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Problem

For which n ∈ Z+ is n! the sum of three squares?

n! = a2 + b2 + c2 for some a,b, c ∈ Z

In 2010, Deshouillers and Luca showed that the density of such n is
about 7/8:

J.Shallit, A. Zavyalov CIAA 2023 2 / 34



Problem

For which n ∈ Z+ is n! the sum of three squares?

n! = a2 + b2 + c2 for some a,b, c ∈ Z

In 2010, Deshouillers and Luca showed that the density of such n is
about 7/8:

J.Shallit, A. Zavyalov CIAA 2023 2 / 34



Problem

Using automata theory, we can exactly characterize the n for which
n! is a sum of three squares, and get better bounds.

Burns (2022) provided an ad hoc way to characterize such n using
automata theory, and provides better bounds for this problem:

We provide a more general and systematic procedure to
characterize this set and solve similar problems using transducers.
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What is Walnut?

We use Walnut to create and perform operations on automata
algorithmically.

Walnut:

Is an free and open-source software written in Java, originally
designed by Hamoon Mousavi.

Rigorously proves theorems about automatic sequences.

Has additions and changes by Aseem Raj Baranwal, Laindon C.
Burnett, Kai Hsiang Yang, and Anatoly Zavyalov.

Is available for free download at
https://cs.uwaterloo.ca/~shallit/walnut.html .
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Automatic sequences

A sequence (an)n≥0 over a �nite alphabet Σ is k-automatic if there
exists a deterministic �nite automaton with output (DFAO) that
reaches a state with output an upon reading an input of (n)k
(base-k representation of n).

For example, the Thue-Morse sequence

t= 0110100110010110 · · ·

is 2-automatic, generated by the following DFAO:

0 / 0

0

1 / 11
1

0
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Transducers

0

0 / 0

11 / 1
1 / 0

0 / 1

A (1-uniform deterministic �nite-state) transducer (transducer for
short) can be viewed as a DFA with an output function on each
transition.

Every transition has an output of a single symbol.

Unlike general models, the transducers we use are �nite-state,
deterministic, and output one symbol per transition.
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Transducer

The following transducer calculates the running sum (mod 2) of a
sequence:

t= 0110100110010110 · · ·


y

0

0 / 0

11 / 1
1 / 0

0 / 1



y

T (t) = 0100111011100100 · · ·
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Automatic sequences are closed under transduction

Dekking (1994): Automatic sequences are closed under
transduction.

Dekking provides a constructive proof, which is implemented
algorithmically into Walnut.
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�Transducing� an automaton

0 / 0

0

1 / 11
1

0

t= 0110100110010110 · · ·


y

0

0 / 0

11 / 1
1 / 0

0 / 1



y

T (t) = 0100111011100100 · · ·

(): transduce TSUM1 RUNSUM2 T;

0/0

0 1/1
1

2/0

0
3/0

1

4/1

0
5/11

6/1

0

7/0
1

0

1

01

0

1

0
1
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Back to the problem

We want to create an automaton that accepts the binary representation
of n ∈ N if and only if

n! = x2 + y2 + z2

for some x ,y , z ∈ Z.

J.Shallit, A. Zavyalov CIAA 2023 10 / 34



Legendre's three-square theorem

Legendre's three-square theorem

A natural number n ∈ N is a sum of three squares of integers

n = x2 + y2 + z2, for some x ,y , z ∈ Z

if and only if n is not of the form n = 4a(8b+ 7) for nonnegative
integers a and b.

Adrien-Marie Legendre
Credit: Wikipedia

J.Shallit, A. Zavyalov CIAA 2023 11 / 34



Binary representation of sums of three squares

A natural number n ∈ N is not a sum of three squares if and only if
n = 4a(8b+ 7) for nonnegative integers a,b.

So, n ∈ N is not a sum of three squares if and only if its binary
representation is of the form

(n)2 = · · ·
︸︷︷︸

∈{0,1}∗

111 00 · · · 00
︸ ︷︷ ︸

even # of 0's,
may be ϵ

.
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Cobham's observation

Cobham (1972) showed that the se-
quence of n that are sums of three
squares are 2-automatic!

