
FMBC 2021: Pre-Proceedings

Bruno Bernardo Diego Marmsoler

July 18-19, 2021

Preface

The 3rd International Workshop on Formal Methods for Blockchains (FMBC) will take
place virtually on July 18/19 2021 as part of CAV 2021, the 33rd International Confer-
ence on Computer-Aided Verification. Its purpose is to be a forum to identify theoretical
and practical approaches applying formal methods to blockchain technology.

This third edition of FMBC attracted 15 submissions on topics such as verification
of smart contracts or analysis of consensus protocols. Each paper was reviewed by at
least three program committee members or appointed external reviewers. This led to
a selection of 5 papers (2 long and 3 short) that will be presented at the workshop
as regular talks, as well as 3 extended abstracts that will be presented as lightning
talks. Additionally, we are very pleased to have an invited keynote by David L. Dill
(Novi/Facebook, USA).

This volume contains the papers selected for regular talks, the extended abstracts
selected for lightning talks as well as the abstract of the invited talk.

We thank all the authors that submitted a paper, as well as the program commit-
tee members and external reviewers for their immense work. We are grateful to Arie
Gurfinkel, Workshop Chair of CAV 2021, for his guidance. Finally, we would like to
express our gratitude to our sponsor Nomadic Labs for its generous support.

July 2021 Bruno Bernardo
Diego Marmsoler

Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Lacramioara Astefanoei Nomadic Labs, France
Massimo Bartoletti University of Cagliari, Italy
Bruno Bernardo Nomadic Labs, France
Joachim Breitner Dfinity Foundation, Germany
Achim Brucker University of Exeter, UK
Zaynah Dargaye Nomadic Labs, France
Jérémie Decouchant University of Luxembourg, Luxembourg
Dana Drachsler Cohen Technion, Israel
Ansgar Fehnker University of Twente, Netherlands
Maurice Herlihy Brown University, USA
Lars Hupel INNOQ, Germany
Florian Kammueller Middlesex University London, UK
Igor Konnov Informal, Austria
Andreas Lochbihler Digital Asset, Switzerland
Diego Marmsoler University of Exeter, UK
Simão Melo de Sousa Universidade da Beira Interior, Portugal
Karl Palmskog KTH, Sweden
Maria Potop-Butucaru Sorbonne Université, France
Andreas Rossberg Dfinity Foundation, Germany
Albert Rubio Complutense University of Madrid, Spain
César Sanchez Imdea, Spain
Clara Schneidewind TU Wien, Austria
Ilya Sergey Yale-NUS College/NUS, Singapore
Mark Staples CSIRO Data61, Australia
Meng Sun Peking University, China
Simon Thompson University of Kent, UK
Josef Widder Informal Systems, Austria

Supporting Reviewers

Yuteng Lu
Luis Arrojado da Horta

Papers

Keynote: Formal verification of Move programs for the Diem blockchain 1

I. Accepted Papers 2

Money Grows on (Proof-)Trees: Formalisation and Correctness of the FA1.2
Ledger Standard 3

Towards Contract Modules for the Tezos Blockchain 16

Towards Verified Price Oracles for Decentralized Exchange Protocols 23

Formally Documenting Tenderbake 35

Using Coq to Enforce the Checks-Effects-Interactions Pattern in DeepSEA
Smart Contracts 47

II. Accepted Extended Abstracts 55

Towards a Theory of Decentralized Finance 56

A formal model of Algorand smart contracts 59

A Technique For Analysing Permissionless Blockchain Protocols 62

Keynote: Formal verification of Move
programs for the Diem blockchain

Abstract

The Diem blockchain, which was initiated in 2018 by Facebook, includes a novel pro-
gramming language called Move for implementing smart contracts. The correctness of
Move programs is especially important because the blockchain will host large amounts
of assets, those assets are managed by smart contracts, and because there is a history of
large losses on other blockchains because of bugs in smart contracts. The Move language
is designed to be as safe as we can make it, and it is accompanied by a formal specifica-
tion and automatic verification tool, called the Move Prover. The Diem Framework is
the Move code that makes up the core logic of the Diem blockchain, managing accounts,
payments, etc. Extensive formal specifications have been written for the most important
properties of the Framework, all of which can be formally verified by the Move Prover in
less than 40 seconds per file. Indeed, the framework is re-verified automatically in con-
tinuous integration whenever new code is submitted to Github. The entire blockchain
implementation, including the Move language, virtual machine, the Move Prover, and
near-final various Move modules are available on https://github.com/diem/diem. This
talk will be about the goals of the project and the most interesting insights we’ve had
as of the time of the presentation.

