
Building SmartWeave
Contracts with Clarity

Arto Bendiken

An Overview

● Enables client-side, computation-heavy dapps on top of the Arweave network
● In a traditional smart contract system (such as Ethereum), every validator

node must execute and validate every transaction
○ Results in a severe computation and transaction processing bottleneck

● SmartWeave instead pushes contract execution to users of the smart contract
○ Frees network validators from contract state management and validation
○ Altogether eliminates the need for ‘gas’ to pay for contract execution

● Read more at Introducing SmartWeave: Building Smart Contracts with
Arweave and With Arweave's 'Lazy' Approach to Smart Contracts, Its Version
of Web3 Does More

● Find the GitHub repository at https://github.com/ArweaveTeam/SmartWeave

SmartWeave: Arweave’s Smart Contract Protocol

https://arweave.medium.com/introducing-smartweave-building-smart-contracts-with-arweave-1fc85cb3b632
https://arweave.medium.com/introducing-smartweave-building-smart-contracts-with-arweave-1fc85cb3b632
https://www.coindesk.com/arweave-smartweave-smart-contracts-lazy-evaluation
https://www.coindesk.com/arweave-smartweave-smart-contracts-lazy-evaluation
https://github.com/ArweaveTeam/SmartWeave

● A new smart contract language that is safe (doesn’t contain footguns) and
decidable (won’t let you get into an infinite loop)

● Syntactically and semantically inspired by Lisp (familiar to fans of Clojure!)
○ For machines: it is trivial to generate, parse, and analyze Clarity code, from anywhere
○ For humans: don’t fear the parentheses, they do fade away after a little use

● Originally developed by Hiro (formerly known as Blockstack) and Algorand
● Read more at Introducing Clarity, a Language for Predictable Smart Contracts

and Bringing ‘Clarity’ to 8 Dangerous Smart Contract Vulnerabilities
● Find the GitHub repositories at https://github.com/clarity-lang

Clarity: A Safe, Decidable Smart Contract Language

https://blog.blockstack.org/introducing-clarity-the-language-for-predictable-smart-contracts/
https://blog.blockstack.org/bringing-clarity-to-8-dangerous-smart-contract-vulnerabilities/
https://github.com/clarity-lang

Sworn: A Compiler for Clarity on SmartWeave
● Compiles Clarity smart contracts into SmartWeave contracts that run on the

Arweave blockchain
○ The sworn program parses and compiles .clar files
○ The output is an equivalent SmartWeave program in the form of JavaScript code
○ Also includes experimental WebAssembly output, but JavaScript is recommended since the

generated JS contracts are perfectly human readable and thus feasible to audit

● The generated SmartWeave code requires Clarity.js, which implements the
necessary runtime support for Clarity's standard library

● Read more at Weaving Clarity: Safe Smart Contracts for SmartWeave
● Find the compiler’s GitHub repository at https://github.com/weavery/sworn

and the Clarity.js runtime’s at https://github.com/weavery/clarity.js

https://arweave.medium.com/introducing-smartweave-building-smart-contracts-with-arweave-1fc85cb3b632
https://github.com/weavery/sworn
https://github.com/weavery/clarity.js

TypeScript (.ts)

Clarity (.clar) sworn

tsc

JavaScript (.js)

SmartWeave Compilers

Clarity (.clar) sworn

JavaScript (.js)

WebAssembly (.wasm)

Sworn Outputs

The Demo

https://asciinema.org/a/360104

The Rationale

“The history of smart contracts is really
the history of smart contract bugs.”

— Aaron Blankstein

Solidity JavaScript TypeScript Clarity

Decidability ❌ ❌ ❌ ✅

Strong typing ✅ ❌ ✅ ✅

Safe arithmetic ⭕ ❌ ❌ ✅

Null safety ⭕ ❌ ✅ ✅

Error checking ❌ ❌ ❌ ✅

Anti-Footgun Matrix

The Language

Clarity: A Decidable Language
● Intentionally Turing incomplete, avoiding Turing complexity

○ It is not possible to write an infinite loop in a Clarity program
○ Each and every Clarity program will halt, guaranteed

● You can know, with certainty, from the code itself what the program will do
○ It is possible to analyze Clarity code for runtime cost and data usage

● Enables the complete static analysis of the entire call graph
○ For auditability, the set of reachable code can be efficiently determined

● The type checker can eliminate whole classes of bugs
○ Unintended casts, reentrancy bugs, reads of uninitialized values, etc.

