ZeeStar: Private Smart Contracts by Homomorphic
Encryption and Zero-knowledge Proofs

Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, Martin Vechev
ETH Zurich, Switzerland
{samuel.steffen, benjamin.bichsel, martin.vechev} @inf.ethz.ch, rogerb@student.ethz.ch

Abstract—Data privacy is a key concern for smart contracts
handling sensitive data. The existing work zkay addresses this
concern by allowing developers without cryptographic expertise
to enforce data privacy. However, while zkay avoids fundamental
limitations of other private smart contract systems, it cannot
express key applications that involve operations on foreign data.

We present ZeeStar, a language and compiler allowing
non-experts to instantiate private smart contracts and supporting
operations on foreign data. The ZeeStar language allows devel-
opers to ergonomically specify privacy constraints using zkay’s
privacy annotations. The ZeeStar compiler then provably realizes
these constraints by combining non-interactive zero-knowledge
proofs and additively homomorphic encryption.

We implemented ZeeStar for the public blockchain Ethereum.
We demonstrated its expressiveness by encoding 12 example
contracts, including oblivious transfer and a private payment
system like Zether. ZeeStar is practical: it prepares transactions
for our contracts in at most 54.7 s, at an average cost of 339 k gas.

Index Terms—Privacy; Blockchain; Smart contracts;
Ethereum; Programming language; Zero-knowledge proofs;
Homomorphic encryption; Compilation

I. INTRODUCTION

Modern blockchains such as Ethereum allow decentralized
execution of programs (so-called smart contracts) without
relying on a trusted third party. However, privacy concerns
generally limit their adoption for applications processing sen-
sitive information, such as health data [1] or voting ballots [2].

To address this, various works propose smart contract sys-
tems that respect data privacy [3]-[8]. However, these systems
are subject to severe limitations. Hawk [3], Arbitrum [4], and
Ekiden [5] expose significant attack surface by relying on
trusted managers or hardware. Zether [6] focuses on payment
systems only, which limits its applicability for general smart
contracts. Finally, ZEXE [7] and smartFHE [8] require cryp-
tographic expertise to implement new applications, inhibiting
their usage by most developers.

Zkay. The recent work zkay [9, 10] has opened up a promising
alternative direction. It allows non-experts to extend Solidity
smart contracts by data privacy annotations indicating the
owner of private values. Zkay protects these values by encrypt-
ing them for their owner and enforces updates of encrypted
values to respect the smart contract logic using non-interactive
zero-knowledge (NIZK) proofs. Unfortunately, a fundamental
limitation of this approach is that function calls (so-called
transactions) cannot operate on foreign values (i.e., values
owned by parties other than the caller). This precludes zkay

from expressing private variants of some of the most popular
use cases of Ethereum [11], including private wallets, where
coin transfers typically require increasing foreign balances.

This Work: ZeeStar. In this work, we address the expressivity
restrictions of zkay by complementing it with homomorphic
encryption, which allows evaluating specific operations (most
importantly, addition) on foreign values.

The resulting system ZeeStar consists of an expressive
language to specify and a compiler to automatically enforce
data privacy for smart contracts. The ZeeStar language is
based on zkay’s privacy annotations, but additionally admits
programs which operate on foreign values. The ZeeStar com-
piler combines NIZK proofs and additively homomorphic
encryption to enable running these programs on Ethereum. By
cleverly combining these two primitives, ZeeStar not only sup-
ports homomorphic addition, but also multiplication for most
combinations of owners. This allows expressing complex ap-
plications such as oblivious transfer. Furthermore, ZeeStar can
mix homomorphic and non-homomorphic encryption schemes
and is provably private with respect to zkay’s privacy notion.

Challenges. Integrating homomorphic encryption into zkay is
challenging. First, homomorphic encryption and NIZK proofs
have incomparable expressivity and must hence be instantiated
in combination. For example, realizing a private wallet requires
enforcing different ciphertexts to hold the same plaintext
encrypted for different parties using a NIZK proof (§IV-A).

Second, achieving tractable prover efficiency for this com-
bination of primitives is difficult in practice: for instance,
combining Groth16 proofs [12] with Paillier encryption [13]
leads to an explosion of prover memory and runtime (§VI-A).

Implementation. We implemented ZeeStar as an extension of
the publicly available zkay system. Our end-to-end tool relies
on exponential ElGamal encryption [14] and Groth16 NIZK
proofs [12], and uses the idea of elliptic curve embedding
from [7, 15] to achieve high prover efficiency. Our evalu-
ation on 12 example contracts demonstrates that ZeeStar is
expressive and its costs are comparable to popular existing
applications: on average, a ZeeStar transaction costs 339 k
gas (see §VII-D). Further, ZeeStar can readily express the
confidential payment system Zether [6] at lower gas costs and
without requiring familiarity with cryptographic primitives.



Main Contributions. Our main contributions are:

o ZeeStar, a language to specify and a compiler to automat-
ically enforce data privacy of smart contracts (§III-§IV).

« An extension of ZeeStar to support private multiplication
and mixing multiple encryption schemes (§V).

o An end-to-end implementation! of ZeeStar for Ethereum
along with an evaluation on 12 contracts, demonstrating
that ZeeStar is both expressive and practical (§VI-§VII).

II. BACKGROUND

Before presenting ZeeStar, we provide a brief introduction
to the two relevant cryptographic primitives.

A. Non-interactive Zero-knowledge Proofs

A non-interactive zero-knowledge (NIZK) proof [16, 17]
allows a prover to demonstrate to a verifier that she knows a
secret, without revealing that secret. More precisely, she can
prove knowledge of a secret witness w satisfying a predicate
¢(w; x) for some public value x, without revealing anything
else about w other than the fact that ¢(w;x) holds. We call ¢
the proof circuit, w the private input, and x the public input.
For example, for a cyclic group G with generator g and h € G,
one can prove knowledge of the discrete logarithm z of h for
base g using the proof circuit ¢(z; h) satisfied iff g* = h.

Zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs) [12, 18, 19] are generic NIZK
proof constructions supporting any arithmetic circuit ¢ and
featuring constant-cost proof verification in the size of ¢ (plus
a typically negligible linear cost in the size of x). Due to their
low verification costs, zk-SNARKSs are frequently used on the
Ethereum blockchain [9, 10, 20].

B. Additively Homomorphic Encryption

An additively homomorphic encryption scheme allows
adding the plaintexts underlying a pair of ciphertexts without
knowledge of private keys. More formally, let pk, and sk,
be the public and private key of a party «, respectively, and
Enc(z, pk,,r) the encryption of plaintext « under pk, using
randomness 7. This scheme is additively homomorphic if there
exists a function @ on ciphertexts such that for all z, y, a, 7, 7’:

Enc(z, pk,,,r) ® Enc(y, pk,,r") = Enc(z + y, pk,,r") (1)

for some 7", where @ can be efficiently evaluated without
knowledge of sk,. Note that both arguments to & must
be encrypted under the same public key. Usually, additively
homomorphic schemes also allow the homomorphic evaluation
of subtraction using a function & defined analogously.

For example, the Paillier encryption scheme [13] is addi-
tively homomorphic in Z,, (that is, + in Eq. (1) is addition
modulo n) for an RSA modulus n, and exponential ElGamal
encryption [14] over a group G is additively homomorphic in
Z)c)» where |G| is the order of G (see App. B).

IPublicly available at https:/github.com/eth-sri/zkay/tree/sp2022

III. OVERVIEW
In Fig. 1, we provide an overview of ZeeStar.

Example: Private Tokens. Fig. la shows a ZeeStar con-
tract modeling a wallet holding private tokens. Besides the
highlighted annotations (discussed shortly) and keyword me
(a shorthand for msg.sender in Solidity), the code follows
a straightforward Solidity implementation. The mapping bal
stores the number of tokens held by each individual party.
The transfer function is used to transfer val tokens from the
sender me (Line 5) to another party to (Line 6), after checking
that the sender has sufficient funds (Line 4). For simplicity,
the contract does not contain logic to initialize the balances.

Intuitively, the highlighted annotations specify the following
notion of privacy: the balances of all parties must be private
to the individual parties, and the number of transferred tokens
must only be visible to the sender and receiver party.

Privacy Annotations and Types. To enable precise and er-
gonomic specification of privacy constraints, ZeeStar relies
on privacy annotations as introduced by zkay [9]. These
annotations are used to track ownership of values in a privacy
type system: Data types 7 (such as integers and booleans) are
extended to types of the form 7@q, where « determines the
owner of the expression. The value of an expression can only
be seen by its owner. The owner o may be all (indicating the
value is public), or an expression of type address. Expressions
with owner me are called self-owned, while expressions with
owner « ¢ {me,all} are called foreign.

In Fig. la, we highlight the privacy annotations used to
model the privacy notion described above. Line 2 specifies
that balla] is private to the address a. The argument val of
type uinteme (Line 3) is owned by the sender, while to of type
address (a shorthand for address@all) is public.

In order to prevent implicit information leaks, private ex-
pressions with owner « cannot be directly assigned to variables
with a different owner o’ # «. Instead, developers can use
reveal(e, a) to explicitly reveal a self-owned expression e
to another owner a. For example, in Line 6 we reveal the
transferred number of tokens val to the recipient to. This is
needed because bal[to] is owned by to. To avoid implicit leaks
based on access patterns, the control flow of a contract must
not depend on any private values. For example, require(e)
rejects the transaction (i.e., aborts and reverts it) if e evaluates
to false. Thus, Line 4 publicly reveals whether the sender owns
at least the number of transferred tokens.

Note that the privacy annotations only induce minimal
overhead compared to existing, non-private smart contract
languages such as Solidity. As discussed next, privacy is en-
forced automatically by ZeeStar’s compiler, without requiring
developers to manually instantiate cryptographic primitives.
We note that zkay would reject the contract in Fig. la, as it
cannot increase the foreign value bal[to] by val (see Line 6).

Compilation. ZeeStar compiles the input contract to a contract
which is executable on Ethereum and enforces the specified
privacy constraints. Fig. 1b shows a simplified version of the
contract generated by ZeeStar for the token contract in Fig. 1a.
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1 contract Token {
2 mapping(address !x => uint@x ) bal;
3 function transfer(uint@me val, address to) {

4 require( reveal(val <= bal[me], all));
5 bal[me] = bal[me] - val;

6 bal[to] = bal[to] + reveal(val, to) ;
7}

s }

(a) Input ZeeStar contract with privacy annotations .

contract Token {

mapping(address => bin) bal;

function transfer(bin val, address to, bin proof,
bool b, bin new_me, bin new_to) {

1

2

3

4

5 require(b);

6 bal[me] = new_me;
7 bal[to] = new_to;
8 verifyg (proof, ...);
o}

10 }

(b) Compilation output I: Solidity contract (simplified).

