
Riak Intro

•  Shanley Kane
 @shanley
 shanley@basho.com

•  Mark Phillips
 @pharkmillups
 mark@basho.com

Us

What’s in store?

•  At a High Level
•  For Developers
•  Under the Hood
•  When and Why
•  Some Users
•  Commercial Extensions
•  1.2 and Roadmap

At a High Level

•  Dynamo-inspired key/value store

•  with some extras: search, MapReduce, 2i,
links, pre- and post-commit hooks, pluggable
backends, HTTP and binary interfaces

•  Written in Erlang with C/C++

•  Open source under Apache 2 License

Riak

Riak’s Design Goals (1)
•  High-availability

•  Low-latency

•  Horizontal Scalability

•  Fault Tolerance

•  Ops Friendliness

•  Predictability

Riak’s Design Goals (2)

•  Design Informed by Brewer’s CAP Theorem
and Amazon’s Dynamo Paper

•  Riak is tuned to offer availability above all else

•  Developers can tune for consistency (more on
this later)

Masterless; deployed as a
cluster of nodes

For Developers

Riak is a database that stores keys
against values. Keys are grouped
into a higher-level namespace
called buckets.

Riak doesn’t care what you store.
It will accept any data type; things
are stored on disk as binaries.

Two APIs

1.  HTTP (just like the web)

2.  Protocol Buffers (thank you, Google)

Querying

GET/PUT/DELETE

MapReduce

Full-Text Search

Secondary Indexes (2i)

Tunable Consistency

•  n_val - number of replica to store; bucket-
level setting. Defaults to “3”.

•  w - number of replicas required for a
successful write; Defaults to “2”.

•  r - number of replica acks required for a
successful read. request-level setting. Defaults
to “2”.

•  Tweak consistency vs. availability

Client Libraries

Ruby, Node.js, Java, Python, Perl,
OCaml, Erlang, PHP, C, Squeak,
Smalltalk, Pharoah, Clojure, Scala,
Haskell, Lisp, Go, .NET, Play, and
more (supported by either Basho or
the community).

Under the Hood

Consistent Hashing and Replicas

Virtual Nodes

Vector Clocks

Gossiping

Handoff and Rebalancing

Virtual Nodes
•  Each physical machine runs a certain number
of Vnodes

•  Unit of addressing, concurrency in Riak

•  Storage not tied to physical assets

•  Enables dynamic rebalancing of data when
cluster topology changes

Vector Clocks
•  Data structure used to reason about causality
at the object level

•  Provides happened-before relationship
between events

•  Each object in Riak has a vector clock*

•  Trade off space, speed, complexity for safety

Handoff and Rebalancing

•  When cluster topology changes, data must be
rebalanced

•  Handoff and rebalancing happen in the
background; no manual intervention required*

•  Trade off speed of convergence vs. effects on
cluster performance

Gossip Protocol
•  Nodes “gossip” their view of cluster state

•  Enables nodes to store minimal cluster state

•  Can lead to network chatiness; in OTP, all
nodes are fully-connected

Riak: when and why

When Might Riak Make Sense

When you have enough data to require >1
physical machine (preferably >5)

When availability is more important than
consistency (think “critical data”on “big
data”)

When your data can be modeled as keys and
values; don’t be afraid to denormalize

User/MetaData Store

•  User profile storage for
xfinityTV Mobile app

•  Storage of metadata on
content providers and
licensing

•  Strict Latency
requirements

Notifications

Session Storage

•  First Basho customer in
2009

•  Every hit to a Mochi web
property results in at
least one read, maybe
write to Riak

•  Unavailability or high
latency = lost ad revenue

Ad Serving

•  OpenX will serve ~4T ad
in 2012

•  Started with CouchDB
and Cassandra for
various parts of
infrastructure

•  Now consolidating on
Riak and Riak Core

Riak for All Storage: Voxer

Voxer: Initial Stats

•  11 Riak nodes (switched from CouchDB)
•  100s of GBs
•  ~20k Peak Concurrent Users
•  ~4MM Daily Request

Voxer: Post Growth

•  ~60 Nodes total in prod
•  100s of TBs of data (>1TB daily)
•  ~400k Concurrent Users
•  Billions of daily Requests

Riak : Hybrid Solutions

•  Riak with Postgres
•  Riak with Elastic Search
•  Riak with Hadoop
•  Secondary analytics clusters

Buy Some Software...

Riak Enterprise

•  Multi-data center replication
•  Real-time or full-time sync

Riak Enterprise: Full Sync

Riak Enterprise: Real-Time Sync

Riak Cloud Storage

•  Large object support
•  S3-compatible API
•  Multi-tenancy
•  Reporting on usage

Roadmap Stuff...

New in Riak 1.2

•  LevelDB Improvements
•  FreeBSD Support
•  New Cluster Admin Tools
•  Folsom for Stats
•  KV and Search Repair work
•  Much much more

Future Work

•  Active Anti Entropy
•  CRDTs
•  Tight Solr integration
•  Greater consistency
•  Lots of other hotness

•  docs.basho.com
•  @basho
•  github.com/basho

Riak