Alan Cobham (1927-2011)
Credit: Je�rey Shallit
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Cobham's observation

0

0
1

1
0

2

1
0

3
1

1

4

0

1
50

1

0

The above DFA rejects (n)2 i� it is
of the form

(n)2 = · · ·
︸︷︷︸

∈{0,1}∗

111 00 · · · 00
︸ ︷︷ ︸

even # of 0's,
may be ϵ

,

so (n)2 is accepted i� n is a sum of
three squares.

Alan Cobham (1927-2011)
Credit: Je�rey Shallit
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Characterizing sums of three squares

Any n ≥ 1 can be written as

n = g(n) · 2ν2(n)

where g(n) is odd.

For example, 40= 5 · 23, so g(40) = 5 and ν2(40) = 3.

Easy to show: ν2(mn) = ν2(m) + ν2(n) for m,n ≥ 1.

=⇒ ν2(n!) =
n
∑

i=1

ν2(i)

g(n) mod 8 ∈ {1,3,5,7} for n ≥ 1 and g(mn)≡ g(m)g(n) (mod 8).

=⇒ g(n!)≡
n
∏

i=1

g(i) (mod 8)
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Characterizing sums of three squares

Let S3 be the set of natural numbers that are sums of three squares.

Let S = {n : n! ∈ S3} be the set of n such that n! is a sum of three
squares.

We have n /∈ S3 i� (n)2 = · · ·
︸︷︷︸

∈{0,1}∗

111 00 · · · 00
︸ ︷︷ ︸

even # of 0's,
may be ϵ

.

This is equivalent to ν2(n)≡ 0 (mod 2) and g(n)≡ 7 (mod 8).

Thus, n /∈ S if and only if ν2(n!) =
∑n

i=1 ν2(i)≡ 0 (mod 2) and
g(n!) =
∏n

i=1 g(i)≡ 7 (mod 8).
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In Walnut

De�ne the DFAO NU_MOD2, which generates the sequence
(ν2(n) mod 2)n≥1:

0/0

0

1/01

1

2/10
0, 1
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In Walnut

De�ne the DFAO G_MOD8, which generates the sequence
(g(n) mod 8)n≥1:

0/1

0

1/1

1 2/1

0

3/31

0

4/51

5/3
0

6/7

1
1

7/5
0

1

8/30

1

9/70

1

10/5

0

1 0

1

11/7

0

1

0

1

0
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In Walnut

De�ne the transducer RUNSUM2, which generates the running sum
mod 2:

0

0 / 0

11 / 1
1 / 0

0 / 1

De�ne the transducer RUNPROD1357, which generates the running
product mod 8:

0

1 / 1 1
3 / 3

2

5 / 5

3

7 / 7

3 / 1

1 / 3 7 / 5

5 / 7

5 / 1

7 / 3
1 / 5

3 / 77 / 1 5 / 3

3 / 5
1 / 7
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In Walnut

Now, transduce NU_MOD2 with RUNSUM2 to get the DFAO
NU_RUNSUM using the Walnut command

transduce NU_RUNSUM RUNSUM2 NU_MOD2;

0/0

0
1/0

1

2/1

0

3/11

0

1

0
1

NU_RUNSUM generates the sequence
��∑n

i=1 ν2(i)
�

mod 2
�

n≥1 = (ν2(n!) mod 2)n≥1.
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In Walnut

Next, transduce G_MOD8 with RUNPROD1357 to get the DFAO
G_RUNPROD with the Walnut command

transduce G_RUNPROD RUNPROD1357 G_MOD8;

0/1

0

1/1

1

2/1

0

3/3

1

4/30 5/7

1

1

6/5

0

0

7/31

8/7

0

9/5

1

1
10/7

0

11/3

0

12/1

1

1

13/5

0
1

0

1

0

0

14/5

1

0
1

0

1

0

15/7

1

0

1

G_RUNPROD is an 18-state DFAO that generates the sequence
��∏n

i=1 g(i)
�

mod 8
�

n≥1 = (g(n!) mod 8)n≥1.
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In Walnut

Lastly, we generate the �nal automaton that accepts S using the
characterization that

n ∈ S i� ν2(n!)≡ 1 (mod 2) or g(n!) ̸≡ 7 (mod 8),

which is directly translated into the Walnut command
def nfac_in_s "(NU_RUNSUM[i] = @1) | ∼(G_RUNPROD[i] = @7)";