Public inputs:

val encrypted val
t
balye,, bal,, new balances new_me, new_to
b value of b
bals, balls, previous balances bal[me], bal[to]
Dkome, Dkt public keys of me and to

Private inputs (witness):

skme  private key of me
r1,72  encryption randomness
Constraints:

- Skme and pk,,. form a valid key pair
- b= (val’ < Dec(ball}s, skme))

- bal™e = Enc(Dec(ball}s, skme) — val’, pk,,.,71)
- bal’e,,, = balt?, & Enc(val’, pk,,, r2)

for wal’ := Dec(val, skme)

(c) Compilation output II: Proof circuit ¢ for transfer.

Fig. 1: Compiling an example ZeeStar contract. The proof circuit ¢ relies on homomorphic addition & .

In the output contract, values with owner o # all are
encrypted under the public key of a using an additively
homomorphic encryption scheme. Private expressions are pre-
computed locally (called off-chain) by the sender, and only
published on the blockchain (on-chain) in encrypted form.
Expressions revealed to all are additionally published in plain-
text. For example, private expression bal[me] - val (Line 5
in Fig. 1a) is replaced by a new function argument new_me
with ciphertext type bin (Line 6 in Fig. 1b), holding the new
encrypted balance of the sender. As discussed shortly, ZeeStar
uses a NIZK proof to ensure new_me is computed correctly.
Similarly, Line 6 in Fig. 1a is transformed to Line 7 in Fig. 1b.
Moreover, the revealed result of the comparison in Line 4
(Fig. 1a) is replaced by a plaintext argument b in Fig. 1b.

Ensuring Correctness. To ensure the function arguments vat,
b, new_me, and new_to are computed correctly by the sender,
ZeeStar relies on both NIZK proofs and the homomorphic
property of the encryption scheme. To this end, for every
function, ZeeStar constructs a proof circuit ¢ enforcing cor-
rectness. Fig. 1c shows the proof circuit for transfer. As
public inputs, ¢ takes all encrypted function arguments (val
and new balances), revealed values (b), a subset of the previous
state of the contract (previous balances), and the public keys
of all involved parties. The private inputs consist of secrets
known by the sender (most notably, her private key sk,e).
Intuitively, any expression involving only public and self-
owned variables is computed by the sender as follows: First,
decrypt any private input variables. Then, evaluate the ex-
pression on the plaintext arguments. Finally, if the expression

is private, encrypt the result using the owner’s public key.
For example, to compute the new balance new_me, the sender
decrypts her previous balance and the val argument, computes
the difference, and encrypts the result under her own public
key. ZeeStar collects constraints reflecting this computation
in the proof circuit ¢ (Fig. 1c). Here, Dec(x, sk) denotes the
decryption of x using private key sk.

Leveraging Homomorphic Encryption. Because the encryp-
tion scheme is additively homomorphic, ZeeStar also allows
evaluating expressions e; +e2 and e; - es for ej, es with
owner « ¢ {me,all}. For example, the addition of Line 6 in
Fig. 1a can be evaluated by the sender using the homomorphic
operation @. First, the sender re-encrypts the plaintext of val
under the public key of to to obtain a ciphertext c. Then,
the sender computes bal[to] & ¢ to obtain new_to. In the proof
circuit ¢, ZeeStar ensures that ¢ is computed correctly. Perhaps
surprisingly, the operation @ is also evaluated inside the
proof circuit (see Fig. 1c). While this is not required for pri-
vacy, it leads to reduced on-chain costs (in fact, as we discuss
in §VI, doing otherwise is infeasible on Ethereum). Further,
as we discuss shortly, this allows for greater expressivity.
After constructing ¢, ZeeStar inserts a proof verification
statement into the output contract (see Line 8 in Fig. 1b).
When calling the transfer function, the sender is required
to generate and provide a NIZK proof for the circuit ¢ as a
function argument proof. This is verified by the blockchain
in Line 8, where the public arguments of ¢ are provided
as arguments to verify (see “...”). If verification fails, the
transaction is rejected and the contract state is reverted.
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Fig. 2: Compilation steps of ZeeStar.

Extensions. The described design allows for interesting ex-
tensions. In §V-A, we describe how ZeeStar can also homo-
morphically evaluate multiplication for most combinations of
owners. By repeated application of &, the sender can multiply
foreign values by a public natural number. Further, because
@ is evaluated inside the proof circuit, this also applies to
self-owned scalars (these simply occur as plaintexts in ¢). For
example, assume x is owned by Alice. Bob can multiply x by
a secret Bob-owned scalar y, without revealing y to anyone
else. This opportunity is unique to the combination of NIZK
proofs and additively homomorphic encryption.

In §V-B we will discuss how ZeeStar can be extended to
mix homomorphic and non-homomorphic encryption schemes
using suitable annotations and a modification of the type
system. This is useful as practical homomorphic encryption
schemes may come with restrictions (e.g., only 32-bit plain-
texts), prompting the developer to only apply these selectively.

IV. COMPILATION

In this section, we provide a detailed description of ZeeStar.
Fig. 2 visualizes the three high-level compilation steps. First,
the privacy annotations of the input contract are analyzed.
Then, the contract is transformed to a Solidity contract and
a set of constraint directives Cy for each function f. Finally,
each of these sets is transformed to a proof circuit ¢;.

Before describing these steps in detail (§1V-B—§IV-E), we
discuss the key idea of ZeeStar’s compilation process.

A. Combining NIZK Proofs and Homomorphic Encryption

Next, we discuss how combining NIZK proofs and homo-
morphic encryption increases expressiveness.

Incomparability of Primitives. Enforcing correctness in a
ZeeStar output contract amounts to ensuring correct computa-
tion of ciphertexts (such as new_me in Fig. 1b). Unfortunately,
the two primitives at hand are incomparable in the sense that
neither is strictly more expressive than the other. While we
can evaluate arbitrary expressions inside proof circuits, using
NIZK proofs for correctness generally requires the prover
to decrypt all input variables. For instance, the circuit in
Fig. 1c decrypts the previous balance ball;$ of the sender
in order to prove correct computation of bal]%’ . In contrast,
additively homomorphic encryption can be used to provide
correctness guarantees “by construction,” but only for addition
and subtraction. For example, the sender does not need to
know skto in order to correctly update bal[to] in Fig. 1b.
In the example of Fig. 1, we cannot enforce correctness
using only one of the primitives. Relying only on NIZK proofs
and non-homomorphic encryption, the sender could not even

a =me |all|id
ex=c|mel|id|e; op e | reveal(e, )
S
op € {+,-,%,/,%,==, =,

S1:52 | id = e | require(e)
<=,<, 88, ||}

Fig. 3: ZeeStar core privacy types «, expressions e and state-
ments S, where ¢ are constants and id are variable identifiers.

compute the new balance new_to. On the other hand, only
using homomorphic encryption is insufficient to guarantee
correctness: First, the requirement for sufficient sender funds
(Line 4 in Fig. 1a) cannot be enforced without some sort of
NIZK proof. Second, while the new balance new_me of the
sender could be updated using &, a correct instantiation would
still need to somehow enforce that the same value is removed
from and added to bal[me] and bal[to], respectively (note that
the two balances are encrypted under different keys).

Key Idea. In order to achieve high expressiveness, ZeeStar
instantiates the two primitives in combination. ZeeStar’s com-
pilation is driven by privacy annotations: for each expression,
ZeeStar decides which cryptographic primitive to use, based
on privacy types and the actual expression. For example, be-
cause bal[to] is foreign, ZeeStar determines that adding val to
it (Line 6 in Fig. 1a) requires homomorphic addition. However,
because val is self-owned, it needs to be re-encrypted under
pk,, in the proof circuit.

B. Privacy Type Analysis

As a first step, ZeeStar analyzes the privacy annotations
in the input (see Fig. 2). Before explaining this step in an
example, we first discuss the ZeeStar language in more detail.

Language Fragment. In this paper, we focus on the core
language fragment shown in Fig. 3. The fragment allows
introducing our key ideas without cluttering the presentation.
In our fragment, function bodies consist of the statements .S
shown in Fig. 3. Besides sequential composition, these include
assignments and require statements. The argument to require
must evaluate to true for the transaction to be accepted.
ZeeStar supports standard arithmetic and boolean expressions
as well as a dedicated reveal expression, which is used
to change the owner of a self-owned expression. Variable
identifiers (id) include function arguments, contrast fields,
local variables, and mapping entries, where the latter is not
modeled separately for simplicity. We consider three primitive
data types: booleans (bool), addresses (address), and unsigned
integers (uint). In ZeeStar, variables can be self-owned (me),
public (all), or owned by a public variable of type address.
We can extend ZeeStar to other statements and expressions
by following the ideas of [10]. In particular, our implemen-
tation (see §VI) accepts a much richer language based on
Solidity, including non-recursive function calls (realized by
inlining), if-then-else statements (realized by evaluating both
branches and multiplexing), and loops. As NIZK proof circuits



contract C {
final address alice; uint@alice a;
final address bob; uint@bob b;
/* constructor omitted for simplicity */

1
2
3
4
5
6 function f(uint@me x) {
7

require(alice == me);
8 require( 1 < reveal(x % 3, all) );
9 b = (b + reveal(2 *x a, bob)) + 4 ;
10 a=x+1;
1 }
12 }

(a) Input contract.
< @all FOREIGN M ahob

1 @all reveal @all 4 @all

% @me

/N

X @me @Eall 3 * | @me
(i) Line 8 2 @all a @me
(ii) Line 9

(b) Privacy types for the highlighted expressions in (a). The second

argument to reveal is formally not an expression and hence not shown.

1 function f( X ) {
; require(alice == me);
4 require(l < el);
5 b = ;
6 a = H
;
s }
Cf = {el =all X % 3 2)
€2 =pop (b + reveal(2 x a, bob)) + 4, 3)
e3 =pe X + 1} (4)
(¢) Transformed function f and collected constraint directives.
el = Tplam(x % 3) (®)]
e2 =T, ((b + reveal(2 = a, bob)) + 4) ©6)
e3 = Enc(Tpuin(x + 1), pk,,,e,70) @)
PUNY
el = Dec(Xotd, Skme) % 3 (8)
€2 = (boia @ Enc(2 - Dec(aoia; skme), Pkpop, 1)) )
@ Enc(4, pkyop, 72)
e3 = EnC(DGC(de, Skme) +1, pkme7 7ﬂO) (10)

(d) Constructing proof circuit constraints.

Fig. 4: Running example explaining the compilation steps of ZeeStar.

have bounded size, the latter must be either free from private
variables, or manually unrolled up to statically known bounds.

Running Example. To explain the compilation process of
ZeeStar, we use the running example in Fig. 4. The code in
Fig. 4a covers all relevant aspects of compilation but does not
implement any meaningful functionality. The fields alice and
bob are initialized in the constructor (not shown) and declared
final to ensure they are not modified later. Like in zkay [9],
this is used to prevent changing a variable’s owner at runtime.

