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For which n€ Z™ is n! the sum of three squares?
nl=a’+b%>+c? for some a,b,c€Z

In 2010, Deshouillers and Luca showed that the density of such n is
about 7/8:

How Often is n! a Sum of Three Squares?

Jean-Mare Deshouillers and Florian Luca

Theorem 1. The estimate
#n < x:nlisa sum of three squares} = Tx/8 + O(x2/3)

frodds.
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e Using automata theory, we can exactly characterize the n for which
n!is a sum of three squares, and get better bounds.
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e Using automata theory, we can exactly characterize the n for which
n!is a sum of three squares, and get better bounds.

@ Burns (2022) provided an ad hoc way to characterize such n using
automata theory, and provides better bounds for this problem:
Factorials and Legendre’s three-square theorem: 11

Rob Burns
31st March 2022

Abstract

Let S denote the set of integers n such that n! cannot be written as a sum
of three squares. Let S(n) denote SN [1,n]. We establish an exact formula for
5(2*) and show that S(n) = 1/8 + n + O(y/n). We also list the lengths of gaps
appearing in S. We make use of the software package Walnut to establish these
results.
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e Using automata theory, we can exactly characterize the n for which
n!is a sum of three squares, and get better bounds.

@ Burns (2022) provided an ad hoc way to characterize such n using
automata theory, and provides better bounds for this problem:
Factorials and Legendre’s three-square theorem: 11

Rob Burns
31st March 2022

Abstract

Let S denote the set of integers n such that n! cannot be written as a sum
of three squares. Let S(n) denote SN [1,n]. We establish an exact formula for
5(2*) and show that S(n) = 1/8 + n + O(y/n). We also list the lengths of gaps
appearing in S. We make use of the software package Walnut to establish these
results.

@ We provide a more general and systematic procedure to
characterize this set and solve similar problems using transducers.
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What is Walnut?

We use Walnut to create and perform operations on automata
algorithmically.
Walnut:

@ Is an free and open-source software written in Java, originally
designed by Hamoon Mousavi.

@ Rigorously proves theorems about automatic sequences.

e Has additions and changes by Aseem Raj Baranwal, Laindon C.
Burnett, Kai Hsiang Yang, and Anatoly Zavyalov.

@ Is available for free download at
https://cs.uwaterloo.ca/"shallit/walnut.html .
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Automatic sequences

@ A sequence (a,),=q over a finite alphabet % is k-automatic if there
exists a deterministic finite automaton with output (DFAO) that
reaches a state with output a, upon reading an input of (n),
(base-k representation of n).
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Automatic sequences

@ A sequence (a,),=q over a finite alphabet % is k-automatic if there
exists a deterministic finite automaton with output (DFAO) that
reaches a state with output a, upon reading an input of (n),
(base-k representation of n).

@ For example, the Thue-Morse sequence
t=0110100110010110---

is 2-automatic, generated by the following DFAQ:

0 0
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Transducers

@ A (1-uniform deterministic finite-state) transducer (transducer for
short) can be viewed as a DFA with an output function on each
transition.
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Transducers

@ A (1-uniform deterministic finite-state) transducer (transducer for

short) can be viewed as a DFA with an output function on each
transition.

@ Every transition has an output of a single symbol.
@ Unlike general models, the transducers we use are finite-state,
deterministic, and output one symbol per transition.
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Transducer

The following transducer calculates the running sum (mod 2) of a
sequence:
t=0110100110010110---

T(t) =0100111011100100- -
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Automatic sequences are closed under transduction

o Dekking (1994): Automatic sequences are closed under
transduction.

Iteration of maps by an automaton

F.M. Dekking

Department of Mathematics and Informatics, Delft University of Technology, Mekelweg 4, 2628 CD
Delft, Netherlands

Received 2 August 1991

Theorem A. If x is g-automatic, then z=(@x, . 1) is g-automatic.
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Automatic sequences are closed under transduction

o Dekking (1994): Automatic sequences are closed under
transduction.

Iteration of maps by an automaton

F.M. Dekking

Department of Mathematics and Informatics, Delft University of Technology, Mekelweg 4, 2628 CD
Delft, Netherlands

Received 2 August 1991
Theorem A. If x is g-automatic, then z=(@x, . 1) is g-automatic.

@ Dekking provides a constructive proof, which is implemented
algorithmically into Walnut.
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“Transducing’ an automaton

0 0

& &
1
D=0
t=0110100110010110---

l

0/0 0/1
. .
o 1/1 °

~1/0

T(t)=0100111011100100---
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Back to the problem

We want to create an automaton that accepts the binary representation
of neN if and only if

nl = x? 4 y? + 72

for some x,y,z € Z.
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Legendre's three-square theorem

Legendre's three-square theorem

A natural number n €N is a sum of three squares of integers
222
n=x°+y-+z°, for some x,y,z€7Z

if and only if n is not of the form n=47(8b+ 7) for nonnegative
integers a and b.

