Ruby, Rails & Go

Two (and a halt) sides of the same coin

designs

whoisjonhnbarton.com
github.com/joho
@johnbarton

http://whoisjohnbarton.com/
http://github.com/joho
https://twitter.com/johnbarton

2007

Ruby on Ralls!

‘the functionality of Rails came as extractions of

a real application, not of a “what someboc

y

might need some day” fantasy, so prevalen
framework design.

N

[...] And of course the joy of working with a

technology so uniquely aligned with our
thoughts on software development.”

—David Heinemeier Hansson

https://signalvnoise.com/posts/660-ask-37signals-the-genesis-and-benefits-of-rails

“This extraction-driven nature of Rails attracted
a culture of practical programmers with a zeal
for delivery”

—David Heinemeier Hansson

https://signalvnoise.com/posts/660-ask-37signals-the-genesis-and-benefits-of-rails

‘Instead of emphasizing t
emphasize the how part:

ne what, | want to

now we feel while

programming. |[...]

| didn't work hard to make Ruby perfect for

everyone, because you fee

-

differently from me.

No language can be pertect tfor everyone”

—Yukihiro Matsumoto

http://www.artima.com/intv/rubyP.html

“In our dally lives as programmers, we process

text strings a lot. So | tried to work hard on text

processing, namely the string class and regular
expressions.”

—Yukihiro Matsumoto

http://www.artima.com/intv/rubyP.html

11ime Passes

2013

“G0O's purpose Is therefore notto do research
iINnto programming language design; it is to
improve the working environment for its
designers and their coworkers.”

—Rob Pike (Inventor of Go)

https://talks.golang.org/2012/splash.article

“Some programmers find it fun to work In;
others find it unimaginative, even boring.”

—Rob Pike (Inventor of Go)

https://talks.golang.org/2012/splash.article

GET /

Content-Type: application/json
200 OK

{"Hello": "World"}

require 'rubygems'
require 'sinatra'
require 'json'

get '*' do
content type :json

{ "Hello" => "World" }.to json
end

package main

import (
"encoding/json"
|} fmt A}
"net/http"

)

func main () {

http.HandleFunc ("/", func(w http.ResponseWriter,
r *http.Request) {

w.Header () .Set ("Content-Type", "application/json™)

json, := json.Marshal (map[string]string(
"Hello": "World",

})

fmt.Fprint(w, string(json))
})

http.ListenAndServe (":4567", nil)

Duck lyping

foo.bar 1f foo.respond to?(:bar)

type Barrable interface {
Rar ()
}

barrable, ok := foo. (Barrable)
1f ok {
barrable.Bar ()

J

=rror Handling

Robert C, Martin Serles 3

Clean Code Release It!

A Handbook of Aglle Software Craftsmanship

Design and Deploy
Production-Ready Soltware

Posewcrd by Jewsts 0. Coplen Robert C. Martin

Robert C, Martin Serles 3

Clean Code Release It!

A Handbook of Aglle Software Craftsmanship

Design and Deploy
Production-Ready Soltware

Posewcrd by Jewsts 0. Coplen Robert C. Martin

begin
do something safe
do something dangerous!
keep doing safe things
rescue => e
what now?
end

package main

func main () {
doSomethingSafe ()
err := doSomethingDangerous ()
1f err !'= nil {
// handle error
return

J
keepDoingSafeThings ()

Metaprogramming

Concurrency

HONIN
uri encoded
Retry 5 times

require 'net/http'

url = URI.parse('http://api.flakywebservice.com/")
http = Net::HTTP.new (url.host, url.port)

http.read timeout = 600 # be very patient

res = nil

retries = 5
begin
http.start{|conn|
req = Net::HTTP::Post.new("foo" => "bah")
reqg.set form data (params)
res = conn.request (req)
}
rescue Timeout::Error, Errno::EINVAL, Errno::ECONNRESET, EOFError,
Net: :HTTPBadResponse, Net::HTTPHeaderSyntaxError,
Net::ProtocolError
sleep 3
retry 1f (retries -= 1) > 0
end
do something with response

func main () {

client := &http.Client{}

uri := "http://api.flakywebservice.com/"
data := url.Values{"foo": {"bar"}}

r, := http.NewRequest ("POST", uri,

bytes.NewBufferString(data.Encode()))

attempts, maxAttempts := 0, 5
var (

resp *http.Response

err error

)

retries := 5
for 1 := 0; 1 < retries; 1++ {
resp, err = client.Do(r)
netErr, conversionOK := err. (net.Error)
1f err == nil || conversionOK && netErr.Temporary () {
break

}
time.Sleep (3)

}

1f err !'= nil {
panic (err)

}

// do something with resp here

Community

Ye Olde Ruby

Shitty package management (vendor everything)

A million acts_as_taggable, tags_on_steroids,
etc rails plugins

_ots of frontend centric devs moving more
nackend

Great if you want to ship fast and buy RAM and
wake up at night

Current Go

Shitty package management (vendor everything)
A million exponential backoff packages

Lots of ops people moving towards app
development

Great it you like sleep and cheap hosting and
aren't in such a rush

JB's Rules of Thumb

* Are people and their "requirements” going to ruin
your day”? Use Ruby

* Are computers and their "tlakiness" going to ruin
your day”? Use Go

Golang Melbourne

o http://www.meetup.com/golang-mel/

o hitps://twitter.com/golangmel

 Next meetup: 2nd September @ 99designs

http://www.meetup.com/golang-mel/
https://twitter.com/golangmel