Privacy Types. ZeeStar analyzes the privacy annotations in the
input contract and assigns a privacy type to each subexpres-
sion. Privacy types have two main purposes: they (i) prevent
implicit information leaks, and (ii) guide the compilation
by stating which expressions should be encrypted for which
party. The privacy analysis ensures the privacy specification
is realizable. In particular, for any well-typed contract, the
subsequent compilation steps are guaranteed to succeed.

Statements. ZeeStar follows the ideas of zkay [9, 10] for
analyzing statements. It requires the argument e of require(e)
to be public, as the fact whether a transaction is accepted
leaks the value of e. Also, for assignment statements id = e,
the owner of both sides must be equal, or e must be public.
This allows for implicitly making a public value private, but
not implicitly leaking any private values.

Expressions. Privacy types of expressions are determined
recursively. In Fig. 4b, we show the privacy types for the
subexpressions in Line 8 and Line 9 of Fig. 4a. Constants ¢ and
the address me are public, while the privacy type of variables
or mapping entries (id) is determined by their declaration. For
example, in Fig. 4b-i, x has privacy type me, while the constant
3 is public. The reveal(e, ) expression has privacy type a,
where e must be self-owned. Fig. 4b-i does not contain a node
for al1, because all is formally not an expression (see Fig. 3).

Fig. 5 shows the type rules for binary expressions. If both
operands are public, the result is public (rule binop-all). For
instance, in Fig. 4b-i, the inequality < is public as it compares
public values. If one of the operands is self-owned and the
other is public or self-owned, the privacy type of the result is
set to me (rule binop-me). This is because the result depends
on the private operand, so it should be kept private. For
example, the % operation in Fig. 4b-i has privacy type me. If one
operand is foreign, the only applicable operations are addition
and subtraction (rule binop-foreign), which will later be
compiled to & and &, respectively. In this case, both operands
must have the same owner, or one operand must be public.
ZeeStar disallows mixing foreign and self-owned operands to
prevent implicit leaks. If mixing is desired, developers can
always reveal the self-owned operand first.
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Fig. 5: Privacy type rules for binary expressions. Here, I' - e: « indicates that expression e has privacy type a.

Finding Self-owned Variables. Sometimes, the owner of a
variable is syntactically different from me but still guaranteed
to evaluate to the sender’s address at runtime. For example,
in Line 9 of Fig. 4a, field a has privacy type alice (by its
declaration) but Line 7 ensures that alice == me. Like zkay,
ZeeStar uses sound static analysis to find such cases. The
analysis is based on a few simple, sound, but incomplete rules:
For instance, a statement require(a == me) allows ZeeStar to
later substitute a by me as long as a is not overwritten. To
exploit this, ZeeStar changes the privacy type of fields to
me whenever possible, before determining the privacy type of
expressions. For example, a has type eme in Fig. 4b-ii.

C. Contract Transformation

If the input contract is well-typed, ZeeStar transforms it
to a contract executable on a public blockchain and collects
information required to later construct proof circuits.

Ideal World. The input contract specifies executions in an
ideal world, where functions are executed according to the
standard semantics of the statements and expressions in Fig. 3,
but the value of an expression is only revealed to its owner.
An according formal semantics can be defined analogously
to [9, §4]. In the following, we use [e] to denote the plaintext
value of an expression e when evaluating it in the ideal world.

Correctness. Intuitively, ZeeStar ensures that in the output
contract, the value of any field is encrypted for its owner:

Theorem 1 (Correctness, informal). Let C' be the output
contract resulting from the compilation of a well-typed ZeeStar
contract C, and z a field of C. Further, let v be the value of
z in C after any sequence of transactions. Then, there exist
corresponding ideal world transactions on C' such that [z] in
C is equivalent to v.

Here, [e] is equivalent to a value v iff either e is public and
v = [e], or e is owned by « # all and v = Enc([e], pk,, )
for some r. In App. C, we prove a more formal version of
Thm. 1, which assumes that the used NIZK proof system is
computationally sound (Def. 4 in App. A).

Processing a Contract. Alg. 1 describes how ZeeStar trans-
forms a contract. This algorithm replaces publicly revealed and
private expressions by new function arguments, and enforces
the latter to respect equivalence as defined above.

For each function f, ZeeStar runs TRANSFORM( f), which
modifies f in-place and collects a list Cy of constraint di-
rectives. A constraint directive “xz =, €’ for variable x and
expression e owned by « indicates that [e] must be equivalent

Algorithm 1 Transforming Function Bodies

: procedure TRANSFORM(f)

Cr=1]
for each require(e) or id = e in the body of f do
TRANSFORMEXPR(e, f,Cy)

1
2
3
4
5: return Cy
6
7
8

: procedure TRANSFORMEXPR(e, f,Cy)
if e has privacy type a # all then

9: add new function argument arg to f

10: replace e by variable arg

11: add “arg =, €” to Cy

12: else (e is public)

13: for each node e; visited during BFS over e do

14: if e; has the form reveal(e’,all) then

15: add new function argument arg; to f

16: replace subtree rooted at e; by variable arg;
17: add “arg; =511 € to Cs

to the value of x. Each such directive will later be transformed
to a constraint in the proof circuit, thus enforcing correctness.

For example, Fig. 4c shows the modified function f and the
produced Cs when running Alg. 1 on Fig. 4a. Copies _a, _b
(Line 2) and the verify statement (Line 7) are discussed later.

For each expression e occurring in a statement require(e)
or id = e inside the function body, Lines 3—4 (Alg. 1) run the
procedure TRANSFORMEXPR(e, f,Cy). If e is private to a, it
is replaced by a new function argument arg (Line 10). Further,
ZeeStar adds “arg =, €” to Cy, indicating that arg should
contain the encryption of [e] for «. In our example, the whole
expression tree in Fig. 4b-ii is replaced by a new function
argument e2 with ciphertext type bin (Line 5 in Fig. 4c). We
add Eq. (3) shown in Fig. 4c to Cs. Line 10 in Fig. 4a is
processed analogously, yielding Line 6 and Eq. (4) in Fig. 4c.

Public Expressions. Note that public expressions e may
contain subexpressions of the form reveal(e’,all), where €’
is self-owned. For example, in Fig. 4a, the result of the %
operation is revealed publicly. Hence, Alg. 1 performs a top-
down tree search (for example, BFS) over public expressions
e to find subtrees rooted at reveal(e’,all) expressions. These
are replaced by a new function argument, and an according
constraint is added to Cy. In our example, Line 8 in Fig. 4a is
replaced by Line 4 in Fig. 4c and we record Eq. (2) in Fig. 4c.



D. Proof Circuit Construction

In the final step, for each function f, ZeeStar builds a proof
circuit ¢ ¢ based on the previously collected Cy.

Proof Circuit Inputs. First, ZeeStar assembles the public
inputs for ¢ ;. These connect the actual values occurring in a
transaction with the values in the circuit. For each “x =, €” in
C¢, it adds public inputs x and pk,, (if o # all) to ¢. Further,
ZeeStar collects all variables id occurring in e (i.e., function
arguments, contract fields, and local variables) and adds, for
each id, a public input idyq to ¢y. > Similarly, ZeeStar adds
a public input me to ¢y if me occurs in e. To simplify our
explanation, we assume that function bodies are in static single
assignment form: function arguments cannot be assigned to,
contract fields are never read after assignment, and local
variables are assigned to exactly once. By the introduction
of fresh local variables, any function can be converted to this
form. This ensures that constraint directives can be processed
independently, and all accesses of a variable id have the same
value at runtime, accessible via id,;q in the proof circuit. In
our running example, by Eqgs. (2)—(4), the public proof inputs
are: el, e2, e3, Xold> Qold> Dolds Pkmes PRpop-

The private inputs of ¢ include the private key sk, (to
decrypt self-owned values) and a list of random values r; (see
later). To enforce that sk,,. and pk,,. form a valid key pair,
ZeeStar includes an according constraint in ¢y.

To pass the actual values of the public circuit inputs to ¢y,
ZeeStar adds a proof-verification statement to the output
contract. To this end, the previous values of any overwritten
fields are copied at the beginning of the function. For example,
in Fig. 4c, ZeeStar first copies the old values of a and b
in Line 2. In Line 7, it introduces a verification statement
accepting the proof p and all public proof inputs. Here, pk(«)
fetches the public key of a from a public key infrastructure.

Structure of Expression Trees. We next discuss an important
observation, leveraged in the rest of this work. Consider the
expression tree e of a constraint directive “x =,, e” for a well-
typed contract. If e contains foreign nodes, these must lie at
the top of the tree and include the root node. This is enforced
by the type system: foreign expressions cannot be revealed to
me or all as the argument of reveal must be self-owned.
More precisely, we can partition the nodes of e into two
sets FOREIGN and OWN, where (i) FOREIGN contains all
nodes with owner « ¢ {me,all}, (i) OWN contains all nodes
with owner o € {me,all}, and (iii) the subgraph induced
by FOREIGN is connected and, if non-empty, contains the
root. Conceptually, this divides the expression tree into an
upper part FOREIGN and a lower part OWN. For example, in
Fig. 4b-ii, OWN contains the nodes *, 2, a, and 4. If the root
is self-owned, then FOREIGN = (), as for the expression tree
of constraint directive el =511 x % 3 (rooted at % in Fig. 4b-i).

2If id is a mapping entry of the form ej[ea], ZeeStar also instantiates a
single public input id,;4 for the entry. The mapping lookup will be performed
outside ¢ (inside the contract), and id,;q is assigned the value of ej[ez].
This is possible as ZeeStar’s type system enforces the key e to be public.

T = Tplain (6) if a = all
T=q4€ ~ x = Enc(Tpuin(€), pk,pe, i) if o = me
x = Ta(e) otherwise

Fig. 6: Transforming constraint directives to constraints.

Tplain(c) =cC (1D

Toiain(me) = me (12)

Tonain(€1 0p e2) = Tpnain(€1) Op Tpiain(€2) (13)

Touin(reveal(e, ) = Tpuin(e) (14)
. idorg if id public

T ain d) = . . 15

piain (id) {Dec(ldold, skme) otherwise (15)

Fig. 7: Recursive expression transformation using Tpjain-

As all nodes in OWN are either self-owned or public, the
sender can always compute their plaintext value. However,
the value of nodes in FOREIGN is generally not known to the
sender. The main idea of ZeeStar’s circuit construction step
is to leverage the homomorphic property of the encryption
scheme for nodes in FOREIGN, and enforce correct computa-
tion of nodes in OWN by working with their plaintext values.

Transforming Expressions. We now define two recursive
transformation functions T}, and T, used to build constraints
for ¢ from expressions. The function Tp,iy is used to process
nodes in OWN. It is designed such that for any e € OWN,
evaluating Tjin(€) inside the proof circuit results in [e]. On
the other hand, T, targets nodes in FOREIGN and nodes in
OWN whose parents are in FOREIGN. For expression e, eval-
uating T, (e) inside the proof circuit results in the ciphertext
Enc([e], pk,, ;) for some randomness r;.

