

github

H O W
to

B U I L D

GITHUB
a

github

6.5MM REPOSITORIES
LARGEST GIT HOST

1.9MM USERS

SINCE 2008

6.5MM REPOSITORIES
LARGEST GIT HOST

1.9MM USERS

SINCE 2008

SVN HOST

gh

gh

gh

gh

gh

gh

gh

gh

gh

gh

gh

gh

SHOW YOU OUR CARDS
going to

MAGIC BULLET
there is no

FOUR STAGES OF GROWTH

happiness
the

EVERYTHINGautomate

NO
FORKING

HOLMAN@

LOST

YO QUIT READING THIS SHIT

how
DID WE GIT HERE

1809:

PERL INVENTED

1814:

COMPUTERS INVENTED

1814-2004:

ANARCHY AND CHAOS AND
ZOMG EVERYONE’S DYING

2005:

VERSION CONTROL INVENTED

git

2007:

github

GLOBAL PEACE AND
HAPPINESS ACHIEVED

...or something like that

PRESTON-WERNERTOM

GRIT
O C T O B E R 9 , 2 0 0 7

git via ruby

GRIT
git via ruby

github’s interface to git

object-oriented, read/write

open source

repo = Grit::Repo.new('/tmp/repository')

grit

repo.commits

grit
shelling out to git is expensive

grit reimplements portions of git in ruby

native packfile and git object support

2x-100x speedup on low-level operations

grit
slowly reimplement grit for speed

allows for incremental improvements

LED TO GITHUB
grit

O C T O B E R 1 9 , 2 0 0 7

TODAY

ADDING 2TB A MONTH

22 FILESERVER PAIRS

23TB OF REPO DATA

GITHUB GROWTH

THE FOUR STAGES
of

LOCAL NETWORKED NET-SHARD GITRPC

FOUR STAGES OF GROWTHGITHUB:

LOCAL NETWORKED NET-SHARD GITRPC

FOUR STAGES OF GROWTHGITHUB:

2008 2009 2010 2012

LOCAL NETWORKED NET-SHARD GITRPC

FOUR STAGES OF GROWTHGITHUB:

JAN 2008 DEC 2008

FOUR STAGES OF GROWTHGITHUB:

42,000 USERS

JAN 2008 DEC 2008

FOUR STAGES OF GROWTHGITHUB:

80,000 REPOSITORIES

LOCAL

MULTI-VM

SHARED GFS MOUNT

LOCAL

MULTI-VM

WEB FRONTENDS

BACKGROUND WORKERS

LOCAL

MULTI-VM

SIMPLE ARCHITECTURE

HORIZONTALLY SCALABLE-ish

LOCAL

SHARED GFS MOUNT

SHARED MOUNT ON EACH VM

SIMILAR PRODUCTION + DEVELOPMENT ACCESS

ALLOWED LOCAL ACCESS VIA GRIT

SIMPLE APPROACH, COMMON GIT
INTERFACE, QUICK TO BUILD AND SHIP

LOCAL

LOCAL NETWORKED

FOUR STAGES OF GROWTHGITHUB:
NET-SHARD GITRPC

2008 2009 2010

FOUR STAGES OF GROWTHGITHUB:

166,000 USERS

2008 2009 2010

FOUR STAGES OF GROWTHGITHUB:

484,000 REPOSITORIES

the problem:

is slowGFS
performance degraded as repos added

the problem:

i/o-boundwe’re
read/write to disk needs to be fast

THE PLAN

NETWORKED

HARDWARE

MOVE DATACENTERS

NETWORKED

HARDWARE

bare metal servers

16 machines

6x RAM

machine roles

solid datacenter

got dat cloud

NETWORKED

FRONTENDS FILESERVERS AUX DB

LAUNCH:
SERVER PAIRS

NETWORKED

GRIT IS LOCAL

NEEDS TO BE NETWORKED

NETWORKED

smoke service is run on each fs;
facilitates disk access

chimney routes the smoke,
stores routing table in redis

stub local grit calls, retain API
usage, but send over network

NETWORKED

server pairs offer failover via DRBD

real servers, real big RAM allocations

NETWORKED

LATENCY

networked routing adds 2-10ms per request

optimize for the roundtrip

smoke contains smarter server-side logic

NETWORKED

LATENCY

smoke has custom git extension commands

git-distinct-commits

returns commits only contained on a given branch

calls to git-show-refs and git-rev-list

run all calls server-side in one roundtrip

NETWORKED

HORIZONTALLY-SCALABLE, LATENCY-
CONSIDERATE, API-COMPATIBLE WITH GRIT

LOCAL

FOUR STAGES OF GROWTHGITHUB:
NET-SHARD GITRPCNETWORKED

2008 2009 2010 2011

FOUR STAGES OF GROWTHGITHUB:

510,000 USERS

2008 2009 2010 2011

FOUR STAGES OF GROWTHGITHUB:

1.3MM REPOSITORIES

the problem:

duplicationdata
each fork is a full project history

duplicationdata

 i create a repo

 you fork my repo

fs5:/data/repositories/6/nw/6b/de/92/1/1.git

fs7:/data/repositories/4/na/3b/dr/72/2/2.git

duplicationdata

 1,000 commits

 1,001 commits
10MB

10MB

20MB total disk}

duplicationdata

 1,000 commits

 1 commit
1KB

10MB

10MB total disk} GOAL:

duplicationdata

75 MB repo

3.5k forksx

~250 GB
x 2 fs pairs + offsite backups

NET-SHARD

shard by repository network

(“forks”)

NET-SHARD

 network.git

 1.git

 2.git

 3.git

 4.git

 5.git

CONTAINS DELTA}
CONTAINS ALL REFS›

NET-SHARD

 network.git

GIT ALTERNATES

store git object data externally to repository

we fetch refs into your fork, transparently

NET-SHARD

 network.git

PRIVACY

potential leaking of refs cross-network

net-shard enabled on all-public and all-private
repository networks only

NET-SHARD

 network.git

DISK

halves disk usage

increase disk and kernel cache hits

NET-SHARD

 network.git

MIGRATION

gradually transitioned repos to network.git

effectively feature-flagged by repo

NET-SHARD

SAVE DISK, IMPROVE PERFORMANCE

LOCAL

FOUR STAGES OF GROWTHGITHUB:
GITRPCNETWORKED NET-SHARD

2008 2009 2010 2011 2012

FOUR STAGES OF GROWTHGITHUB:

1.2MM USERS

2008 2009 2010 2011 2012 AUGUST

FOUR STAGES OF GROWTHGITHUB:

1.9MM USERS

2008 2009 2010 2011 2012

FOUR STAGES OF GROWTHGITHUB:

3.4MM REPOSITORIES

2008 2009 2010 2011 2012 AUGUST

FOUR STAGES OF GROWTHGITHUB:

6.5MM REPOSITORIES

the problem:

GRIT
git via ruby

the problem:

local, ruby-based grit ended up
in a high-traffic distributed system

the problem:

inelegant code spread out everywhere

GITRPC

network-oriented library for git access
GitRPC

GITRPC

open source

fastest git implementation (C)

github-sponsored project

bindings for all major languages

used in our mac, windows clients

GITRPC

rugged (RUBY)

libgit2 (C)

gitrpc (RUBY)

GITRPC

like smoke, gitrpc aims to
reduce latency by reducing roundtrips

LATENCY

GITRPC

operations cached on library level

CACHING

yank out tons of app-level cache logic

GITRPC

the move to gitrpc started this
summer and will take months

MIGRATION

gradually replace smoke and grit;
avoids a risky deploy

FAST AND STABLE NETWORKED GIT ACCESS

GITRPC

LOCAL NETWORKED NET-SHARD GITRPC

FOUR STAGES OF GROWTHGITHUB:

identify
WHAT’S BROKEN

sma%
CHANGES, FAST DEVELOPMENT

real CODE BEATS
IMAGINARY CODE

EVERYTHINGautomate
automate
automate
automate
automate
automate

AUTOMATE

automate
automate
automate
automate
automate
automate

mr. manager

LOL DEVELOPERS

SOFTWARE
DEVELOPMENT

mr. manager

DEADLINES

MEETINGS

PRIORITIES

ESTIMATES

mr. manager

DEADLINES

MEETINGS

PRIORITIES

ESTIMATES

 EVERYONE
is

A MANAGER

 AUTOMATE AWAY PAIN
DEPLOYMENT RECOVERYDEVELOPMENT

DEVELOPMENT
automate

DEVELOPMENT

> ./do-work
RUN THIS IN EACH PROJECT:

...AND YOU’RE DONE!
loljk

DEVELOPMENT

YOU CAN AUTOMATE THE PAIN OF

DEVELOPMENT

SETUP

DEVELOPMENT

the

SETUP
DEVELOPMENT

the

ONE-LINER INSTALLS ALL
GITHUB DEVELOPMENT
DEPENDENCIES

30 min

SETUP
DEVELOPMENT

the

CLEAN MACHINE TO
FULL DEVELOPMENT
ENVIRONMENT

SETUP
DEVELOPMENT

the

NEW EMPLOYEES

SHIP
THEIR FIRST WEEK

SETUP
DEVELOPMENT

the

PUPPET
HANDLES ALL DEPENDENCIES

DEPLOYMENT
automate

DEPLOYMENT

REAL BROGRAMMERS

DEPLOY WITH

NO FEAR

SO FUCK THAT

DEPLOYMENT

DEPLOYS SHOULD BE CAUTIOUS,
COMMONPLACE, AND AUTOMATED

DEPLOYMENT

GITHUB DEPLOYS 20-40 TIMES A DAY

DEPLOYMENT

PUSH BRANCH

DEPLOY BRANCH
EVERYWHERE · MACHINE CLASS · SPECIFIC SERVERS

HUBOT RUNS TESTS
IN ABOUT 200 SECONDS

USUALLY OPEN A PULL REQUEST

DEPLOYMENT

DEPLOY LOCKING
CAN’T DEPLOY IF A BRANCH IS DEPLOYED

AUTODEPLOYS
PUSHED TO MASTER WITH GREEN TESTS? DEPLOY.

DEPLOYMENT

STAFF-ONLY FEATURE FLAGS
LIMITS EXPOSURE · REAL-WORLD · AVOIDS MERGES

RECOVERY
automate

RECOVERY

SOMETHING WILL ALWAYS BREAK

RECOVERY

HUBOT
IS A SYSADMIN

RECOVERY

HUBOT LOAD

HUBOT QUERIES

HUBOT CONNS

SERVER LOAD

RUNNING DB QUERIES

ALL OPEN CONNECTIONS

RECOVERY

HUBOT RESTORE <REPO>

HUBOT PUSH-LOG <REPO>

HUBOT GH-EACH <HOST> <COMMAND>

RESTORE A REPO FROM BACKUPS

SEE RECENT PUSH LOGS TO A REPO

RUN COMMAND ON SPECIFIC HOSTS

HIGH-LEVEL OVERVIEW IN MINUTES
SPEND MORE TIME FIXING AND LESS TIME INVESTIGATING

RECOVERY

♥happiness
the ♥♥

♥

♥

EMPLOYEES
HAVE QUIT

YEARS

5
EMPLOYEES

108ZERO

1-2 MONTHS

HIRE

1-3 MONTHS

RAMP-UP

2 WEEKS

LEAVE

LOSING AN EMPLOYEE CAN
SET YOU BACK HALF A YEAR

remove
ANY REASON TO

LEAVE

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

TDD✓
PAIR
PROGRAMMING
✓

BDD✓TEST-FIRST✓

DESIGN-FIRST✓

(just kidding)

EMACS x

NONE OF
THESE✓

WE CARE ABOUT

THE WORK
YOU DO, NOT ABOUT
HOW YOU DO IT

LOCATION

HOURS

DIRECTION

LOCATION

HOURS

DIRECTION

GITHUB EMPLOYEES
WORK REMOTELY⅔

LOCATION

HOURS

DIRECTION

FAMILY RELOCATION,
TRAVEL FREEDOM

LOCATION

HOURS

DIRECTION

CHOOSE
YOUR

SCHEDULE

CHOOSE
YOUR

VACATIONS

FRESH, CREATIVE EMPLOYEES

LOCATION

HOURS

DIRECTION

YOU

HACK ON THINGS
THAT INTEREST YOU

REDUCES BURNOUT

flexible

LOCATION

HOURS

DIRECTION

BE

TOWARDS WORK/LIFE

github

basica%y,

MOVE FAST =
SMALL CHANGES

basica%y,

BE STABLE =
DEPLOY CONSTANTLY

basica%y,

HAPPY COMPANY =
HAPPY EMPLOYEES

thanks

NO
FORKING

HOLMAN@

LOST

YO QUIT READING THIS SHIT

ZACHHOLMAN.COM/TALKS

