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Abstract

By a metric-like space, as a generalization of a partial metric space, we mean a pair
(X,0), where X is a nonempty set and o : X x X — R satisfies all of the conditions of a
metric except that o (x,x) may be positive for x € X. In this paper, we initiate the fixed
point theory in metric-like spaces. As an application, we derive some new fixed point
results in partial metric spaces. Our results unify and generalize some well-known
results in the literature.
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1 Introduction and preliminaries
There exist many generalizations of the concept of metric spaces in the literature. In par-
ticular, Matthews [1] introduced the notion of a partial metric space as a part of the study of
denotational semantics of dataflow networks, showing that the Banach contraction map-
ping theorem can be generalized to the partial metric context for applications in program
verification. After that, fixed point results in partial metric spaces were studied by many
other authors [2—11]. In this paper, we first introduce a new generalization of a partial met-
ric space which is called a metric-like space. Then, we give some fixed point results in such
spaces. Our fixed point theorems, even in the case of partial metric spaces, generalize and
improve some well-known results in the literature.

In the rest of this section, we recall some definitions and facts which will be used

throughout the paper.

Definition 1.1 A mapping p: X x X — R*, where X is a nonempty set, is said to be a
partial metric on X if for any %, y,z € X, the following four conditions hold true:

(P1) x =y ifand onlyif p(x,x) = p(y,y) = p(x,y);

(P2) p(x,x) < p(x,y);

(P3) plx,y) = p(y,%);

(P4) p(x,z) < p(x,y) + p(y,2) = p(>7)-

The pair (X, p) is then called a partial metric space. A sequence {x,} in a partial metric
space (X, p) converges to a point x € X if lim,_, o, p(x,, %) = p(x,x). A sequence {x,} of ele-
ments of X is called p-Cauchy if the limit lim,, ,—, oo p(%,,, %,,) exists and is finite. The partial
metric space (X, p) is called complete if for each p-Cauchy sequence {x,}32,, there is some
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x € X such that

lim p(x,,x) = p(x,x) = lim  p(x,,x,).
A basic example of a partial metric space is the pair (R*, p), where p(x, y) = max{x, y} for
all x,y € R*. For some other examples of partial metric spaces see [1-11] and references
therein.

2 Main results

We first introduce the concept of a metric-like space.

Definition 2.1 A mappingo : X x X — R*, where X is a nonempty set, is said to be metric-
like on X if for any x,y,z € X, the following three conditions hold true:

(01) olxy)=0=>x=y;
(02) o(x,y) =0 (®,%);
(03) ox,2) <oxy) +0(y2).

The pair (X, o) is then called a metric-like space. Then a metric-like on X satisfies all of
the conditions of a metric except that o (x,x) may be positive for x € X. Each metric-like
o on X generates a topology 7, on X whose base is the family of open o -balls

B,(x,¢€) = {yeX: |a(x,y) —a(x,x)| < 8}, for allx € X and ¢ > 0.

Then a sequence {x,} in the metric-like space (X, o) converges to a point x € X if and only
if lim,,_, o0 0 (%5, %) = 0 (%, %).

Let (X,0) and (Y, 7) be metric-like spaces, and let f : X — X be a continuous mapping.
Then

lim x, =60 = nler;of(xn) =f(x).

n—00

A sequence {x,};°, of elements of X is called o-Cauchy if the limit lim,, ,,—, oo 0 (%, %)
exists and is finite. The metric-like space (X, o) is called complete if for each o -Cauchy
sequence {x,}5°, there is some x € X such that

lim o(x,,x) =o(x,x)= lim o (x,,,x%,).
n— 00 m,n— 00

Every partial metric space is a metric-like space. Below we give another example of a
metric-like space.

Example 2.2 Let X = {0,1}, and let

2 ifx=y=0,
o(xy) =
1 otherwise.

Then (X,0) is a metric-like space, but since o(0,0) £ o(0,1), then (X, o) is not a partial
metric space.
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Remark 2.3 Let X = {0,1}, let o(x,y) =1 for each x,y € X, and let x,, = 1 for each n € N.
Then it is easy to see that x, — 0 and x, — 1, and so in metric-like spaces the limit of a

convergent sequence is not necessarily unique.

Some slight modifications of the proof of Theorem 2.1 in [12] yield the following result

which is a generalization of the well-known fixed point theorem of Ciri¢ [13].