Before discussing T}ain and T,, in detail, we describe how
they are used. Specifically, ZeeStar transforms each constraint
directive “x =, €” in C; to a constraint in ¢; enforcing
equivalence. Depending on «, the constraint has a different
form as shown in Fig. 6. If o = a1, T},j4in enforces that x holds
the plaintext value of e. This ensures that self-owned values
are correctly revealed by reveal(e, all). If o = me, x should
contain the encryption of [e] (determined using Tplain) under
the sender’s public key pk,,. and some randomness r; which
is added to the private inputs. The third case deals with
expressions for which FOREIGN is non-empty. In this case,
x is owned by a party « # me and we leverage T, to ensure x
contains the correctly encrypted value. In our running example,
based on Egs. (2)—-(4), ZeeStar adds constraints (5)—(7) in
Fig. 4d to ¢, where ry is a new private input.

Plaintext Evaluation. Fig. 7 defines the function Tj,. At
a high level, this function decrypts any self-owned variables
occurring in e and recursively evaluates the expression. The
rules for constants, me, and binary operations are straightfor-
ward. By Eq. (14), reveal expressions are ignored (these are
only used for preventing implicit leaks). Eq. (15) shows the



To(c) = Enca(c)
To(me) = Enca(me)

(16)
an

idoia if id owned by «
Ta(id) = { Enca(idoa) else if id public  (1I8)
1 otherwise
Enca (Tplain(e)) if e pubhc
To(e1) ® Tu(e2) else if op = +
To = . 19
(51—38—62/) Ta(e1) © To(ez) else if op = - (19
- 1 otherwise
Ence(Tyain(e)) if a =
T.(reveal(e,a’)) = { i (Tpun(e)) otherwise (20)

where Enca(e) := Enc(e, pk,, i) (21)
Fig. 8: Recursive expression transformation using T,,. Unde-

fined cases (L) never apply for well-typed contracts.

rule for transforming a variable id. If the variable id is public,
idy;q can be accessed directly. Otherwise, as the contract is
well-typed and T}, is applied only to nodes in OWN, the
value is self-owned and is hence decrypted using sk,,.. For
example, in Fig. 4d, Eq. () is transformed to Eq. (8).

Homomorphic Evaluation. Fig. 8 defines T,,, which produces
values encrypted for a. Constants and me are public, hence
their plaintext value is encrypted under the public key of «
using the function Enc, (Egs. (16)—(17) and Eq. (21)). Here,
r; is a new private input for ¢;. For foreign variables id,
ZeeStar accesses id,;4, which holds a ciphertext for « (as the
contract is well-typed, T}, is never applied to private variables
with owner # «). If id is public, then it is encrypted for c.

For binary operations (Eq. (19)), we distinguish multiple
cases. If the operation is public, then we compute its plaintext
value using Tpj4in and again apply Enc,. Private additions and
subtractions are computed homomorphically: before applying
@ or ©, the arguments are recursively transformed by T, to
obtain two ciphertexts encrypted for a. Well-typed contracts
do not involve other binary operations on foreign arguments.

For well-typed contracts, T, is only applied to nodes in
FOREIGN and their direct children. Hence, an expression
reveal(e, ) is only reachable by T, if &/ = «, and we can
apply Tpiin and Enc, (see Eq. (20)). Conceptually, this and
all other cases introducing Enc,, provide a “bridge” between
FOREIGN and OWN. Note that public expressions can be
mixed with foreign expressions using + or -: for example, the
constant 4 in Fig. 4b-ii is in OWN but is an argument to the
root + in FOREIGN. Hence, Eq. (16) introduces a bridge for 4.

In the example of Fig. 4d, Eq. (6) is transformed to Eq. (9),
where 71,79 are new private inputs of ¢;.

Transaction Transformation. To call a function f in the
transformed contract, the sender needs to prepare the argu-
ments introduced by ZeeStar. To this end, the sender selects
the public arguments of ¢; such that ¢; is satisfied and
generates a NIZK proof for ¢, (see App. D for details).

Our implementation (§VI) includes a transparent interface
performing these steps automatically.

E. Discussion

Privacy. ZeeStar satisfies the following notion of privacy:

Theorem 2 (Privacy, informal). Let C be the output con-
tract resulting from the compilation of a well-typed ZeeStar
contract C. An active attacker cannot learn more from real
transactions on C' than from the information observable in
the corresponding ideal-world transactions on C (see §IV-C).

We prove a more formal version of Thm. 2 in App. E,
assuming that ZeeStar is instantiated with an IND-CPA en-
cryption scheme and a computationally sound and perfectly
zero-knowledge NIZK proof system (a weaker notion of zk-
SNARK formalized as zk-SNARG in App. A). Using a hybrid
argument, we show that for any probabilistic polynomial-
time (PPT) adversary statically corrupting a set of parties,
any sequence of real-world transactions is computationally in-
distinguishable from transactions simulated from information
available to the adversary in the ideal world.

Limitations. ZeeStar is limited by the expressiveness of proof
circuits and additively homomorphic encryption. Specifically,
as proof circuits are bounded, ZeeStar contracts cannot access
unbounded amounts of private memory or include unbounded
loops with private operations. However, this is not a concern
in practice: Due to the block gas limit in Ethereum, which
bounds the computation of a transaction, using unbounded
loops is discouraged [21]. Instead, elements of an unbounded
data structure should be processed in individual transactions.
Further, foreign values can only be subject to addition or
subtraction where either both operands are owned by the
same party, or one operand is self-owned or public. In §V-A,
we discuss how to alleviate this restriction by allowing also
multiplication for most combinations of owners.

Comparison to zkay. Because ZeeStar extends zkay [9], we
discuss their technical differences. Fundamentally, ZeeStar
leverages NIZK proofs and homomorphic encryption (§IV-A),
while zkay is limited to the former and hence strictly less
expressive. The privacy annotations of ZeeStar and zkay are
identical, and the privacy type analysis (§IV-B) follows the
ideas of zkay for preventing implicit leaks. However, ZeeStar
allows for foreign expressions disallowed in zkay and in
particular treats binary operations differently (Fig. 5). Like
zkay, ZeeStar replaces private and revealed expressions by
new function arguments (§IV-C). However, the construction
of proof circuits (§1V-D) is significantly different: while zkay
only works with plaintext values, ZeeStar also tracks cipher-
texts in the proof circuit (FOREIGN and T, are unique to
ZeeStar) and leverages homomorphic operations.

V. EXTENSIONS

Next, we show how ZeeStar can homomorphically evaluate
multiplications for most combinations of owners (§V-A), and
how different encryption schemes can be mixed (§V-B).



A. Homomorphic Multiplication by Known Scalars

Additively homomorphic encryption schemes can also be
used for scalar multiplication. We can define a function &° x
which homomorphically multiplies a ciphertext  and a natural
number s by homomorphically adding z to itself s times:
®° x := x P --- P x. Using the double-and-add algorithm,
@*® x can be computed using only O(log s) applications of &®.

Multiplication by Public Scalars. The compilation process
described in §IV can easily be extended to support homo-
morphic multiplication of foreign values by public scalars.
In particular, the privacy type rule binop-foreign (Fig. 5) is
extended to allow ey * e; for foreign ey with owner o and
public e; (or vice-versa) and assign privacy type « to the
result. When transforming expressions, ZeeStar performs this
multiplication homomorphically inside the proof circuit. To
this end, we extend 7, by rule (22) in Fig. 9.

For example, the contract in Fig. 4a would still compile if
we replaced + 4 in Line 9 by = 4. In this case, by Eq. (22),
Eq. (9) in Fig. 4d would change to

e2 = @4 (bold S EIIC(Q : Dec(aold7 Skme)a pkboba 7ﬂl))'

Multiplication by Self-owned Scalars. Because all homomor-
phic operations introduced by ZeeStar are evaluated inside the
proof circuit, we can even extend homomorphic multiplication
to self-owned scalars eg: the plaintext value of e; is known to
the sender and can be made available in ¢ using Tpjain(€1).

Intuitively, such multiplications have the form ey * e1, where
eg is foreign and e; is self-owned. However, in order to
prevent implicit leaks, ZeeStar disallows mixing self-owned
and foreign operands in binary operations. Instead, ZeeStar
allows expressions of the form eq * reveal(ej, ) (and its
symmetric variant), even though the operation * is actually
performed on two foreign expressions. Any other pattern
e * e for foreign eg, e; is not allowed because the plaintext
value of e; cannot be guaranteed to be known by the sender.

Unfortunately, naively applying Eq. (22) to this case leads
to a privacy leak. Consider Alice producing y = &° =z,
where x is encrypted for Bob and s is a private scalar
owned by Alice. If an adversary Eve knows y and z, she
can enumerate the potentially small space of possible scalars
s’ and find s by checking if y = @ x. To prevent this attack,
Alice must re-randomize y using fresh randomness before
publishing y. To this end, when constructing the proof circuit,
ZeeStar re-randomizes the product z := @ (1) T, (e4) by
homomorphically adding a freshly encrypted constant 0 to z.
This is formalized in Eq. (23) of Fig. 9. Here, we assume
the additional property that Enc(z, pk,r) @ Enc(0, pk,r’) is
indistinguishable from a fresh encryption Enc(z, pk,r”) for
any x, pk, r. This property is formalized in App. A. As we
show in App. E, the above transformation preserves privacy.

Discussion. At a high level, this extension allows homo-
morphically multiplying two ciphertexts using an additively
homomorphic encryption scheme, as long as one of these is
encrypted for the sender. This is unique to the combination of
NIZK proofs and additively homomorphic encryption: without

Ta(eo * 1) = QBJ}mm(el) T (eo)
Tw(eo * reveal(er,a)) = (@T"]”i"(q) Ta(eo))
@ Enc(0, pk,,, 7:)

(22)
(23)

Fig. 9: Expression transformation rules for homomorphic
scalar multiplication, where ey is foreign and e; is public
(Eq. (22)) or self-owned (Eq. (23)). Symmetric rules omitted.

the former, we could not guarantee correctness of the result.
In §VII, we show how such multiplications can be used to
implement 1-out-of-2 oblivious transfer.

B. Mixing Homomorphic and Non-homomorphic Schemes

In practice, homomorphic encryption schemes are often
subject to restrictions. For example, exponential ElGamal
encryption [14] only supports short plaintexts (= 32 bits; see
§VI-A). Therefore, it can be useful to use non-homomorphic
encryption where possible and only selectively apply ho-
momorphic encryption where needed. We now discuss an
extension of ZeeStar which allows mixing such schemes.

Homomorphism Tags. We extend ZeeStar’s privacy annota-
tions by homomorphism tags of the form <u> for p € {+, _},
where 1 determines the homomorphic property of the en-
cryption scheme. In particular, when declaring a variable, the
developer adds a tag of the form <u>, specifying whether the
variable should be encrypted using an additively homomorphic
scheme (by <+>) or a non-homomorphic scheme (by < >, or
no tag). For example, in the contract of Fig. 4a, the field a
can be encrypted non-homomorphically as it is never subject
to foreign addition, by specifying the following tags:

> final address alice; uint@alice a;

3 final address bob; uint@bob<+> b;

Encryption Schemes. Let Ency and Enc be the encryption
function of an additively homomorphic and non-homomorphic
encryption scheme, respectively, and analogously for decryp-
tion functions Dec, and Dec. We modify ZeeStar’s compila-
tion process to ensure that any variable annotated as @a<u>
(for o # al1) will be encrypted using Enc,, at runtime.

