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Ground motion properties for validation 

Properties we have studied: 
•  Spectral correlations 
•  Velocity pulses in near-fault motions 
•  Polarization of response spectra 
•  Inelastic response spectra 
•  Simple structural model collapse capacities 

We have targeted properties with the following characteristics: 
•  Simple and general, but of engineering relevance 
•  Relatively stable in recorded ground motions (so that we know the 

“correct” answer even for large or unusual events) 
Stable: 
•  Little variation in empirical models across a range of magnitude/distance/site conditions 
•  Little variation among models from multiple researchers 

To be discussed today 
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Spectral correlations 

Hypothetical response spectra having the same means and standard deviations.   

Correct correlation 

Under-correlated Over-correlated 



J.Baker & L.Burks  4 

Response spectra (max direction orientation) 

URS high-frequency module 
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Broadband platform simulations of M=7 Hayward events at Rrup = 1km 
URS rupture generator and low-frequency module 
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Velocity pulses in near-fault ground motions 

Near-fault recordings from the 1994 Northridge earthquake 
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Comparable simulations and velocity time histories 

The “correct” answer for this property is not well 
constrained empirically, but it is of engineering interest. 

Validation source model URS rupture generator UCSB rupture generator 
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Response spectra (max direction orientation) 

URS high-frequency module 
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Broadband platform simulations of M=7 Hayward events at Rrup = 1km 
URS rupture generator and low-frequency module 



J.Baker & L.Burks  10 

“Flagpole” oscillator responses 

T = 1s, SaRotD100/SaRotD50 ≈ 1 
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T = 1s, SaRotD100/SaRotD50 = 1.41 
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Histograms of SaRotD100/SaRotD50 from recordings 
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Results NGA -West2 data 
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Geometric mean SaRotD100/SaRotD50 ratios from simulations 
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Shahi and Baker (2012)
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Ground motion properties for validation 

Properties we have studied: 
•  Spectral correlations 
•  Velocity pulses in near-fault motions 
•  Polarization of response spectra 
•  Inelastic response spectra 
•  Simple structural model collapse capacities 

We have targeted properties with the following characteristics: 
•  Simple and general, but of engineering relevance 
•  Relatively stable in recorded ground motions (so that we know the 

“correct” answer even for large or unusual events) 
Stable: 
•  Little variation in empirical models across a range of magnitude/distance/site conditions 
•  Little variation among models from multiple researchers 
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Ground motion properties for validation 

Properties we studied this year: 
•  Spectral correlations 
•  Velocity pulses in near-fault motions 
•  Polarization of response spectra 
•  Inelastic response spectra 
•  Simple structural model collapse capacities 

Our target properties for validation ideally have the following characteristics: 
•  Simple and general, but of engineering relevance 
•  Relatively stable in recorded ground motions (so that we know the 

“correct” answer even for large or unusual events) 
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SDOF Oscillator Response 

T = 5s, RotD100/RotD50 = 1 
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T = 5s, RotD100/RotD50 = 1.41 
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SDOF Oscillator Response 

T = 0.2s, RotD100/RotD50 = 1 
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T = 0.2s, RotD100/RotD50 = 1.42 
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Conclusions 

•  In this case, the UCSB rupture generator produces relatively smoother 
slip time histories than the URS rupture generator and the inverted 
source used by the validation module 

•  Simulations tend to have more pulse-like ground motions than recordings 

•  The elastic response spectra computed from simulations match recordings 
at long periods in general, but tend to underestimate responses at periods 
shorter than 1s 

•  Structural collapse capacities are inconsistent between simulations and 
recordings, even when the elastic spectral shape is matched 
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Thank you! 
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Extra Slides 
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Simulation Validation Example 

Ground 
Motion Set 

Type Rupture 
Generator* 

Short 
Name 

1 Recordings N/A NGA 

2 Simulations Validation VAL 

3 Simulations URS URS 1 

4 Simulations URS URS 2 

5 Simulations URS URS 3 

6 Simulations UCSB UCSB 1 

7 Simulations UCSB UCSB 2 

8 Simulations UCSB UCSB 3 

Northridge Ground Motion Data 

•  Recordings from NGA database 

•  Simulations from SCEC 
Broadband Platform 

–  Validation simulations 
–  6 realizations of simulations using the 

rupture generator 

*URS method was used for low and high 
frequency and site response 
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Ground Motion Set 

•  Rupture 
–  MW = 6.67 
–  Dimensions = 20 km by 25 km 
–  Dip = 40° 
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Ground Motion Set 

•  Rupture 
–  MW = 6.67 
–  Dimensions = 20 km by 25 km 
–  Dip = 40° 

•  Ground Motions 
–  40 stations 
–  Within 20.5km of fault rupture 
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Ground Motion Set 

•  Rupture 
–  MW = 6.67 
–  Dimensions = 20 km by 25 km 
–  Dip = 40° 

•  Ground Motions 
–  40 stations 
–  Within 20.5km of fault rupture 

•  Slip Time History 
–  Validation simulations = source 

inversion 
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Ground Motion Set 

•  Rupture 
–  MW = 6.67 
–  Dimensions = 20 km by 25 km 
–  Dip = 40° 

•  Ground Motions 
–  40 stations 
–  Within 20.5km of fault rupture 

•  Slip Time History 
–  Validation simulations = source 

inversion 
–  Rupture generator simulations 



J.Baker & L.Burks  27 

Elastic Response Spectra 
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Calculation of ε values at three periods  
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ε values at varying periods, from many ground motions 
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Example Building Collapse Capacities 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Incremental Dynamic Analysis 
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Example Building Collapse Capacities 

T = 0.75s 
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Example Building Collapse Capacities 

T = 1.32s 
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Effect of Matching Response Spectra on Collapse Capacity 

T = 0.75s 



J.Baker & L.Burks  45 

Effect of Matching Response Spectra on Collapse Capacity 

T = 1.32s 