Theorem 2.4 Let (X, 0) be a complete metric-like space, and let T : X — X be a map such
that

o (Ix, Ty) < ¥ (M(x,)),
forall x,y € X, where
M(x,y) = max{a(x,y), o(x, Tx), o (y, Ty), 0 (x, Ty),0 (y, Tx), 0 (x, x),a(y,y)},
where ¥ : [0,00) — [0, 00) is a nondecreasing function satisfying
v(t)<t forallt>0, Slilg Y(s)<t forallt>0 and tl_i)rgo(t— 1//(t)) = 00.
Then T has a fixed point.
Proof Let x¢ € X be arbitrary, and let x,,,; = Tx, for n € {0,1,2,...}. Denote
O(xg,n) = {Txo, Tx1,..., Tx,} and O(xg) = {Txo, Tx1,..., TXy,...}.
First we show that O(xy) is a bounded set. We shall show that for each n € N,

8n(x0) = diam(O(xo, n)) = o (Tx0, Txx), 1)

where k = k(n) € {0,1,2,...,n}. Suppose, to the contrary, that there are positive integers
1 <i(n) =i <j = j(n) such that

8u(x0) = o (Tx;, Tx;) > 0.
From our assumption, we have

M (x;, %))
= max{o (%, %)), 0 (%, Tx;), 0 (x5, Txy), o (x;, Ty),
o (%), Tx), 0 (i, %:), 0 (%7, %) }
= max{o (Txi_1, Txj1), 0 (Txi1, Txi), 0 (T, T;),
o (Txi-1, Tx;), 0 (Txj-1, Tx;), 0 (Txio1, Tica), 0 ( Ty, Thjoa) }

= (Sn(xO)-
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Thus, from the above and the contractive condition on T, we have

8u(x0) = o (Tx;, Tx;)
< ¥ (max{o (x;, %)), 0 (%, Tx:), 0 (%), Tx;y),
o (x;, Txp), 0 (%), Tx;), 0 (%4, %;), a(x,-,xj)})

< ¥ (84(%0)) < 8u(xo),

a contradiction. Thus, (1) holds. Since by the triangle inequality,

o (Txo, Txy) < o (Txg, Tx1) + o (Tx1, Txy),
then from (1)

8u(x0) < o (Txo, Tx1) + o (T, Txy). (2)
From our assumption on 7', we have

o (Tx1, Tox) < 9 (M(x1,%0)) < ¥ (84 (x0)).
Now by (2),

8n(x0) < o (Txo, Tx1) + ¥ (84(x0))-
Hence,

(I = ¥)(8n(x0)) < 0 (Txo, Tx1), 3)

where [ is the identity map. Since the sequence {§,(xo)} is nondecreasing, there exists
lim,—, o6 8, (x0). Suppose that lim,,_, o 8,(x0) = 0. Then from (3), we get

lim (t - w(t)) = lim (8,,(x0) - w((S,,(xo))) < o (Txg, Tx1) < 00,

t—00 n—00
a contradiction. Therefore, lim,,_, , §,,(xg) = §(x0) < 00, that is,

8(x0) = diam({Txo, Tx1, ..., T, ...}) < 00. (4)
Now we show that {x,} is a o -Cauchy sequence. Set

8(x,) = diam({Tx, Topi1,...}).
Since §(x,) < 8(x), then by (4) we conclude that {§(x,)} is a nonincreasing finite nonneg-
ative number and so it converges to some § > 0. We shall prove that § = 0. Let » € N be

arbitrary, and let r, s be any positive integers such that r,s > n + 1. Then Tx, 1, Tx; ; €
{Tx,;, Tx,.1, ...} and hence we conclude that M(x,,x;) < 8(x,,). Then

o (Txy, Trg) < ¥ (M, x5)) < 9 (8(x)).
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Hence, we get
8(xy41) = sup{a(Tx,, Txs):r,s>n+ 1} < lp(S(x,,)).
Hence, as § < §(x,) foralln > 0, § < ¥ (8(x,,)). Suppose that § > 0. Then we get
§ < lim w(é(xn)) = lim ¥ (s) <6,
n—00 s—8t
a contradiction. Therefore, § = 0. Thus, we have proved that
lim diam({Tx,,, Txpi1s-- .}) =0.
n— 00

Hence, from the triangle inequality, we conclude that {x,,,; = Tx,} is a 0 -Cauchy sequence.

By the completeness of X, there is some u € X such that lim,_,~ Tx, = u, that is,
lim o(Tx,, u) =o(u,u) = lim o(Tx,, Tx,,) = 0.
n—oQ m,n— 00
We show that Tu = u. Suppose, by way of contradiction, that o (Tu, u) > 0. Then we have

U(Tu: M) = O(M, Txn+1) + U(Tu) Txn+l)

<o (u, Txy) + W(M(u, xn+1))r (5)
where

M(u, %p41)
= max{o (s, %411), 0 (1, Tu), 0 (%41, Ts1),
0 (1, Tpi1), 0 (X1, Te), 0 (1, 1), 0 (K41, K1) }
= max{a(u, Tx,), 0 (1, Tu), o (Tx,, Txp.1),

G(u, Txn+1)r G(Txnr Tu)r U(M, u)r O(Txm Txn) } .
From the triangle inequality, we have
|a(Tu, Tx,41) — o (Tu, u)| <o (u,Txp1) — 0 asn— oco.

