Building SmartWeave
Contracts with Clarity

Arto Bendiken

An Overview

SmartWeave: Arweave’'s Smart Contract Protocol

e Enables client-side, computation-heavy dapps on top of the Arweave network
e In a traditional smart contract system (such as Ethereum), every validator

node must execute and validate every transaction
o Results in a severe computation and transaction processing bottleneck

e SmartWeave instead pushes contract execution to users of the smart contract
o Frees network validators from contract state management and validation
o Altogether eliminates the need for ‘gas’ to pay for contract execution

e Read more at Introducing SmartWeave: Building Smart Contracts with
Arweave and With Arweave's 'Lazy' Approach to Smart Contracts, Its Version
of Web3 Does More

e Find the GitHub repository at https://github.com/ArweaveTeam/Smart\Weave

https://arweave.medium.com/introducing-smartweave-building-smart-contracts-with-arweave-1fc85cb3b632
https://arweave.medium.com/introducing-smartweave-building-smart-contracts-with-arweave-1fc85cb3b632
https://www.coindesk.com/arweave-smartweave-smart-contracts-lazy-evaluation
https://www.coindesk.com/arweave-smartweave-smart-contracts-lazy-evaluation
https://github.com/ArweaveTeam/SmartWeave

Clarity: A Safe, Decidable Smart Contract Language

A new smart contract language that is safe (doesn’t contain footguns) and
decidable (won't let you get into an infinite loop)

Syntactically and semantically inspired by Lisp (familiar to fans of Clojure!)
o For machines: it is trivial to generate, parse, and analyze Clarity code, from anywhere
o For humans: don'’t fear the parentheses, they do fade away after a little use

Originally developed by Hiro (formerly known as Blockstack) and Algorand
Read more at Introducing Clarity, a Lanquage for Predictable Smart Contracts
and Bringing ‘Clarity’ to 8 Dangerous Smart Contract Vulnerabilities

Find the GitHub repositories at https://qithub.com/clarity-lang

https://blog.blockstack.org/introducing-clarity-the-language-for-predictable-smart-contracts/
https://blog.blockstack.org/bringing-clarity-to-8-dangerous-smart-contract-vulnerabilities/
https://github.com/clarity-lang

Sworn: A Compiler for Clarity on SmartWeave

Compiles Clarity smart contracts into SmartWeave contracts that run on the
Arweave blockchain

o The sworn program parses and compiles .clar files

o The output is an equivalent SmartWeave program in the form of JavaScript code

o Also includes experimental WebAssembly output, but JavaScript is recommended since the
generated JS contracts are perfectly human readable and thus feasible to audit

The generated SmartWeave code requires Clarity.js, which implements the
necessary runtime support for Clarity's standard library

Read more at Weaving Clarity: Safe Smart Contracts for SmartWeave

Find the compiler’s GitHub repository at https://github.com/weavery/sworn
and the Clarity.js runtime’s at https://github.com/weavery/clarity.js

https://arweave.medium.com/introducing-smartweave-building-smart-contracts-with-arweave-1fc85cb3b632
https://github.com/weavery/sworn
https://github.com/weavery/clarity.js

SmartWeave Compilers

L Clarity (.clar) }‘

SwWOorn

L TypeScript (. ts) }‘

tsc

~S
-

L JavaScript (. js) }

Sworn Outputs

L Clarity (.c1ar) }‘

Sworn

-~

L JavaScript (. js) }

The Demo

arto@arto:/tmp/sworn$ sworn -o counter.js counter.clar
arto@arto:/tmp/sworn$ ||

https://asciinema.org/a/360104

The Rationale

“The history of smart contracts is really
the history of smart contract bugs.”

— Aaron Blankstein

Anti-Footgun Matrix

Error checking

Solidity JavaScript TypeScript Clarity
Decidability X X X V4
Strong typing V4 X V4 4
Safe arithmetic O) 4) 4 v
Null safety O) ¢ V4 V4
4

The Language

Clarity: A Decidable Language

e Intentionally Turing incomplete, avoiding Turing complexity
o Itis not possible to write an infinite loop in a Clarity program
o Each and every Clarity program will halt, guaranteed
e You can know, with certainty, from the code itself what the program will do
o ltis possible to analyze Clarity code for runtime cost and data usage
e Enables the complete static analysis of the entire call graph
o For auditability, the set of reachable code can be efficiently determined
e The type checker can eliminate whole classes of bugs
o Unintended casts, reentrancy bugs, reads of uninitialized values, etc.