Adrien-Marie Legendre
Credit: Wikipedia

J.Shallit, A. Zavyalov CIAA 2023 11/34



Binary representation of sums of three squares

@ A natural number n € N is not a sum of three squares if and only if
n=4%(8b+7) for nonnegative integers a, b.
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Binary representation of sums of three squares

@ A natural number n € N is not a sum of three squares if and only if
n=4%(8b+7) for nonnegative integers a, b.

@ So, neN is not a sum of three squares if and only if its binary
representation is of the form

(n)y= --- 111 00---00 .
—~— —_—

€{0,1}* even # of O's,
may be ¢
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Cobham’s observation

Cobham (1972) showed that the se-
quence of n that are sums of three
squares are 2-automatic!

Example 8. Sums of three squares. A natural number can be represented
as the sum of three perfect squares if and only if it is not representable in the
from 4"(8k +7), k, n e N [28, Chapter XIII]. A number is not representable in
the form 4"(8k+7) if and only if its binary representation does not terminate
with three successive 1’s followed by an even number of 0’s. Using this observa-
tion, we can construct an automaton which recognizes the set of sums of three
squares. This automaton has six states, a transition function & defined by the
table

B | si S, 53 S S5 Se

0 5y 8§ 5y S5 S S5

1 5y §3 A 54 5y S

and the set of designated states F; = {5, 5,, 53, S5}~

J.Shallit, A. Zavyalov

Alan Cobham (1927-2011)
Credit: Jeffrey Shallit
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Cobham’s observation

The above DFA rejects (n), iff it is
of the form

(n)y= -+~ 111 00---00,
—~— —_——

SO e oS Alan Cobham (1927-2011)

Credit: Jeffrey Shallit
so (n), is accepted iff nis a sum of
three squares.
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Characterizing sums of three squares

@ Any n>1 can be written as
n= g(n) . 21’2(")

where g(n) is odd.
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Characterizing sums of three squares

@ Any n>1 can be written as

n= g(n) . 21’2(")
where g(n) is odd.
o For example, 40 =5-23, so g(40) =5 and v,(40) = 3.
@ Easy to show: v,(mn) = v,(m)+ v,(n) for m,n>1.

= wp(nt) = > (i)
i=1

e g(n)mod8€{1,3,5,7} for n>1 and g(mn) = g(m)g(n) (mod 8).
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Characterizing sums of three squares

@ Any n>1 can be written as

n= g(n) . 21’2(")
where g(n) is odd.
o For example, 40 =5-23, so g(40) =5 and v,(40) = 3.
@ Easy to show: v,(mn) = v,(m)+ v,(n) for m,n>1.

= wp(nt) = > (i)
i=1

e g(n)mod8€{1,3,5,7} for n>1 and g(mn) = g(m)g(n) (mod 8).

n

= g(n) =\ |g(i) (mod8)
i=1
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Characterizing sums of three squares

@ Let S3 be the set of natural numbers that are sums of three squares.
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Characterizing sums of three squares

@ Let S3 be the set of natural numbers that are sums of three squares.
@ Let S={n:n! € S3} be the set of n such that n! is a sum of three
squares.
e We have n¢ S3 iff (n),= --- 111 00---00 .
- N

€{0,1}* even # of 0's,
may be ¢

e This is equivalent to v,(n) =0 (mod 2) and g(n) =7 (mod 8).
@ Thus, n¢ S if and only if v,(n!)=3>""_, v5(i/) =0 (mod 2) and
g(n)=T1"_,8(i)=7 (mod 8).
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Define the DFAO NU_MOD2, which generates the sequence
(v2(n) mod 2) 51
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Define the DFAO G_MODS8, which generates the sequence
(g(n) mod 8) >
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@ Define the transducer RUNSUM2, which generates the running sum
mod 2:
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@ Define the transducer RUNSUM2, which generates the running sum
mod 2:

@ Define the transducer RUNPROD1357, which generates the running
product mod 8:

5/5
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@ Now, transduce NU_MOD2 with RUNSUM2 to get the DFAO
NU_RUNSUM using the Walnut command

transduce NU_RUNSUM RUNSUM2 NU_MOD2;
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@ Now, transduce NU_MOD2 with RUNSUM2 to get the DFAO
NU_RUNSUM using the Walnut command

transduce NU_RUNSUM RUNSUM2 NU_MOD2;

e NU_RUNSUM generates the sequence
((27:1 vz(i)) mod 2)n21 = (vo(n!) mod 2) 1.
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@ Next, transduce G_MOD8 with RUNPROD1357 to get the DFAO
G_RUNPROD with the Walnut command

transduce G_RUNPROD RUNPROD1357 G_MODS8;
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@ Next, transduce G_MOD8 with RUNPROD1357 to get the DFAO
G_RUNPROD with the Walnut command

transduce G_RUNPROD RUNPROD1357 G_MODS8;