Thus, lim,_, o 0 (Tu, Tx,,1) = 0 (Tu, u). Since lim,_, o, o (&, Tx,,) = 0, lim,_, o 0 (Tx,, Tu) =

0 (Tu, u), for large enough #, we have
M1, %,41) = max{a(u, Tu), o (Tx,, Tu)}.
If M(u,x,41) = 0 (1, Tur), then from (5), we get

o (Tu,u) < o (u, Txper) + V¥ (0 (Tu, u)).
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Letting # tend to infinity, we get
0<o(Tu,u) < 1//((7(Tu, u)) <o (Tu,u),
a contradiction. If M(u,x,,.1) = o (Tx,, Tu), then we have
o (Txy, Tu) = M(1,%411) = 0 (Tu, u),

and so o (Tx,, Tu) — o (Tu,u)*. Then from (5) and our assumptions on yr, we get o (Tu, u) <

o (Tu, u), a contradiction. Thus, o (Tu,u) = 0 and so Tu = u. O

Example 2.5 Let v, (¢) = kt for each ¢ € [0, 00), where k € [0,1), and let ¥, (£) = £ —In(1 +£)
for each ¢ € [0,00). Then v, and ¥, satisfy the conditions of Theorem 2.4.

Now we illustrate our previous result by the following example.

Example 2.6 Let X ={0,1,2}. Define 0 : X x X — R, as follows:

0(0,00=0, oLD=3  o(22)=1 0(0,1)=0(1,0)=7

0(0,2)=0(2,0) =3, 0(1,2)=0(2,1) = 4.

Then (X, 0) is a complete metric-like space. Note that o is not a partial metric on X be-

cause
0(0,1) £0(0,2) +0(2,1) -0 (2,2).
Define the map T : X — X by
T0=0, T1=2, and T2=0.
Then
3 3
o(Tx, Ty) < Za(x,y) < EM(’W)’

for each x,y € X. Then all the required hypotheses of Theorem 2.4 are satisfied. Then T

has a unique fixed point.

Theorem 2.7 Let (X,0) be a complete metric-like space, and let T : X — X be a map such
that

o(Tx, Ty) < o (%,9) - (0 (x,9)),

forallx,y € X, where ¢ : [0,00) — [0, 00) is a nondecreasing continuous function such that
@(¢) =0 ifand only ift = 0. Then T has a unique fixed point.
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Proof Let xy € X and define x,,,1 = Tx,, for n > 0. Then by our assumption,
0 (%41, %n42) = 0 (T, Thns1) < 0 (% X1) — (0 (X Xn41)) (6)

for each n € N. Then {0 (x,,%,,1)} is a nonnegative nonincreasing sequence and hence
possesses a limit 7o > 0. Since ¢ is nondecreasing, then from (6), we get

a(xn+l¢xn+2) =< G(xnrxn+l) - QD(I"())
for each n € N. Then ry < rg — ¢(ry) and so ry = 0. Therefore,

lim o (x,,%,41) = 0.
n—00

Now, we show that {x,} is a Cauchy sequence. Fix ¢ > 0 and choose N such that

e €
0 (X, Xp41) < mln{§,¢(§>} forn > N.

We show that if o (x,xy) < ¢, then o(Tx,xy) < €. To show the claim, let us assume first
that o (x,xy) < 5. Then

o (Tx,xn) < o(Tx, Txn) + o (Txn, xN)

e ¢
<o@xn) — (0 (xxn)) + 0 (tne,xn) < 5t

—=e.
2

Now we assume that § < o' (x,xx) < . Then ¢ (o (x,xx)) > ¢(5). Therefore, from the above,

we have

o (Tx,xn) < 0 (x,%8) — 9(0 (%, %)) + 0 (X741, 41)

& &
< oxan) - w(i) + w<§>

= o(x,xn) <.