To this end, we adapt (i) ZeeStar’s proof circuit construction
(§IV-D) to automatically select the appropriate encryption and
decryption functions when processing a constraint directive,
and (ii)) ZeeStar’s privacy analysis (§IV-B) to only accept
contracts admitting a non-conflicting selection. Decryption is
only introduced by Eq. (15), where the function Dec, is
determined by the homomorphism tag <u> of the variable.

Selecting the Encryption Function. Selecting the encryption
function Enc,, is more interesting. If o = all for a directive
T =, e, no encryption is needed. Otherwise, the directive must
originate from Line 11 in Alg. 1 and e must therefore be the
right-hand side of an assignment [ = e. Below, we distinguish
the possible cases for a.

If a = me, the second case in Fig. 6 applies. The used
encryption function Enc,, is then determined by the tag <>



! |

<p> = </1/> <> <p> = <>
= -
Enc, 2

OWN Enc,

(a) (b) ©

Fig. 10: Cases for determining encryption scheme.

of [. For example, for Line 10 in Fig. 4a, ZeeStar uses Enc to
encrypt the result of x + 1 because a is declared as @alice.
Note that this allows for implicitly switching encryption
schemes of self-owned values: an assignment [ = e is accepted
by ZeeStar even if [ is annotated @me<+> and e contains
variables annotated as @me (or vice-versa). For instance, if x in
Fig. 4a was declared as @me<+>, the code would still compile.

Otherwise (« ¢ {all,me}), we distinguish the three cases
visualized in Fig. 10. If e is a foreign variable id (Fig. 10a), no
encryption operation is introduced as id is already encrypted.
To enable this, we adapt the privacy analysis (§IV-B) to raise
a type error if the tag <u'> of id does not match the tag <u>
of . If e is a reveal expression (Fig. 10b), e is processed
by Eq. (20). Then, the encryption scheme used in Enc, is
selected to match the homomorphism tag <u> of [. Otherwise,
e must be an addition or subtraction expression (Fig. 10c), to
be evaluated in ¢ using @ or © by Eq. (19). Using @ or ©
requires their arguments to be ciphertexts under Enc,, which
recursively applies to all + and - nodes in FOREIGN. Therefore,
we adapt the privacy analysis to reject private variables in
FOREIGN which do not have tag <+>, and instantiate Enc,
using Ency for all bridges to OWN (see Fig. 8). Further,
ZeeStar ensures that the left-hand side [ has tag <+>.

VI. IMPLEMENTATION

We now present our implementation of ZeeStar.

A. Efficient Cryptographic Operations

First, we discuss how encryption, decryption, and homo-
morphic operations can be efficiently performed within ¢.

Expressing Proof Circuits. Verification of a zk-SNARK
typically involves operations on an elliptic curve FE; over
some base field. E1 determines the scalar field F, (integers
modulo ¢ for a prime ¢) over which proof circuits ¢ operate.
Thus, operations in ¢ must be expressed as operations over IF.

Problem: High Costs. Reducing ¢ to operations over I, can
lead to high emulation overhead for some operations (e.g.,
for computation over a field F, # F,), resulting in pro-
hibitively high proof generation costs. For instance, generating
a Grothl6 [12] zk-SNARK for Paillier encryption [13] with
2048-bit keys requires over 256 GB of RAM—an impractical
requirement for commodity desktop machines.

Solution: Curve Embedding. To address this issue, we instead
leverage an encryption scheme based on an elliptic curve Fjs
(discussed shortly). This allows us to rely on curve embed-
ding [7, 15], which reduces prover costs for elliptic curve
operations inside proof circuits. In this technique, F; and Fs
are carefully selected such that the base field of E5 equals [Fy,
where ¢ is determined by FE;. This allows operations on Fj
to be evaluated natively in F,, without emulation overhead.
Because Ethereum currently only provides precompiled
contracts for the BN254 curve [22, 23] and proof verification
involves operations over Ey, we use Groth16 [12] zk-SNARKSs
over B = BN254. For E», we use the Baby Jubjub curve [24],
whose base field matches the scalar field of BN254. This
choice allows for efficient cryptographic operations within ¢.
Due to the lack of precompiled contracts, evaluating opera-
tions on E5 on Ethereum would induce prohibitively high gas
costs. However, contracts produced by ZeeStar never evaluate
operations on Fs: these are only used inside proof circuits.

Setup for zk-SNARKs. Like other systems relying on Groth16
zk-SNARKSs [7, 9], our implementation is subject to a circuit-
specific trusted setup phase. This setup can for instance be
executed using secure multi-party computation (SMC) [25].
Still, we stress that ZeeStar is fundamentally not limited
to zk-SNARKSs with a trusted setup. For instance, we could
instantiate Bulletproofs [26] to trade the trusted setup for
increased verifier complexity. Recently, several more effi-
cient proving schemes with universal [27]-[30] or transparent
setup [31] have been proposed. Once practical for Ethereum,
these can likely replace the Groth16 zk-SNARKSs in ZeeStar.

Homomorphic Encryption. To leverage the benefits of curve
embedding, our implementation relies on exponential EIGamal
encryption [14] over the Baby Jubjub curve [24]. As discussed
in App. B, this scheme is additively homomorphic, provides
a closed-form formula for scalar multiplication, and supports
re-randomization (as required by the extension from §V-A).

In this scheme, decryption requires solving a discrete log-
arithm (see App. B). For small plaintext lengths k, this
can be computed efficiently’ using the baby-step giant-step
algorithm [32]. However, decryption is generally intractable if
k is large. Therefore, like previous works [6, 33], we restrict
the plaintext to k = 32 bits for this encryption scheme. Longer
plaintexts can still be encrypted non-homomorphically using
the extension presented in §V-B. In our evaluation (§VII), a
single decryption never takes longer than 7s.

Even when restricting the plaintext size at encryption sites,
the plaintext underlying a homomorphic addition x & y may
still exceed 32 bits. Note that not knowing both = and y, there
is generally no way for the sender to detect this. Like other
work [6], we assume that application-specific logic is used to
prevent such overflows (and similarly, underflows at 0). For
example, when initializing the balances in Fig. 1a, we can use
require statements to enforce the sum of all balances in bal
to be less than 232. To make developers aware of this caveat,
the type system of our implementation distinguishes integers

30f course, efficient decryption requires access to the private key.



of different bit sizes (e.g., uint32 and uint64), and restricts the
homomorphic tag <+> to be only used with < 32-bit integers.

B. ZeeStar for Ethereum

We implemented ZeeStar, including the extensions from §V,
for Ethereum. Our Python implementation is based on the
publicly available code of zkay v0.2.  Our end-to-end system
accepts Solidity code with privacy annotations and produces
(i) a contract executable on Ethereum, and (ii) a transaction
interface allowing to transparently interact with ZeeStar con-
tracts. It relies on jsnark [34] and libsnark [35] to generate
zk-SNARKS. For each proof circuit, we generate a separate
proof verification contract. We use solc v0.6.12 to compile
Solidity code and web3 v5.19 to interact with Ethereum.

We use ElGamal encryption as described in §VI-A with 251
bit keys. For non-homomorphic encryption, we use the hybrid
ECDH Chaskey cipher from zkay v0.2 [10] with 253 bit keys.

VII. EVALUATION

Next, we evaluate our implementation presented in §VI. All
our experiments are conducted on a machine with 32 GB of
RAM and 12 CPU cores at 3.70 GHz. We use the eth-tester
v0.5.0b4 backend (“Berlin” upgrade) to simulate transactions.

A. Example Contracts

We used ZeeStar to implement 12 contracts shown in Tab. I.
Contracts reviews and token are homomorphic variants of the
examples with the same names in [9]. Zether-confidential and
zether-large are based on Zether [6] (discussed shortly). The
other contracts were introduced by us. All contracts involve
operations on foreign data and hence cannot be expressed by
zkay [9]. Below, we discuss two contracts in more detail.

Zether Confidential Transactions. Zether [6] proposes a con-
fidential transaction contract for Ethereum, based on additively
homomorphic encryption and NIZK proofs. The contract holds
encrypted balances in a table and allows sending a secret
amount to another party. To prevent front-running attacks, it
maintains a separate “pending” state which is used to receive
currency and is periodically rolled over into the balance table.
Zether allows “locking” an account to a contract such that only
this contract can spend the account’s balance.

Using ZeeStar, we can readily implement the idea of
Zether: the contract zether-confidential implements an anal-
ogous contract in ZeeStar using just 39 lines of code (see
App. F). Because ZeeStar accounts are identified by Ethereum
addresses, we do not need to implement the “locking” mech-
anism in order to support contract-owned accounts. We note
that ZeeStar leverages different primitives than Zether: ZeeStar
uses Grothl16 zk-SNARKS, while Zether relies on custom
Y:-Bullets proofs. Further, the authors present an anonymous
extension of Zether [6, §5.1], which we do not model because
we focus on data privacy only.

“https://github.com/eth-sri/zkay/tree/v0.2

TABLE I: Contracts used in the evaluation. We specify the
number of code lines (LoC), and whether the contracts use ho-
momorphic addition (), homomorphic scalar multiplication
(6% see §V-A), or mix encryption schemes (<u>, see §V-B).

No. Name LoC & &° <up»
1 index-funds 46 °

2 inheritance 53 . °
3 inner-product 21 e o

4 member-card 25 .

5 oblivious-transfer 19 ° .

6 reviews 40 ° °
7 shared-prod 17 . °

8 token 20 °

9 voting 40 °

10 weighted-lottery 71 . )
11 zether-confidential 39 .

12 zether-large 46 . °

Oblivious Transfer. 1-out-of-2 oblivious transfer [36] is a
protocol for sending one out of two messages xg, x1 to a
receiver. The receiver can choose ¢ to learn x;, without learning
the other message x1—; and without revealing ¢ to the sender.

We encode such a protocol as a ZeeStar contract oblivious-
transfer. First, the receiver stores his selection 7 in two bits
bg, by with b; = 1 and b;_; = 0. The bits are owned by
the receiver and enforced to be well-formed using a require
statement. Next, the sender uses send to send messages xg, x1:

1 function send(uint@me xo, uint@me x1) {
2 m = bg * reveal(xg, recv) + b; * reveal(xi,

3}

recv);

Here, recv is the address of the receiver, and m is a field owned
by recv. The function uses homomorphic scalar multiplication
by self-owned values xg, x;. The messages x; are both marked
as being revealed to the receiver, but the receiver only learns
the result of the sum: due to Eq. (19), the sum is computed
inside the proof circuit. Because exactly one of the bits b;
is 1, this is either x¢ or x;. Note that revealing both xo and x;
is unavoidable in our type system because the receiver could
potentially learn both xo and x; (but not at the same time).

