Simulation and Validation of Long-Period Earthquake Ground Motion in the Kanto Basin in Japan

Haydar Karaoglu, Ricardo Taborda, and Jacobo Bielak

The QUAKE Group at Carnegie Mellon University

Department of Civil & Environmental Engineering Computational Seismology Laboratory

SC/EC

Objective

- Part of SCEC's VISES project with ERI and DPRI
- Verification and validation of earthquakes in Japan since 2000 (dense coverage)
- Beroza et al: Impulse response from ambient seismic field
- Use Hercules for simulating long-period earthquakes
- First use point sources and then extended faults
- Part of High-F project: To achieve realistic simulations from 0 to 10 Hz

Basic question

- How do seismic waves propagate from the rupture to produce strong shaking at the Earth's surface?
- Study the basin amplification effects in the Kanto region

Ambient Seismic Field

New view of this "noise" as a useful signal

Courtesy of Greg Beroza

Green's Function

Used to solve linear differential equations subject to specific initial conditions and/or boundary conditions.

For the wave equation, the Green's function is the response to an idealized force localized in space and time.

Α

Fundamental to construct more general solutions to the wave equation to study Earth structure and seismic sources.

B

The Virtual Earthquake Approach

(1) Record weakly coherent background.

(2) Extract surface impulse response.

(3) Correct for depth & mechanism.

(4) Large Magnitude via superposition.

Courtesy of Greg Beroza

Virtual Earthquake Approach validated by 4 moderate earthquakes.

Basin amplification is apparent.

lt works.

Courtesy of Greg Beroza

Denolle et al. (2012)

2008 M5.4 Chino Hills Earthquake with Region of Interest Validation

31 hrs

Time:

Hercules

Our octree-based finite element tool for modeling earthquake ground motion^{*} (Tu et al., SC2006)

Hercules has been used for verification and validation studies (Bielak et al, GJI 2010; Taborda et al, CiSE 2011)

- TeraShake (2005–2007) SCEC
- ShakeOut (2007–2009) SCEC+USGS
- Chino Hills (2008–2011) SCEC
- Volvi (2008–2010) Euroseis E2VP

* and simplified building models

Hercules

Observations vs synthetics

2004

Observations vs synthetics

FS1 =	= 5.42		
S2 =	5.21		
B1 =	6.90		
B2 =	4.17		
B3 =	5.21		
B4 =	5.40		
B5 =	5.62		
	NS	EW	UD
S1 =	6.28	3.20	6.78
S2 =	5.65	3.19	6.77
B1 =	8.35	3.27	9.09
B2 =	5.70	2.97	3.83
B3 =	5.62	3.35	6.65
B4 =	5.90	2.73	7.57
B5 =	6.43	3.68	6.74
S1:	NS	EW	UD
C1 =	6.76	6.21	6.676.55
C2 =	6.63	6.00	6.426.35
C3 =	2.08	0.00	6.923.00
C4 =	1.59	0.00	5.952.51
C5 =	8.95	2.62	8.116.56
C6 =	8.69	2.04	8.066.27
C7 =	9.50	2.48	8.246.74
C8 =	9.03	2.60	7.936.52
C9 =	6.38	3.93	5.265.19
C10 =	=7.22	5.33	5.395.98
C11 =	=2.22	3.95	5.623.93

4

Observations vs synthetics

FS1 = 6.69S2 = 6.22

B1 = 7.52

B2 = 6.71

B3 = 7.93

B4 = 6.13B5 = 5.64

NS EW UD

5.45 5.42

7.707.18

S1 = 7.43 6.31 6.33

2

John Anderson (2009) GOF criteria

Geotechnical layers

Global score for PGV

Goodness-of-fit PGV

0.1 – 0.25 Hz

MATERIAL MODEL --- ELEVATION DATA

NORTH-EASTERN JAPAN TOPOGRAPHY --- ELEVATION

Table 2. Earthquakes since 2000 selected for simulation validation

YEAR	REGION	EQ NAME	# RECORDS < 200 km
2003	USA	San Simeon	21
2004	USA	Parkfield	78
2010	USA	El Mayor-Cucapah	134
2000	JAPAN	Tottori	171
2004	JAPAN	Niigata	246
2007	JAPAN	Chuetsu-Oki	286
2008	JAPAN	Iwate	186

Epicenter of Tottori earthquake is out of the available

Velocity model, NIED; Ichimura

Table is taken from Virtual Institute for the Study of Earthquake Systems (14) Todes al

MATERIAL MODEL --- LAYER PROPERTIES

LAYER 3

LAYER 11

MATERIAL MODEL (KANTO-BASIN)