● Strong static typing to the rescue
○ The type system does not have a universal supertype
○ The language does not support sequences that have dynamic length
○ The length of a sequence (string, buffer, or list) is a part of its static type

● Safe arithmetic only
○ No silent overflow, underflow, or truncation permitted

● Null safety isn’t optional
○ No null type nor value! Replaced by an optional type, as in other modern languages
○ “I call it my billion-dollar mistake.” — Tony Hoare

● Error checking is serious business
○ No unchecked return values nor silently swallowed errors

● Omits a long list of Solidity footguns (anti-features)
○ No reentrancy, no untyped inputs, no default functions, etc.

Clarity: A Safe Language

(define-data-var counter int 0)

(define-read-only (get-counter)
 (ok (var-get counter)))

(define-public (increment)
 (begin
 (var-set counter (+ (var-get counter) 1))
 (ok (var-get counter))))

(define-public (decrement)
 (begin
 (var-set counter (- (var-get counter) 1))
 (ok (var-get counter))))

The Compiler

(define-data-var counter int 0)

(define-read-only (get-counter)
 (ok (var-get counter)))

(define-public (increment)
 (begin
 (var-set counter (+ (var-get counter) 1))
 (ok (var-get counter))))

(define-public (decrement)
 (begin
 (var-set counter (- (var-get counter) 1))
 (ok (var-get counter))))

clarity.requireVersion("0.1")

function getCounter(state) {
 return clarity.ok(state.counter);
}

function increment(state) {
 state.counter = clarity.add(state.counter, 1);
 return {state, result: clarity.ok(state.counter)};
}

function decrement(state) {
 state.counter = clarity.sub(state.counter, 1);
 return {state, result: clarity.ok(state.counter)};
}

export function handle(state, action) {
 const input = action.input;
 if (input.function === 'getCounter') {
 return {result: getCounter(state)};
 }
 if (input.function === 'increment') {
 return increment(state);
 }
 if (input.function === 'decrement') {
 return decrement(state);
 }
 return {state};
}

● To support Clarity's language semantics of 128-bit integers and safe
arithmetic that traps on numeric overflow and underflow, arithmetic operations
need runtime support

● Thus, in the general case, an operation such as (* a b) must be compiled
to clarity.mul(a, b) instead of the trivial but ultimately incorrect a * b.

● If the compiler can prove overflow or underflow will not occur in a particular
context, it can elide the function call and output ordinary JavaScript arithmetic

FAQ: Why does basic math require function calls?

Clarity TypeScript JavaScript

bool boolean boolean

(buff N) Uint8Array Uint8Array

err Err<T> Err

Int, uint number or bigint number or BigInt

(list N T) Array<T> Array

(optional T) T or null T or null

principal String String

(response T E) T or Err<E> T or Err

(string-ascii N) String String

(string-utf8 N) String String

(tuple …) Map<String, any> Map

The Future

● The Sworn 1.1 release is coming soon, and focuses on user experience
○ More static analysis for Clarity input, rejecting more invalid programs
○ Significantly improved error messages from the compiler

● Many exciting things on the wishlist for an eventual Sworn 2.0
○ Prototyping is already going on for ingesting (a subset of) Solidity contracts via the Solidity

project’s Yul intermediate language

● Much work remains on Clarity.js and SmartWeave integration
○ Arweave-specific Clarity functions for easily building profit-sharing tokens and communities!
○ Contributors most welcome: TypeScript developers needed

● Clarity contracts can soon already be used on three blockchains: Arweave,
Ethereum, and Stacks

○ Some expressions of interest from other blockchains as well

Sworn 1.1, 2.0 — And Beyond

An Industry Standard?

Thank you!
Find me at:
https://ar.to

https://ar.to