B. Compilation and Setup Performance

We analyze the performance of ZeeStar by compiling each
example in Tab. I. In addition to the steps described in §IV,
this includes, for each proof circuit, a zk-SNARK setup phase
(see §VI-A). Compilation takes 66.9 s per contract on average
and requires at most 3.07 GB RAM. Runtime is dominated by
the setup phases (91 % of the time on average). As the setup
time depends on the number and the sizes of proof circuits,
compilation time varies between 26.4s (shared-prod) and
144.1 s (zether-large). These are one-time costs per contract.

C. Transaction Generation Performance

Before a transaction is submitted to Ethereum, ZeeStar’s
transaction interface computes the values of the (potentially
encrypted) new function arguments and generates a NIZK
proof. We now evaluate the performance of this step.
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Fig. 11: Evaluation results for example scenarios. Each numbered group corresponds to a series of transactions on an example
contract (see No. in Tab. I). Top: Runtime and memory for transaction generation. Bottom: Gas costs for transaction execution.

TABLE II: Number of R1CS constraints for crypto operations.

Operation # Constraints
Encryption (Enc) 12774
Decryption (Dec) 12783
Re-randomization (¢ Enc(0, -, -)) 12031
Hom. Scalar Multiplication (%) 1495
Hom. Addition () 22

Scenarios. For each contract in Tab. I, we prepare a short
sequence of transactions called scenario, which includes trans-
actions for deploying the verification contracts (§VI-B) and
executing the main contract constructor, but omits the one-time
effort of deploying the public key infrastructure. For example,
scenario 5 consists of three deployment transactions and two
rounds of oblivious transfer (two transactions each).

Results. In Fig. 11 (top), we show the runtime and peak
memory of transaction generation for all scenarios. Each bar
shows the runtime of one transaction, separately indicating
the runtimes of proof generation and decryption of ciphertexts
(which includes solving a discrete logarithm, see §VI-A).

Generating a transaction takes at most 54.7 s and requires at
most 2.8 GB of memory. The runtimes are generally dominated
by proof generation (57 % of total time), whose runtime is
linear in the circuit size and hence varies significantly. For
some transactions (in particular, verifier deployment and most
contract constructors), no proof is generated. The remaining
runtime is mostly due to decryption (30 %).

Overall, ZeeStar can efficiently generate privacy-preserving
transactions on commodity desktop machines.

Proof Circuit Size. In order to better understand the proof
generation time, Tab. II indicates which operations in the proof
circuit are most expensive. Specifically, for each cryptographic
operation of the ElGamal encryption scheme presented in
§VI-A, Tab. II shows the number of generated rank-1 con-

straint system (R1CS) constraints. As proof generation time
is linear in the number of R1CS constraints, this number is a
good indicator for the cost of each operation.

Encryption and decryption are the most expensive oper-
ations because these consist of relatively expensive Baby
Jubjub curve point multiplications by large 256-bit scalars.
Note that for decryption, we do not need to compute discrete
logarithms log, () inside the proof circuit: instead, we can
use an additional private circuit input z = log, () and assert
that = ¢* inside the proof circuit. Encrypting 0 can be
optimized, hence re-randomization is slightly more efficient.
Homomorphic scalar multiplication only requires two curve
point multiplications by 32-bit scalars and hence induces fewer
constraints. Finally, homomorphic addition is very efficient as
it only consists of two curve point additions.

D. Transaction Execution Gas Costs

Transactions on Ethereum are subject to gas costs. We next
measure these costs for the transactions generated in §VII-C.

Results. Fig. 11 (bottom) shows the gas costs for each trans-
action, again grouped by scenario. Deployment transactions
include deployments of the verification contracts and the main
contract constructors. The gas costs of such transactions are
relatively high because the sender has to pay for storing the
contracts’ byte code. However, these are one-time costs per
contract instance. For each scenario, the highest cost is induced
by the main contract constructor. The overall highest costs of
2.79 M and 2.77 M are observed for inheritance and weighted-
lottery, resp., which are the two largest contracts (see Tab. I).

For all non-deployment transactions, we separately indicate
the costs induced by proof verification. Because the com-
plexity of zk-SNARKSs verification is essentially constant (see
§II-A), these gas costs are very similar across all transactions
involving a NIZK proof. The remaining costs vary between
transactions, which we believe is due to the varying number



of costly storage operations. On average, a non-deployment
transaction costs 339 k gas. The highest non-deployment gas
cost of 544.44 k is observed for weighted-lottery.

These costs are comparable to existing applications: A trans-
action on Uniswap [37] (the top application on the ETH25
leaderbord®) frequently costs more than 250 k gas. ©

Comparison to Zether. In [6], a Zether confidential transfer is
reported to use 7 188 k gas. In contrast, the analogous ZeeStar
transaction on zether-confidential only requires 521.22 k gas.
The Ethereum gas cost model has changed since the publi-
cation of [6], so we cannot directly compare these numbers.
We have repeatedly tried to contact the authors to provide us
the contract code or assist us with updated numbers, but we
unfortunately did not receive a response. Zether relies on the
Y-Bullets proof system, which does not require a trusted setup
but has high verifier costs. For cases where a trusted setup
phase is acceptable (potentially based on SMC, see §VI-A),
ZeeStar can offer significantly lower gas costs than Zether.

Monetary Costs. Transaction fees are computed by multiply-
ing gas costs by the gas price, determined by supply and
demand. At the time of writing, the gas price is extremely
volatile: Even within a single day, the recommended gas
price7 fluctuates between 9 and 901 Gwei (2021-07-23). Thus,
depending on the time, an average ZeeStar transaction (339 k
gas) would have cost between 6.18 and 618.51 USD on this
day (for 1 ETH = 2025 USD). Hence, it is currently impossi-
ble to provide useful cost estimates for ZeeStar transactions.

The high and volatile transaction fees of Ethereum are a
well-known problem [38, 39], which should be solved by the
upcoming Serenity (Eth2) upgrade [40]. This will likely make
ZeeStar transactions highly affordable.

VIII. RELATED WORK
We now discuss previous work related to ZeeStar.

Smart Contract Privacy. Privacy for general smart contracts
is an active area of research. In Tab. III, we compare existing
approaches to ZeeStar. The table omits Kachina [43], which
presents a formal security model for private smart contracts.

Arbitrum [4], Ekiden [5], and Hawk [3] expose significant
attack surface by relying on trusted managers or hardware.
While zkHawk [41] replaces Hawk’s manager by secure multi-
party computation (SMC), it requires interactive parties.

SmartFHE [8] proposes private smart contracts based on
NIZK proofs and fully homomorphic encryption (FHE), where
instantiating the latter at practical efficiency is known to
require cryptographic expertise [44]. Further, its single-key
variant requires all private inputs for a transaction to be owned
by the same party. This is in contrast to ZeeStar, where the
sender can combine self-owned and foreign values of multiple
parties. Unfortunately, according to the authors, SmartFHE’s
multi-key variant is currently not practical.

3 According to https://www.ethgasstation.info/ (accessed: 2021-07-21).

SFor example, see (accessed on 2021-07-14): https://etherscan.io/tx/
0x0894a389e86aa19{t393¢921e3005867¢717ef49a1296ae27f8b72f0ce0449ac

7«Standard” gas price according to https://www.gasnow.org/ for transactions
expected to be mined within 3 minutes.

TABLE III: Tools for smart contract privacy. We indicate
which tools rely on minimal trust assumptions (©), support
Ethereum (#), can operate on foreign values (&), or do not re-
quire the developer to instantiate cryptographic primitives (&).

Tool © ¢ & #£ Remarks

Arbitrum [4] O O e e trusted manager

Ekiden [5] O O e @ trusted hardware

Hawk [3] O O e e trusted manager

zkHawk [41] o O e e requires interactive parties
smartFHE [8] ® O ©* O

ZEXE [7] ¢ 0 O ¢ non-standard exec. model
Zether [6,42] @ @ © ©° limited applications

zkay [9,10] € @ O e

ZeeStar (ours) © © € @

! At most t parties corrupted 2 Mixed owners impractical

3 Approach proof-system-agnostic, impl. uses zk-SNARKs w/ trusted setup
4 Manual R1CS construction > Addition only  © For general applications
7 Addition and multiplication for most combinations of owners

ZEXE [7] targets a stronger privacy notion than ZeeStar
by additionally hiding the involved parties and the executed
function. Unlike ZeeStar, it requires the transaction sender to
decrypt all input data and hence cannot operate on foreign
values. Further, it uses a non-standard execution model based
on records and predicates, and contract logic needs to be
manually encoded as multiple RICS for zk-SNARKSs.

While Zether [6, 42] targets payments, it can be used for a
limited set of wrapper applications that rely on its interface.
However, any other applications or changes to the system (e.g.,
enforcing a minimal amount for transactions) require manually
adapting the involved cryptographic primitives.

Zkay [9, 10] (discussed in §IV-E) is a language and compiler
of private contracts for Ethereum. Like ZEXE, zkay cannot
operate on foreign values.

To the best of our knowledge, ZeeStar is the first tool for
general private smart contracts that allows operation on foreign
values, automatically instantiates cryptographic primitives, and
minimizes trust assumptions. Note that while our implemen-
tation currently uses zk-SNARKSs with a trusted setup phase,
ZeeStar’s approach is proof-system-agnostic (see also §VI-A).

Payment Privacy. A long line of work addresses privacy
for cryptocurrency transactions. Here, we discuss approaches
relying on NIZK proofs and/or homomorphic encryption.
Some private payment systems rely on application-
specific [45, 46] or generic [15, 47]-[49] NIZK proofs. Similar
to ZeeStar, several works [6, 33, 42, 50] combine homomor-
phic encryption and NIZK proofs to achieve payment privacy.
In contrast to all these works, ZeeStar brings data privacy
to general applications beyond payments and combines NIZK
proofs and homomorphic encryption automatically. ZeeStar
can be used to implement private payments: for instance, it can
readily express the confidential variant of Zether (see §VII-A).

Languages for SMC. Various works explore how privacy-
demanding applications can be expressed in high-level lan-
guages and compiled to a combination of SMC schemes.
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Some works compile standard imperative languages to a mix
of SMC schemes [51, 52], while others use domain-specific
languages or types to separate public and private values [53]-
[55] or indicate the used SMC schemes [56]-[59].

Likewise, ZeeStar’s homomorphism tags (§V-B) indicate
the used encryption scheme. However, ZeeStar’s privacy types
indicate value ownership—a concept specific to our context.
Further, these works specifically target SMC, whose execution
model is fundamentally different from that of blockchains.