0

0
1

1

2
0

3

1

4

0

51

60

7

1

0

81

9

0

101

11

0

12

1

1

13

0

14

0 15

1

1

16

0

17

0

181

0

19
1

0

20

1
1

21

0

0

22

1

1

23

0

0

1

24

0

25

1

1

0

1

0

0

1

1

0

0

26

1

270
28

1
0

1

0

291 1

30

0

1

0

1

0

0

1

1

310

1
0

This 32-state DFA accepts (n)2 if and only if n! is a sum of three
squares.
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Complexity of Dekking's algorithm

The resulting automaton after applying Dekking's transduction
algorithm has an astronomical worst-case state complexity (before

minimization) of ≤ |Q| · |V |2·|V |
|Q|·|V |+1

, where Q and V are the
number of states in the initial automaton and transducer,
respectively.

However, this complexity very rarely occurs in practice, with all
computations taking at most a few seconds to run.
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Transducing Fibonacci-automatic sequences
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Transducing Fibonacci-automatic sequences

So far, we have only been transducing k-automatic sequences,
which are generated by DFAOs that read (n)k .

We can de�ne more general automatic sequences such as
Fibonacci-automatic sequences, which read in Fibonacci
representations (n)�b.

We showed that Fibonacci-automatic sequences can also be
transduced using Dekking's algorithm.
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Fibonacci representations

De�ne F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

The Fibonacci representation of an integer n ≥ 0 is
(n)�b = dtdt−1 · · ·d1d0, where n =

∑t
i=0 diFi+2 and di ∈ {0,1} with

no two consecutive 1s.

Every integer can be uniquely written in this way.

For example, (14)�b = 100001, as
14= 1 · 13+ 0 · 8+ 0 · 5+ 0 · 3+ 0 · 2+ 1 · 1.
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Fibonacci-Thue-Morse sequence

Consider the Fibonacci-Thue-Morse sequence (ftm[n])n≥0, where
ftm[n] is the sum (mod 2) of the digits of (n)�b:

ftm= 01110100100011000101 · · ·

The sequence ftm is Fibonacci-automatic, i.e. there is a �nite
automaton M with output that computes ftm[n] on input the
Fibonacci representation of n:

0/0

0
1/11 2/10

0

3/0

1
0

M is only de�ned on valid Fibonacci representations, i.e., binary
strings with no consecutive 1s.
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Transducing Fibonacci-Thue-Morse

We will create an automaton that computes the running XOR of
ftm using Dekking's transduction algorithm.

Here is our XOR transducer, which computes the XOR of
consecutive bits:

0

10/0
2

1/0

0/0

1/1

0/1

1/0
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Transducing Fibonacci-Thue-Morse

We add a �dead state� to M along with a special output #, giving
a new DFAO M ′:

0/0

0
1/11 2/10

#/#

1

0

3/01

0

1

0, 1

The sequence computed by M ′ is

ftm′ = 011#10##100#####1 · · · ,

which is now a 2-automatic sequence.
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Transducing Fibonacci-Thue-Morse

We similarly create an extension T ′ of T such that upon reading #, it
outputs # and not change state:

0

#/#
10/0

2
1/0

0/0, #/#

1/1

0/1

1/0, #/#
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Transducing Fibonacci-Thue-Morse

We can now transduce ftm′ with T ′:

ftm′ = 011#10##100#####1 · · ·


y

0

#/#
10/0

2
1/0

0/0, #/#

1/1

0/1

1/0, #/#



y

T ′(ftm′) = 010#01##110#####1 · · ·

Removing the #s gives us our desired sequence T (ftm) = 010011101 · · ·.
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Transducing Fibonacci-Thue-Morse

Walnut automatically does all of this under the hood, so only one
command is needed:

transduce FTMXOR XOR FTM:

0/0

0

1/11

2/00

1

3/0

0

1

4/1

0
1 5/10

1

0

This automaton computes T (ftm), the running XOR of ftm.
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Future Work

More generalized transducers can be implemented into Walnut.
Schae�er (2013) provides a transducer model that allows
transduction of arbitrary factors of automatic sequences.

Explicit characterization of automata computing iterated running
sums of the Thue-Morse sequence. So far, we explicitly characterize
the 2n-fold running sums of Thue-Morse in our full paper.

The �rst 512 iterated running sums of the Thue-Morse sequence.
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Thank you!
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