
Rescuing legacy
codebases with

GraphQL
@nettofarah

Netto Farah
@nettofarah

Eng. Manager at

Context

• Millions of users

• Billions of API calls every day

• Website, iOS app, Android app

Tech Stack (at the time)

• Seasoned Rails 3 monolith app

• APIs v1, v2, v3, dev_api…

• Challenging to deploy/iterate/run tests

• sole web dev

Challenge:
Build an entirely new product

With a 9 months
deadline 😱

We knew we needed
to make some changes

Majestic Monoliths
vs

 Micro-services

Not a binary
decision

A hybrid approach:
Rich API + specific clients

How can we make our
frontend and backend
apps communicate?

Through the
database?

Why are database-driven
integrations tempting?

Why are database-driven
integrations challenging?

What about APIs?

Challenges with
Traditional APIs

Multiple use cases

🚲 🚗 🚀

Different access pattern

📱 🖥

Ambiguity

Solved with documentation
or conventions

[',(,)..*] => ✅

,

,
[-] =>

ask me later…

How can we
solve a few of these

challenges with APIs ?

Types

Ability to load just what
we need

Always get predictable
results

You know where
I’m going with this, right?

TYPES +
 PREDICTABLE RESULTS +
COMPOSABLE QUERIES

= GraphQL ❤

We built a GraphQL API
on top of our monolith

GraphQL API
as an integration layer

for multiple (not so micro) services

GraphQL API
———

MonoRail

📱

🖥
☁

A
P
I
 
G 
A  
T
E 
W 
A
Y

Service A

Service B

Service C

GraphQL API
———

MonoRail

📱

🖥
⛈

A
P
I
 
G 
A  
T
E 
W 
A
Y

Service A

Service B

Service C

💀

💥

🐢

GraphQL (and Rails) in
production

Challenge #1

N+1 queries

query {
 recipes {
 title
 ingredients {
 name
 vendor { name }
 }
 }
}

SELECT "recipes".* FROM “recipes"

SELECT "ingredients".* FROM "ingredients" WHERE "ingredients"."recipe_id" = 1
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 1
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 2
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 3
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 4

SELECT "ingredients".* FROM "ingredients" WHERE "ingredients"."recipe_id" = 2
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 5
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 6

SELECT "ingredients".* FROM "ingredients" WHERE "ingredients"."recipe_id" = 3
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 7
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 8
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 9

SELECT "ingredients".* FROM "ingredients" WHERE "ingredients"."recipe_id" = 4
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 10
SELECT "vendors".* FROM "vendors" WHERE "vendors"."id" = 11

SELECT "ingredients".* FROM "ingredients" WHERE
"ingredients"."recipe_id" = 1

SELECT * FROM "vendors" WHERE "id" = 1
SELECT * FROM "vendors" WHERE "id" = 2
SELECT * FROM "vendors" WHERE "id" = 3
SELECT * FROM "vendors" WHERE "id" = 4

How do people
usually solve this problem?

DataLoader
but that’s a javascript only tool

😔

GraphQL-Batch

resolve -> (obj, args, context) do
 Loader.for(Product).load(args["id"]).then do |p|
 Loader.for(Image).load(p.image_id)
 end
end

Let’s take a second
look at our data models

Recipe.all.includes({
 ingredients: 'vendor'
})

query {
 recipes {
 title
 ingredients {
 name
 vendor
 }
 }
}

Recipe.all.includes({
 ingredients: 'vendor'
})

SELECT "recipes".* FROM "recipes"  

SELECT "ingredients".* FROM “ingredients”
WHERE “ingredients"."recipe_id"
IN (1, 2, 3, 4)
 
SELECT "vendors".* FROM “vendors"
WHERE “vendors"."id"
IN (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

github.com/nettofarah/graphql-query-resolver

📉 ~60% reduction
in database IOPS

=
💰💰💰

Selectively choosing
our Database environment

if includes_mutation?(query)
 DatabaseSelection.use_main_database do
 GraphQL.execute_query(query)
 end
else
 DatabaseSelection.use_readonly_replica do
 GraphQL.execute_query(query)
 end
end

☠ Eliminated
contention locks

Lessons

#1 Figure out
batching as early

as you can

#2 Leverage
GraphQL types

Challenge #2

Monitoring and
 Errors

This is not really useful
🙄

What’s up with my 
errors? 🤔

#2 Leverage
GraphQL types

(again)

Lesson

At the field level
new_resolver = -> (obj, args, ctx) {
 name = [“GraphQL/field/#{type.name}.#{field.name}"]

 NewRelic.trace_execution_scoped(name) do
 old_resolver.call(obj, args, ctx)
 end
}

At the query level
NewRelic::Agent.set_transaction_name(query_name)

http://bit.ly/gql-rb-nr

http://bit.ly/gql-rb-nr

#3 Proper monitoring
is as important as
good performance

#4 GraphQL is
awesome

@nettofarah
nettofarah@gmail.com

mailto:nettofarah@gmail.com

