Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 ... more Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are mai...
We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy sa... more We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy samples were studied from localities extending from Mexico and Florida, through Central America, the West Indies, and tropical South America, down to South Brazil. At least several hundred, and often several thousand, genomes were sampled for each locus. We have discovered a great deal of
Genetic variability and the distribution of this variability was examined in two size classes (1 ... more Genetic variability and the distribution of this variability was examined in two size classes (1 to 2 mm and 9 to 10 cm valves) of the mussel Mytilus californianus. Marked homozygote excess was observed at two polymorphic loci (Lap and Pgi), and the excess was far greater in juveniles than in adults. It is suggested that both the homozygote excess
We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy sa... more We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy samples were studied from localities extending from Mexico and Florida, through Central America, the West Indies, and tropical South America, down to South Brazil. At least several hundred, and often several thousand, genomes were sampled for each locus. We have discovered a great deal of genetic variation. On the average, 58% loci are polymorphic in a given population. (A locus is considered polymorphic when the frequency of the most common allele is no greater than 0.95). An individual fly is heterozygous, on the average, at 18.4% loci.-Concerning the pattern of the variation, the most remarkable finding is the similarity of the configuration of allelic frequencies from locality to locality throughout the distribution of the species. Our observations support the conclusion that balancing natural selection is the major factor responsible for the considerable genetic variation observed in D. willistoni.
Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 ... more Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are mai...
We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy sa... more We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy samples were studied from localities extending from Mexico and Florida, through Central America, the West Indies, and tropical South America, down to South Brazil. At least several hundred, and often several thousand, genomes were sampled for each locus. We have discovered a great deal of
Genetic variability and the distribution of this variability was examined in two size classes (1 ... more Genetic variability and the distribution of this variability was examined in two size classes (1 to 2 mm and 9 to 10 cm valves) of the mussel Mytilus californianus. Marked homozygote excess was observed at two polymorphic loci (Lap and Pgi), and the excess was far greater in juveniles than in adults. It is suggested that both the homozygote excess
We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy sa... more We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy samples were studied from localities extending from Mexico and Florida, through Central America, the West Indies, and tropical South America, down to South Brazil. At least several hundred, and often several thousand, genomes were sampled for each locus. We have discovered a great deal of genetic variation. On the average, 58% loci are polymorphic in a given population. (A locus is considered polymorphic when the frequency of the most common allele is no greater than 0.95). An individual fly is heterozygous, on the average, at 18.4% loci.-Concerning the pattern of the variation, the most remarkable finding is the similarity of the configuration of allelic frequencies from locality to locality throughout the distribution of the species. Our observations support the conclusion that balancing natural selection is the major factor responsible for the considerable genetic variation observed in D. willistoni.
Uploads
Papers by Martin Tracey