
Ruby, Rails & Go
Two (and a half) sides of the same coin

whoisjohnbarton.com
github.com/joho

@johnbarton

http://whoisjohnbarton.com/
http://github.com/joho
https://twitter.com/johnbarton

2007

Ruby on Rails!

–David Heinemeier Hansson

“the functionality of Rails came as extractions of
a real application, not of a “what somebody

might need some day” fantasy, so prevalent in
framework design.

!

[...] And of course the joy of working with a
technology so uniquely aligned with our

thoughts on software development.”

https://signalvnoise.com/posts/660-ask-37signals-the-genesis-and-benefits-of-rails

–David Heinemeier Hansson

“This extraction-driven nature of Rails attracted
a culture of practical programmers with a zeal

for delivery”

https://signalvnoise.com/posts/660-ask-37signals-the-genesis-and-benefits-of-rails

–Yukihiro Matsumoto

“Instead of emphasizing the what, I want to
emphasize the how part: how we feel while

programming. [...]
!

I didn't work hard to make Ruby perfect for
everyone, because you feel differently from me.

No language can be perfect for everyone”

http://www.artima.com/intv/rubyP.html

–Yukihiro Matsumoto

“In our daily lives as programmers, we process
text strings a lot. So I tried to work hard on text
processing, namely the string class and regular

expressions.”

http://www.artima.com/intv/rubyP.html

Time Passes

2013

–Rob Pike (Inventor of Go)

“Go's purpose is therefore not to do research
into programming language design; it is to

improve the working environment for its
designers and their coworkers.”

https://talks.golang.org/2012/splash.article

–Rob Pike (Inventor of Go)

“Some programmers find it fun to work in;
others find it unimaginative, even boring.”

https://talks.golang.org/2012/splash.article

GET /
Content-Type: application/json
200 OK
{"Hello": "World"}

require 'rubygems'
require 'sinatra'
require 'json'
!
get '*' do
 content_type :json
!
 { "Hello" => "World" }.to_json
end

package main
!
import (
 "encoding/json"
 "fmt"
 "net/http"
)
!
func main() {
 http.HandleFunc("/", func(w http.ResponseWriter,
 r *http.Request) {
 w.Header().Set("Content-Type", "application/json")
!
 json, _ := json.Marshal(map[string]string{
 "Hello": "World",
 })
 fmt.Fprint(w, string(json))
 })
!
 http.ListenAndServe(":4567", nil)
}

Duck Typing

foo.bar if foo.respond_to?(:bar)

!
 type Barrable interface {
 Bar()
 }
 barrable, ok := foo.(Barrable)
 if ok {
 barrable.Bar()
 }

Error Handling

begin
 do_something_safe
 do_something_dangerous!
 keep_doing_safe_things
rescue => e
 # what now?
end

package main
!
func main() {
 doSomethingSafe()
 err := doSomethingDangerous()
 if err != nil {
 // handle error
 return
 }
 keepDoingSafeThings()
}

Metaprogramming

Concurrency

POST /
uri encoded
Retry 5 times

require 'net/http'
!
url = URI.parse('http://api.flakywebservice.com/')
http = Net::HTTP.new(url.host, url.port)
http.read_timeout = 600 # be very patient
res = nil
!
retries = 5
begin
 http.start{|conn|
 req = Net::HTTP::Post.new("foo" => "bah")
 req.set_form_data(params)
 res = conn.request(req)
 }
rescue Timeout::Error, Errno::EINVAL, Errno::ECONNRESET, EOFError,
 Net::HTTPBadResponse, Net::HTTPHeaderSyntaxError,
Net::ProtocolError
 sleep 3
 retry if (retries -= 1) > 0
end
do something with response

func main() {
 client := &http.Client{}
 uri := "http://api.flakywebservice.com/"
!
 data := url.Values{"foo": {"bar"}}
 r, _ := http.NewRequest("POST", uri,
 bytes.NewBufferString(data.Encode()))
!
 attempts, maxAttempts := 0, 5
 var (
 resp *http.Response
 err error
)
 retries := 5
 for i := 0; i < retries; i++ {
 resp, err = client.Do(r)
 netErr, conversionOK := err.(net.Error)
 if err == nil || conversionOK && netErr.Temporary() {
 break
 }
 time.Sleep(3)
 }
 if err != nil {
 panic(err)
 }
 // do something with resp here
}

Community

Ye Olde Ruby
• Shitty package management (vendor everything)

• A million acts_as_taggable, tags_on_steroids,
etc rails plugins

• Lots of frontend centric devs moving more
backend

• Great if you want to ship fast and buy RAM and
wake up at night

Current Go

• Shitty package management (vendor everything)

• A million exponential backoff packages

• Lots of ops people moving towards app
development

• Great if you like sleep and cheap hosting and
aren't in such a rush

JB's Rules of Thumb

• Are people and their "requirements" going to ruin
your day? Use Ruby

• Are computers and their "flakiness" going to ruin
your day? Use Go

Golang Melbourne

• http://www.meetup.com/golang-mel/

• https://twitter.com/golangmel

• Next meetup: 2nd September @ 99designs

http://www.meetup.com/golang-mel/
https://twitter.com/golangmel