Since o (xn41,%x) < &, then from the above, we deduce that o (x,,xx) < & for each n > N.
Since ¢ > 0 is arbitrary, we get lim,, ;0 0 (X, %,) = 0 and so {x,} is a Cauchy sequence.
Since X is complete, there is some u € X such that lim,,_, o x,, = u, that is,

lim o(x,,u) =0(u,u)= lim o(Tx,, Ix,,) = 0. (7)
n—0o0 m,n— 00

Since
0 (xns1, Tut) = 0 (T, T)) < 0 (30, 1) — @ (0 (%, 1)) (8)

and ¢ is continuous, then from (7) and (8), we have

lim o (x,, Tu) = 0. 9)

n—00

Page 7 of 10
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Since
o (u, Tu) < o (x,, u) + o (x,, Tu)

then by (7) and (9), we infer that o (&, Tu) = 0 and so Tu = u. To prove the uniqueness, let
v be another fixed point of T, that is, 7v=v. Then

o(u,v) =0 (Tu, Tv) < o (u,v) — (o (u,v)),
which gives (o (4,v)) =0 and so u = v. a
Example 2.8 Let X = [0, 00) and o (x,y) = max{x, y}. Then (X, o) is a complete metric-like

space. Take ¢(¢) = ﬁ fort € [0,00). Let Tx = % for each x € X. Take x, y € X, without loss

of generality, we may assume that y < x. Then

o(Tx, Ty) = Ta =x — (x) = 0 (x,9) — ¢(0(%,9)).
Then T satisfies the hypothesis of Theorem 2.7 and so T has a fixed point (x = 0 is the
unique fixed point of T'). Now since lim;_, o, ¢(£) = 1 < 00, we cannot invoke Theorem 2.1
of [9] to show the existence of fixed point of T

The following corollary improves Theorem 1 in [2].

Corollary 2.9 Let (X,p) be a complete partial metric space, and let T : X — X be a map
such that

p(Tx, Ty) < ¥ (max{p(x,y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx), p(%, %), p(3, ) }),
forall x,y € X, where { : [0,00) — [0, 00) is a nondecreasing function satisfying

Yv(t)<t forallt>0, slintl+ Y(s)<t forallt>0 and tlinolo(t— 1//(t)) = 00.
Then T has a unique fixed point.
Proof The existence of a fixed point follows immediately from Theorem 2.4. To prove the

uniqueness, let us suppose that x and y are fixed points of T". Then from our assumption

on T, we get

p(x,x) = p(Tx, Ty) < ¥ (max{p(x,y), p(x, %), p3,9)}) = ¥ (p(x,)).-
Thus, p(x,y) =0 and x = y. O

The following corollary improves Corollary 1 and Theorem 2 in [2] and the main fixed

point result of Matthews [1].
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Corollary 2.10 Let (X, p) be a complete partial metric space, and let T : X — X be a map
such that

p(Tx, Ty) < Amax{p(x,y), p(x, Tx), p(y, Ty), px, T9), p(y, Tx), p(%, %), p(5, %)}
forall x,y € X, where X € [0,1). Then T has a unique fixed point.
Proof Let y(£) = At for each t € [0, 00) and apply Corollary 2.9. (I

Now, we present the following version of Rakotch’s fixed point theorem [14] in metric-
like spaces.

Theorem 2.11 Let (X, o) be a complete metric-like space, and let T : X — X be a mapping
satisfying

o(Tx, Ty) < a (o (x,9))0 (x,9),

foreachx,y € X withx # y, where « : [0,00) — [0,1) is nonincreasing. Then T has a unique
fixed point.

Proof Fix x € X and let x,, = T"x for each n € N. Following the lines of the proof of the
Theorem 3.6 in [15], we get that

lim o (T"x,T"x) =0,

m,n— 00

and so {x,} is a o -Cauchy sequence. Since (X, o) is complete, then there exists xy € X such
that

lim o (T"x,%0) = 0 (%0,%0) = lim o (T"x, T"x) = 0.
n— o0 m,n— 00

From our assumption, we have
o (T"x, Txo) < a(o (T" "%, %0)) o (T" %, ),

which yields lim,_, o o (T"x, Tx¢) = 0. Also, notice that o (Txo, Txo) < o (x0,%9) = 0 and
hence o (Txg, Txo) = 0. Thus,

lim a(T"x, Txo) =0 (Txo, Txg) = lim G(T”x, T”‘x) =0.
By the triangle inequality, we have

o (%0, Tio) < o (T"x,%0) + 0 (T"x, Txo) — 0 as n — oo,

and so o (xg, Txo) = 0, that is, Tx¢ = x¢. The uniqueness easily follows from our contractive
condition on T. O

The following corollary is another new extension of Matthews’s fixed point result [1].
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Corollary 2.12 Let (X, p) be a complete partial metric space, and let T : X — X be a map-
ping satisfying

p(Tx, Ty) < a(p(x,9))p(x,y)

foreachx,y € X withx #y, where « : [0,00) — [0,1) is nonincreasing. Then T has a unique

fixed point.
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