IX. CONCLUSION

We presented ZeeStar, a language and compiler for rich,
private smart contracts. ZeeStar combines NIZK proofs and
additively homomorphic encryption to provably realize in-
tuitive privacy specifications on public blockchains, without
requiring developers to manually instantiate cryptographic
primitives. ZeeStar can express private payment systems and
complex applications such as oblivious transfer. Our end-to-
end implementation of ZeeStar for Ethereum is practical and
its gas costs are comparable to popular existing applications.
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APPENDIX
A. Security Definitions

Below, we summarize security definitions used throughout
the appendix. By negligible, we mean negligible in the (im-
plicit) security parameters of the cryptographic primitives.

Definition 1 (Advantage). For probabilistic algorithms
Dy, Dy and a probabilistic polynomial-time (PPT) algo-
rithm E, the advantage Adv® (Dy, D1) is defined as

Adv® (D, D) = |Prl€(x) =1: 2+ Dy
— Pri€(z) =1:2 + D]

Definition 2 (IND-CPA). A public-key encryption scheme
with encryption function Enc is IND-CPA if, for any PPT
adversary € and any two messages mo, m1 of equal length,
the following advantage is negligible:

Advs(F(O,mo7m1), F(1,mq,my)),

where F(i,mg,m1) generates a fresh public key pk and
uniform randomness r to return (mg, m1, pk, Enc(m;, pk,r)).

Definition 3 (Randomizability). An additively homomorphic
public-key encryption scheme with encryption function Enc is
randomizable if, for any PPT adversary E, any m and any r

AdvE (F(m,7), G(m,r)) =0,

where F' generates a fresh public key pk and uniform random-
ness v’ to return (m,r, pk, Enc(m, pk,r')), and G generates
a fresh public key pk and uniform randomness r' to return
(m, r, pk, Enc(m, pk,r) @ Enc(0, pk,")).

Definition 4 (zk-SNARG [12]). A zero-knowledge
succinct non-interactive argument system is a tuple
(Setup, Prove, Verify) of PPT algorithms, where Setup(¢)
returns a common reference string (CRS) ¥ and trapdoor T,
Prove(3, ¢, x,w) returns a proof 7 for the circuit ¢p(w;x),
Verify(X, ¢, x, ) returns 1 iff 7 is considered valid, and:

o Succinctness. The size of 7 is polynomial in the security
parameter N, and Verify runs in time polynomial in A\+|z|.

o Perfect completeness. For any ¢, x, w such that ¢p(w;x)
holds, it is

Pr [Veriﬁ/(Z,(b,x,Tr) =1: (3,7) ¢ Setup(¢) )] =1.

7 < Prove(X, ¢, x,w

o Computational soundness. For any PPT adversary £ and
any ¢, the following is negligible:

Pr [Verify(E, p,x,m) =1 (3,7) Setup(qi))]
A Pw. ¢(w;x) holds ~ (x,7) + E(X,¢) |

o Perfect zero-knowledge. There exists a PPT simulator
SimProof such that for any PPT adversary £ and any
¢, x, w s.t. p(w;x) holds, Adv® (F,G) = 0, where
- F runs (X,7) < Setup(¢), m < Prove(Z, ¢, z,w) to

return (3,7, ¢, x,7)
- G runs (X,7) < Setup(p), 7 + SimProof(3, T, ¢, x)
to return (3,7, ¢, x, )

B. Properties of Exponential ElIGamal Encryption

The ElGamal encryption scheme with messages in the
exponent [14] is defined over a cyclic group G. It is IND-CPA
(Def. 2), assuming the decisional Diffie-Hellman assumption
holds in G [60].

For group G with order |G| and generator g, the private
key sk, of a party « is selected uniformly at random from
{1,...,|G| — 1} and its public key is derived as pk, = g**=.

Let k with 2¥ < |G| be the maximal message bit length.
For uniformly chosen randomness r € {0,..., |G| — 1}, the
encryption of a message m € {0,...,2% — 1} is

Enc(m,pk,r) = (grv gm ' pk,)

Decryption of ciphertext (c1,c2) using the private key sk is
Dec((c1, ca), sk) = log,(ca -c‘lG‘fsk),
where log, denotes the discrete logarithm to the base g.
Defining (Cl, 62) D (dl, dg) = (Cl -dy, co- dg), this scheme
is additively homomorphic:

Enc(x’ pk’ T) ® Enc(ya pka T/) = (9T+T/7 gIer . pk’H_rl)
=Enc(z +y, pk, r+71'), (24)

where + is addition modulo |G|. Homomorphic subtraction
can be defined as (cy,c2) © (di,dg) = (c1,¢2) @ (dy*,dyt).

Homomorphic scalar multiplication by a natural number s
can be defined in closed-form as ®° (c1, ¢2) := (¢, ¢§), which
can be efficiently computed using the well-known double-
and-add algorithm involving O(log s) applications of @®. By
homomorphically adding a freshly encrypted constant 0, an
existing ciphertext can be re-randomized:

Enc(m, pk,r) @ Enc(0, pk,7') = (¢"*", g™ - pk"*"")
— (97-//7 gm . pkr’/) _ Enc(m,pk, 7"//)

for " :=r+1' mod |G|. Because 1’ is a uniformly random
number in {0, ..., |G|—1}, so is 7"’ and the result is perfectly
indistinguishable from a fresh encryption of m. Hence, this
scheme is randomizable according to Def. 3.

C. Correctness of ZeeStar

In Thm. 3, we provide a more formal version of Thm. 1.
Here, a state o is equivalent to a state & if both states include
the same contract fields, and the value of every field z in o is
equivalent to the value of z in &. By an inductive argument,
for any polynomial-length sequence of transactions on C' in
the empty starting state, with overwhelming probability there
exists a corresponding sequence of transactions on C'.

Theorem 3 (Correctness). Assume ZeeStar is instantiated with
a 7k-SNARG (Def. 4). Let C be the result of transforming
a well-typed contract C. For any equivalent states o, and
any transaction tx, with overwhelming probability: running
tx on C in starting state & is either rejected, or there exists
a transaction tx for the same function, sender and public
arguments as tx such that running tx on C in starting state
o results in state o' equivalent to the output state &' of tz.



Proof sketch. First, we prove that sk, and pk,, . inside the
proof circuit belong to the transaction sender with overwhelm-
ing probability. As the blockchain authenticates the sender of a
transaction (e.g., via a signature in Ethereum), the contract C'
ensures that pk,,., which is passed as a public input for proof
verification, belongs to the original sender. If the transaction is
accepted, the zk-SNARG is successfully verified by an honest
verifier. Therefore, by the computational soundness property,
a private input sk,,. such that ¢ is satisfied must exist with
overwhelming probability. As sk,,. is enforced to correspond
to pk,,. in ¢ (e.g., see Fig. lc), it is guaranteed to belong to
the original sender with overwhelming probability.

Given that sk,,. and pk,,, are correct, the correctness of
state updates follows from the computational soundness of
the zk-SNARG and inductive reasoning on the transformation
rules (Figs. 6-9), which ensure correctness by construction via
the constraint directives x =, e. L]

Malleability. Note that proof malleability is not a problem for
correctness, as the argument above only relies on the sound-
ness property. Further, impersonation attacks are prevented,
assuming the ledger requires all transactions to be signed by
skme corresponding to the sender’s public key pk,,,.. Then, an
adversary « trying to submit a tampered proof 7/ must sign it
with sk,. Thus, because the ledger forwards pk, as a public
input to 7/, 7’ is only accepted if it enforces correctness with
respect to pk,—thus defeating the purpose of tampering with
the proof in the first place.

D. Transaction Transformation

Let C be an input ZeeStar contract, and C the transformed
output contract. In order to call a function f on C in a
starting state &, a sender first assembles a transaction tx
for the input contract C', where ¢z indicates f, the sender
address sender[tx], and the arguments to f. Let 3 be the
CRS generated by the Setup algorithm of the zk-SNARG
system (see Def. 4), and pk a table mapping accounts to their
public keys. The sender runs Trx(C,7,tz, sksendeﬂm],E,pk)
as shown in Alg. 2 to create a transaction ¢z for C.

E. Privacy of ZeeStar

1) Privacy Definition.
Attacker Model. We consider an active PPT adversary stati-
cally corrupting a set of dishonest accounts .A. The adversary

can observe all transactions in the system, and send arbitrary
transactions in the name of accounts in A.

Observable Information. To formalize the information the
attacker is expected to learn, we define the observable ideal-
world trace to include the values of all (sub)expressions
which are public or owned by dishonest accounts .A. Here,
values owned by honest accounts b ¢ A are hidden from the
adversary and replaced by a placeholder [J. In the following,
let obs4(C,o,tz) denote the ideal-world trace observable
by the parties in A when a transaction tx is executed on
contract C' in the ideal-world state o. In Fig. 12, we visualize
the observable trace of an example expression for A = {a}.

Algorithm 2 Transforming Transactions

1: procedure T:x(C, G, tx, skme, 2, pk)

2: Initialize transaction ¢z for same function and sender as tx

3: Copy values of public arguments from tz to tz.

4: for each private argument with value v in tz do

5 r) to tx

6 for each argument arg introduced by Alg. 1 in C' do

7 Compute the value x of arg according to the rules in
Fig. 6, using skme to decrypt self-owned fields in & and
public keys in pk to encrypt values for other parties
Add z to tx

9: Use ¥ to generate the NIZK proof 7 and add 7 to tx

10: return tx

Add freshly encrypted argument Enc(v, pk(me),

o

In particular, the values of z and the multiplication expression
are hidden from the adversary because they are owned by bob.
For a formal definition of obs_4, we refer to [9, §4 and §6.2].

Real World. In Alg. 3, we define two algorithms. The

left (highlighted) parts define Reali, which models the ex-
ecution of a sequence of n transactions txj., on contract C
in the real world, assuming an idealized blockchain with per-
fect authentication of parties and transactions, and sequential
consistency. This protocol uses two sub-protocols P and &.

The PPT protocol P captures the behavior of honest ac-
counts. P.Init (Line 6) registers global configuration and keys,
and P.Tx(C,G;_1,tx;) (Line 13) transforms the transaction
tz; by calling Trx(C,;-1,tx;, sksender[t], 2> PK) (Alg. 2)
using the information previously received via P.Init.

The PPT protocol £ models the active adversary, which gets
access to the secret keys of dishonest accounts « € A (Line 7),
can craft arbitrary dishonest-sender transactions (Line 10), and
observes all transactions on the blockchain (Line 15). £.Decide
(Line 16) returns a value specifying whether £ believes to
interact with the real world, or a simulated world (see next).

Simulated World The right (highlighted) parts in Alg. 3

define Sim% A Thls algorlthm differs from Real in two
aspects. First, Slm A addltlonally keeps track of the ideal-
world states o; equivalent to the real-world states &; (see
Line 5 and Line 14). Here, o; is updated according to ideal-
world transactions tz;. For transactions tx; created by &,
tx; is constructed from tx; (see Line 11) as follows. If the
proof in tx; is invalid (determined by C, 7;_; and {E4}), an
invalid tx; < L is returned. Otherwise, the secret keys of the
adversary are used to decrypt self-owned function arguments
in tz; and obtain an equivalent ideal-world transaction tx;.

