US-Japan Collaboration on Strong Ground Motion Prediction Techniques

GMSV TAG Meeting

Paul Somerville, Jeff Bayless, Andreas Skarlatoudis

3 April 2013

Participants

Japan (Kyoto University, funding from MEXT)

California (URS, funding from SCEC/ PG&E)

Hiroshi Kawase

Paul Somerville

Tomotaka Iwata

Jeff Bayless

Shinichi Matsushima

Andreas Skarlatoudis

Comparison of Methods

JAPAN

Irikura Recipe –
 deterministic asperity
 model

Stochastic Green's functions

CALIFORNIA

 Graves-Pitarka stochastic rupture model (SRF file)

 Hybrid wave propagation

Outer Fault Parameters

- Rupture area S is given.
- **Seismic moment Mo** from the empirical relation of **Mo-S**.
- Average static stress-drop $\Delta \sigma_c$ from appropriate physical model (e.g., circular crack model, tectonic loading model, etc.)

Inner Fault Parameters

- Combined area of asperities Sa from the empirical relations of S-Sa or Mo-Ao.
- **Stress drop** on asperities $\Delta \sigma_a$ based on the multiple asperity model.
- **Number** of asperities from fault segments.
- Average slip of asperities Da from dynamic simulations.
- **Effective stress** for asperities σ_a and background area σ_b are given.
- Slip velocity time function given as Kostrov-like function.

Extra Fault Parameters

Rupture nucleation and termination are related to fault geometry.

Irikura and Miyake (2001, 2011)

Example - Northridge

SRF Input

Irikura Asperity Output

Example – Loma Prieta

SRF Input (Graves & Pitarka)

Irikura Recipe Output

Project Phases

Method Validation Phase

 Forward Simulation Phase, with Validation against data-based GMPE's

Motivation – Method Validation Phase

- Japanese and California investigators use very different source characterization in strong motion simulations
- Differences in source characterization are thought to be the main causes of differences in ground motion simulations performed using different simulation methods, even within California
- Gain a better understanding of the impact of different source characterization methods on ground motion simulations when there is guidance provided by a historical scenario event

Approach – Method Validation Phase

Choose two events – Northridge and Fukuoka

Exchange source models

 Perform simulations using our side's codes with the other side's source model

Source Characterization using Exchanged Source Parameters

Japan Approach

Use Somerville et al. 1999
 asperity picker code to
 convert Graves & Pitarka
 SRF file to Irikura asperity
 model

California Approach

- Convert Irikura asperity model to SRF file
- Also convert Irikura asperity model to NIED Version of the Irikura asperity model

Computational Platforms

Japan

Various

SCEC Broadband Strong
 Motion Simulation Platform
 is available

California

SCEC Broadband Strong
 Motion Simulation Platform

Motivation – Forward Simulation Phase

 Find out how different simulated ground motions are using the Japan and California methods when there is no guidance provided by a historical scenario event

 Find out how well each side's simulations agree with strong motion recordings in their country

Approach – Forward Simulation Phase

- Perform a limited set of forward simulations of future scenario events
- Use a simple regression model to derive simple GMPE's, and compare results
- Perform the same regressions on separate sets of strong motion recordings from Japan and California
- Compare Japan and California GMPE's from both simulations and data

Forward Simulation Events

			Depth to
Mw	Mech	Dip	Тор
6.2*	SS	90	4
6.6*	RV	45	3
6.6*	SS	90	0
7.0	SS	80	0
7.5	SS	80	0
7.5	RV	45	0
8.0	SS	80	0

^{*}Scenarios for SWUS GMPE Comparison

<u>-</u>11

Issues in Data-Based GMPE Comparison

- Selection of consistent magnitude and distance ranges
- Differences in typical Vs profiles between Japan and California cause profiles with the same Vs30 value to have different amplification effects
- Japanese prefer other methods of site characterization, e.g. site period