Clarity: A Safe Language

e Strong static typing to the rescue
o The type system does not have a universal supertype
o The language does not support sequences that have dynamic length
o The length of a sequence (string, buffer, or list) is a part of its static type
e Safe arithmetic only
o No silent overflow, underflow, or truncation permitted
e Null safety isn’t optional
o No null type nor value! Replaced by an optional type, as in other modern languages
o ‘I call it my billion-dollar mistake.” — Tony Hoare
e Error checking is serious business
o No unchecked return values nor silently swallowed errors
e Omits a long list of Solidity footguns (anti-features)
o No reentrancy, no untyped inputs, no default functions, etc.

(define-data-var counter int 9)

(define-read-only (get-counter)
(ok (var-get counter)))

(define-public (increment)
(begin
(var-set counter (+ (var-get counter) 1))
(ok (var-get counter))))

(define-public (decrement)
(begin
(var-set counter (- (var-get counter) 1))
(ok (var-get counter))))

The Compiler

(define-data-var counter int 9)

(define-read-only (get-counter)
(ok (var-get counter)))

(define-public (increment)
(begin
(var-set counter (+ (var-get counter) 1))
(ok (var-get counter))))

(define-public (decrement)
(begin
(var-set counter (- (var-get counter) 1))
(ok (var-get counter))))

clarity.requireVersion("0.1")

function getCounter(state) {
return clarity.ok(state.counter);
}

function increment(state) {
state.counter = clarity.add(state.counter, 1);
return {state, result: clarity.ok(state.counter)};

}

function decrement(state) {
state.counter = clarity.sub(state.counter, 1);
return {state, result: clarity.ok(state.counter)};

}

export function handle(state, action) {
const input = action.input;
if (input.function === 'getCounter') {
return {result: getCounter(state)};

if (input.function === 'increment') {
return increment(state);

if (input.function === 'decrement') {
return decrement(state);
}

return {state};

FAQ: Why does basic math require function calls?

To support Clarity's language semantics of 128-bit integers and safe
arithmetic that traps on numeric overflow and underflow, arithmetic operations
need runtime support

Thus, in the general case, an operation such as (* a b) must be compiled
toclarity.mul (a, b) instead of the trivial but ultimately incorrect a * b.
If the compiler can prove overflow or underflow will not occur in a particular
context, it can elide the function call and output ordinary JavaScript arithmetic

Clarity TypeScript JavaScript
bool boolean boolean
(buff N) Uint8Array Uint8Array
err Err<T> Err

Int, uint

number or bigint

number or BigInt

(list N T)

Array<T>

Array

(optional T)

T or null

T or null

principal

String

String

(response T E)

T or Err<iE>

T or Err

(string-ascii N)

String

String

(string-utf8 N)

String

String

(tuple ..)

Map<String, any>

Map

The Future

Sworn 1.1, 2.0 — And Beyond

e The Sworn 1.1 release is coming soon, and focuses on user experience
o More static analysis for Clarity input, rejecting more invalid programs
o Significantly improved error messages from the compiler
e Many exciting things on the wishlist for an eventual Sworn 2.0
o Prototyping is already going on for ingesting (a subset of) Solidity contracts via the Solidity
project’s Yul intermediate language
e Much work remains on Clarity.js and Smart\WWeave integration
o Arweave-specific Clarity functions for easily building profit-sharing tokens and communities!
o Contributors most welcome: TypeScript developers needed
e Clarity contracts can soon already be used on three blockchains: Arweave,

Ethereum, and Stacks
o Some expressions of interest from other blockchains as well

An Industry Standard?

< cthereum >= Stacks

(a) arweave.org

Thank you!

Find me at:
https://ar.to

https://ar.to