Second, the steps of honest accounts P are simulated by a
PPT protocol S, which does not get access to private informa-
tion of honest parties. In particular, S does not get access to
any secret keys (Line 6), and it obtains only observable ideal
world traces ¢ of transactions tx; (Line 13).

3 2 0O a
X + reveal(2 *x z, alice)

13 10 O

Fig. 12: Observable trace obs(,y of an example expression.



Algorithm 3 Reali(C’,twlm) and Simi’s(C,t:plm)

: Run ZeeStar to transform C to C

: For every proof circuit ¢ in C: (X4, 74) < Setup(¢)
: For every account «, generate a fresh key pair (pk,,,
: Collect all public keys in the mapping pk(«) — pk,,

1
2
3 ska)
4
5: Create the initial empty state 6o for C' and oo for C'
6
7
8

: P.Init(C, pk, {Ska}a€A7 {24)}) SInlt(C3 pk7 A’ {ECf’}? {T¢})
: EInit(C, pk, {ska taca, {Z6})

:fori=1,...,n do:

9: if sender(tz;] € A then
10: tr; <+ STX(C’7 5'2'_1)
11: tr; +— GetIdeal(tE:i,{E¢},C’, &i,l,{ska}aeA)
12: else

tr; P.TX(C, Oi—1, t:l’i) t <+ ObSA(O, Oi—1, twi)
13: _

tx; S.TX(C, Oi—1, t)

14: Run £z; on C_', o;—1 to get o; and tx; on C, o;—1 to get o;

15: & Notify(tx;)
16: return &.Decide()

Privacy. If S can be instantiated such that any adversary £
cannot distinguish whether it is interacting with real honest
parties (in Reali) or with simulated parties (in Simi’s), then
the system respects privacy. This is formalized in Thm. 4.

Theorem 4 (Privacy). Assume ZeeStar is instantiated with
a randomizable (Def. 3) and IND-CPA (Def. 2) encryption
scheme, and a zk-SNARG (Def. 4). Let C be a well-typed
ZeeStar contract and A any set of parties. Further, let tx.,
be any sequence of n transactions, where n is polynomial in
the security parameter. There exists a PPT protocol S* such
that for any PPT adversaries £,E', the following advantage
is negligible:

AdvE' (Real(C, tar.y), Sim5S (C,tar.,)).
2) Proof by Hybrid Argument.

Proof. Let C, A, and txy., as in Thm. 4. We next construct
PPT simulators S; for ¢ € {0,...,8}, following the ideas
of the symbolic proof in [9]. By defining &* := Sg, Thm. 4
follows from Lems. 1-9 below and the triangle inequality. [

The Simulator Sg. We define Sim+i’$ equal to Simi’s,

but where S.Init is additionally passed {skq}qo¢.4 in Line 6,
and S.Tx is additionally passed tx; in Line 13. Then,
we define Sy running P as a sub-protocol as follows.
So.Init(C, pk, A, {Eg}, {7}, {ska }aga) remembers {74}, A
and forwards the other arguments to P.init. Sq.Tx(C, 7, t, tx)
simply calls P.Tx(C, 7, tx), ignoring t.

Lemma 1. For any PPT adversaries £,&’, the advantage
Adv® (Realy (C, tx1.,), Sim+5; SO(C’ tT1.,)) = 0.

Proof. Straightforward, by construction. O

The Simulator S,. S is the same as Sy, but with the following
modification. Instead of executing Lines 2-3 in Alg. 2 (as part
of P.Tx), &7 reads the function, sender address, and values

of the public arguments from the observable trace t. This is
possible as these items are public and therefore available in .

Lemma 2. For any PPT adversarles E,E it s
Adv® (Slm+A’ SO (O, tar1m), Slm+ SUC, taym)) = 0.

Proof. By construction, both output the same distribution. [

The Simulator S5. S, is the same as Si, but we change the
behavior of Line 7 in Alg. 2 as follows.

Whenever S creates an encryption Ence(Tpain(e)) for a
dishonest party o € A due to the first case in rule (19), S,
does not call Tpj4in, but reads the plaintext value v of e from
the ideal-world trace ¢. As e is public, v occurs in ¢.

Similarly, whenever S; creates an  encryption
Enco(Tpuin(e)) for o € A due to Eq. (20), S» reads
the plaintext value v of e from the ideal-world trace ¢. As e
is revealed to o € A, v is visible in ¢.

Also, whenever S; calls Tpin due to the first case in Fig. 6,
8o reads the plaintext value v of e from the ideal-world trace ¢.
As e is revealed to the public, v occurs in t.

Finally, when processing the rule (22), S5 reads the plaintext
value v of e; from ¢. Again, as e; is public, v occurs in .

Lemma 3. For any PPT adversaries £,&’ the advantage
AdvE (Sim+551 (C, t.y,), Sim+ 5% (C, t1.,,)) is negligible.

Proof. By construction, the simulators S; and Sy output the
same distribution if the values v accessed as described above
are correct. By Thm. 3 (correctness) and because n is poly-
nomial, this is the case with overwhelming probability. O

The Simulator S3. Ss3 is the same as S, but we modify
Eq. (23) as follows. If a € A, then the value v; of e; is
revealed to the adversary (due to the reveal expression) and
hence available in the trace ¢. In this case, instead of calling
Tpiain in Sz, Sz reads vy from ¢.

Lemma 4. For any PPT adversarles E,E" the advantage
AdvE (Sim+55%2 (C, tar.,), Sim+ 5% (C, t1.,,)) is negligible.

Proof. By construction, the simulators Sz and Ss output the
same distribution if the values v, accessed as described above
are correct. By Thm. 3 (correctness) and because n is poly-
nomial, this is the case with overwhelming probability. O

The Simulator S4. S, is the same as Ss, but instead of
generating real proofs in Line 9 of Alg. 2, §; uses SimProof
(Def. 4) to generate simulated proofs from Y4 and 7.

Lemma 5. For any PPT adversaries &,&' it is:
AdvE (Sim+552 (O, tz1.,), Sim+ 554 (O, t21.,)) = 0.

Proof. Follows from the perfect zero-knowledge property
(Def. 4) of the zk-SNARG. O

The Simulator Ss. S5 is the same as S4, but instead of
encrypting v in Line 5 of Alg. 2, S5 encrypts the constant 0.
Lemma 6. For any PPT adversaries &,&’ the advantage

AdVE (Sim+ 554 (Ot ), SIm+ 55 (C, t1.0,)) is megligible.

Proof. Follows from the IND-CPA property (Def. 2) of the
encryption scheme (€ does not learn the secret key sk



of the sender), and the fact that n is polynomial. Note
that the introduced encryptions of 0 are never decrypted
in Sim+% I %%(C, ta1.,). Further, by the IND-CPA property,
SimProof in &4 and S5 return indistinguishable proofs, even
though its public input changes. O

The Simulator Sg. Sg is the same as S5, but we change the
behavior of Line 7 in Alg. 2 as follows.

First, the call to Tpi, in the second case of Fig. 6, is
replaced by the constant 0. That is, Sg simply computes
Enc(0, pk,,,., ;). Second, all calls to Enc, in Fig. 8 for honest
parties o ¢ A are replaced by fresh encryptions Enc(0, pk,,, )
of the constant 0.

Lemma 7. For any PPT adversaries E,& the advantage
AdvE (Sim+5%7 (C, t1.,), Sim+ 5% (C, t1.,)) is negligible.

Proof. Follows from the IND-CPA property (Def. 2) of
the encryption scheme (£ does not learn sk,,. or sk, for
any «a ¢ A), and the fact that n is polynomial. Again,
the introduced encryptions of 0 are never decrypted in
Sim+5% (C, ta1.0). O
The Simulator S;. S; is the same as Sg, but we modify
Eq. (23) as follows: If a ¢ A, S; computes Enc(0, pk,,, 7).

Lemma 8. For any PPT adversaries E,E" the advantage
AdvE (Sim+5% (C, ta1.y,), Sim+ 5% (C, t1.,,)) is negligible.

Proof. By the randomizability of the encryption scheme
(Def. 3), the simulators S; and Sg output a perfectly indis-
tinguishable distribution. O

The Simulator Sg. We finally define, for empty value 1,

Ss.Init(C, ..., {7p}) := S7.Init(C, ..., {7}, L)
Sg.Tx(C7 a,t) = S7.TX(C, a,t, L).

Lemma 9. For any PPT adversaries &,& it is:
AdvE (Sim+557(C, ta1.,), SIm% ™ (O t1.0,)) = 0.

Proof. All calls to Tppin have been removed in S7, making
rule (15) unreachable. Hence, S7 no longer accesses skqne.
Also, S7 no longer accesses txy.,. Therefore, the simulators
S7 and Sg output the same distribution. O

FE. Code of zether-confidential

1
2
3
4
5
6
7
8
9

39
40

42

pragma zeestar °1.0.0;

contract ZetherConfidential {

uint32 MAX = 4294967295;
uint EPOCH_SIZE = 1;

uint total;

mapping(address => uint) lastrollover;
mapping(address!x => uint32@x<+>) balance;
mapping(address!x => uint32@x<+>) pending;

constructor() public {

}

function fund() public payable {
rollover(me);
require(total + msg.value <= MAX);
balance[me] = balance[me] + uint32(msg.value);
total = total + msg.value;

}

function transfer(address to, uint32@me<+> val) public {
rollover(me);
rollover(to);
require(reveal(val <= balance[me], all));
balance[me] = balance[me] - val;
pending[to] = pending[to] + reveal(val, to);

}

function burn(uint32 val) public {
rollover(me);
require(reveal(val <= balance[me], all));
balance[me] = balance[me] - val;
msg.sender.transfer(val);
total = total - val;

}

function rollover(address y) internal {
uint e = block.number / EPOCH_SIZE;
if (lastrollover[y] < e) {
balance[y] = balance[y] + pendingly];
pendingly] =
lastrollover[y] = e;



	Introduction
	Background
	Non-interactive Zero-knowledge Proofs
	Additively Homomorphic Encryption

	Overview
	Compilation
	Combining NIZK Proofs and Homomorphic Encryption
	Privacy Type Analysis
	Contract Transformation
	Proof Circuit Construction
	Discussion

	Extensions
	Homomorphic Multiplication by Known Scalars
	Mixing Homomorphic and Non-homomorphic Schemes

	Implementation
	Efficient Cryptographic Operations
	ZeeStar for Ethereum

	Evaluation
	Example Contracts
	Compilation and Setup Performance
	Transaction Generation Performance
	Transaction Execution Gas Costs

	Related Work
	Conclusion
	References
	Appendix
	Security Definitions
	Properties of Exponential ElGamal Encryption
	Correctness of ZeeStar
	Transaction Transformation
	Privacy of ZeeStar
	Privacy Definition
	Proof by Hybrid Argument

	Code of zether-confidential


