = 20 km by 25 km
 - Dip = 40°
- Ground Motions
 - 40 stations
 - Within 20.5km of fault rupture
- Slip Time History
 - Validation simulations = source inversion
 - Rupture generator simulations

Elastic Response Spectra

Calculation of \mathcal{E} values at three periods

$\boldsymbol{\mathcal{E}}$ values at varying periods, from many ground motions

Example Building Collapse Capacities

Example Building Collapse Capacities

Example Building Collapse Capacities

Effect of Matching Response Spectra on Collapse Capacity

T = 0.75s

Effect of Matching Response Spectra on Collapse Capacity

T = 1.32s