@ G_RUNPROD is an 18-state DFAO that generates the sequence
((l—[:?:lg(i)) mod 8)n21 = (g(n!) mod 8),5 ;.
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o Lastly, we generate the final automaton that accepts S using the
characterization that
ne S iff vy(n!)=1 (mod 2) or g(n!) #7 (mod 8),
which is directly translated into the Walnut command
def nfac_in_s "(NU_RUNSUM[i] = @1) | ~(G_RUNPROD[i] = @7)";
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o Lastly, we generate the final automaton that accepts S using the
characterization that
ne S iff vy(n!)=1 (mod 2) or g(n!) #7 (mod 8),
which is directly translated into the Walnut command
def nfac_in_s "(NU_RUNSUM[i] = @1) | ~(G_RUNPROD[i] = @7)";

@ This 32-state DFA accepts (n), if and only if n! is a sum of three
squares.
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Complexity of Dekking's algorithm

@ The resulting automaton after applying Dekking's transduction
algorithm has an astronomical worst-case state complexity (before
minimization) of < |Q|- [V[2IVI*"""™" 'where @ and V are the
number of states in the initial automaton and transducer,
respectively.

@ However, this complexity very rarely occurs in practice, with all
computations taking at most a few seconds to run.

J.Shallit, A. Zavyalov CIAA 2023 23 /34



Transducing Fibonacci-automatic sequences
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Transducing Fibonacci-automatic sequences

@ So far, we have only been transducing k-automatic sequences,
which are generated by DFAOs that read (n),.

@ We can define more general automatic sequences such as
Fibonacci-automatic sequences, which read in Fibonacci
representations (n)gp-

@ We showed that Fibonacci-automatic sequences can also be
transduced using Dekking's algorithm.
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Fibonacci representations

@ Define Fpb=0, F;=1,and F,=F,_; + F,_p for n>2.
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e The Fibonacci representation of an integer n>0 is
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no two consecutive 1s.
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Fibonacci representations

@ Define Fpb=0, F;=1,and F,=F,_; + F,_p for n>2.

e The Fibonacci representation of an integer n>0 is
(n)ip = dpdy_y -+ dydy, where n=Y_  diFiy and d; € {0,1} with
no two consecutive 1s.

@ Every integer can be uniquely written in this way.

e For example, (14)g, = 100001, as
14=1-13+0-840-54+0-3+0-2+1-1.
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Fibonacci-Thue-Morse sequence

o Consider the Fibonacci- Thue-Morse sequence (ftm[n]),>o, where
ftm[n] is the sum (mod 2) of the digits of (n)gp:

ftm =01110100100011000101 - - -
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Fibonacci-Thue-Morse sequence

o Consider the Fibonacci- Thue-Morse sequence (ftm[n]),>o, where
ftm[n] is the sum (mod 2) of the digits of (n)gp:

ftm =01110100100011000101 - - -

@ The sequence ftm is Fibonacci-automatic, i.e. there is a finite
automaton M with output that computes ftm[n] on input the
Fibonacci representation of n:

@ M is only defined on valid Fibonacci representations, i.e., binary
strings with no consecutive 1s.
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Transducing Fibonacci-Thue-Morse

@ We will create an automaton that computes the running XOR of
ftm using Dekking’s transduction algorithm.

@ Here is our XOR transducer, which computes the XOR of
consecutive bits:
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Transducing Fibonacci-Thue-Morse

o We add a “dead state” to M along with a special output #, giving
a new DFAO M’:

@ The sequence computed by M’ is

ftm’ = 0114104 #100#F#HHHL -,

which is now a 2-automatic sequence.
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Transducing Fibonacci-Thue-Morse

We similarly create an extension T’ of T such that upon reading #, it
outputs # and not change state:

0/0, #/#

1/0, #/#
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Transducing Fibonacci-Thue-Morse

We can now transduce ftm’ with 7:

ftm’ = 0114104 #1004 #4441 -

!

0/0, #/#

T/(ftm’) = 0L0A01 4 A 1104 H#HHH1L - -
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Transducing Fibonacci-Thue-Morse

We can now transduce ftm’ with 7:

ftm’ = 0114104 #1004 #4441 -

!

0/0, #/#

T/(ftm’) = 0L0A01 4 A 1104 H#HHH1L - -
Removing the #s gives us our desired sequence T(ftm)=010011101---
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Transducing Fibonacci-Thue-Morse

Walnut automatically does all of this under the hood, so only one
command is needed:

transduce FTMXOR XOR FTM:

This automaton computes T(ftm), the running XOR of ftm.

J.Shallit, A. Zavyalov CIAA 2023 32/34



Future Work

@ More generalized transducers can be implemented into Walnut.
o Schaeffer (2013) provides a transducer model that allows
transduction of arbitrary factors of automatic sequences.

@ Explicit characterization of automata computing iterated running
sums of the Thue-Morse sequence. So far, we explicitly characterize
the 2"-fold running sums of Thue-Morse in our full paper.

The first 512 iterated running sums of the Thue-Morse sequence.
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Thank you!
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