Bio

David L. Dill is a Lead Researcher at Facebook, working on the Diem blockchain project.
He is also Donald E. Knuth Professor, Emeritus, in the School of Engineering at Stanford
University. He was on the faculty in the Department of Computer Science at Stanford
from 1987 until becoming emeritus in 2017. Prof. Dill’s research interests include formal
verification of software, hardware, and protocols, with a focus on automated techniques,
as well as voting technology and computational biology. For his research contributions,
he has received a CAV award and Alonzo Church award. He is an IEEE Fellow, an
ACM Fellow and a member of the National Academy of Engineering and the Ameri-
can Academy of Arts and Sciences. He also received an EFF Pioneer Award for his
work in voting technology and is the founder of VerifiedVoting.org, an organization that
champions trustworthy elections.

1

Part I.

Accepted Papers

2

Money grows on (proof-)trees: the formal FA1.21

ledger standard2

Murdoch J. Gabbay Â �3

Heriot-Watt University, Edinburgh, UK and4

Nomadic Labs, Paris, France5

Arvid Jakobsson Â �6

Nomadic Labs, Paris, France7

Kristina Sojakova1
Â8

INRIA, Paris, France9

Abstract10

Once you have invented money, you will find that you need a ledger to track who owns what —11

along with an interface to that ledger so that users of your money can transact. On the Tezos12

blockchain this implies: a smart contract (distributed program), storing in its state a ledger to map13

owner addresses to token quantities; along with standardised entrypoints to query and transact on14

accounts.15

A bank does a similar job — it maps account numbers to account quantities and permits users16

to transact — but in return the bank demands trust, it incurs expense to maintain a centralised17

server and staff, it uses a proprietary interface . . . and it may speculate using your money and/or18

display rent-seeking behaviour. A blockchain ledger is by design decentralised, inexpensive, open,19

and it won’t just decide to bet your tokens on risky derivatives (unless you want it to).20

The FA1.2 standard is an open standard for ledger-keeping smart contracts on the Tezos21

blockchain. Several FA1.2 implementations already exist.22

Or do they? Is the standard sensible and complete? Are the implementations correct? And what23

are they implementations of ? The FA1.2 standard is written in English, a specification language24

favoured by wet human brains but notorious for its incompleteness and ambiguity when rendered25

into dry and unforgiving code.26

In this paper we report on a formalisation of the FA1.2 standard as a Coq specification, and on27

a formal verification of three FA1.2-compliant smart contracts with respect to that specification.28

Errors were found and ambiguities were resolved; but also, there now exists a mathematically precise29

and battle-tested specification of the FA1.2 ledger standard.30

We will describe FA1.2 itself, outline the structure of the Coq theories — which in itself captures31

some non-trivial and novel design decisions of the development — and review the detailed verification32

of the implementations.33

2012 ACM Subject Classification Replace ccsdesc macro with valid one34

Keywords and phrases Distributed ledger, smart contracts, Coq specification, formal verification,35

blockchain36

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.737

Acknowledgements [to be added in final version]38

1 Sojakova wrote the Coq code described in this paper

© CC-BY http://creativecommons.org/licenses/by/3.0/;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 7; pp. 7:1–7:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Money Grows on (Proof-)Trees: Formalisation and Correctness of the FA1.2 Ledger
Standard

3

7:2 The formal FA1.2 ledger standard

1 Introduction39

1.1 Tezos: a universal, modular blockchain40

The Tezos blockchain was outlined in a 2015 whitepaper [3] and went live in September41

2018.2 It is an accounts-based proof-of-stake blockchain system with the unique feature42

that it is a universal blockchain in the sense that the protocol for running Tezos is itself43

data on the Tezos blockchain, and this data is subject to regular upgrade by stake-weighted44

community vote.3 Universality favours a healthy modularity at every level of the system’s45

design, since almost anything in the running system can be and is subject to update.46

Tezos has just one native token: the tez. Further tokens can be created in a modular47

fashion, using smart contracts.48

Thus we can represent Ethereum and Bitcoin on Tezos (using so-called wrapped tokens);449

we can represent NFTs (non-fungible tokens representing unique assets); likewise for stable-50

coins and so forth. All these things can be and have been represented as Tezos smart51

contracts. Given this freedom, we need interoperability standards for our tokens to adhere to.52

After all, a token on its own is useless; its value comes from how we might transact with it.553

1.2 The FA1.2 standard: five entrypoints, in English54

The FA1.2 standard6 is an English document specifying a minimal API for a ledger-like55

smart contract. Compliance with FA1.2 ensures some degree of interoperability across56

multiple smart contracts and tools on the Tezos blockchain. An FA1.2-compliant smart57

contract must provide at a minimum the following five entrypoints and behaviours:758

1. %transfer expects a from account, a to account, and an amount of tokens to be59

transferred, and updates the ledger accordingly.60

2. %approve expects an owner, a spender, and a new allowance for the spender, and61

updates the transfer approvals accordingly.862

3. %getAllowance expects an owner, a spender, and returns the approved transfer allowance63

for the spender, via a callback (see Remark 1 below).64

4. %getBalance expects an owner and returns the owner’s balance via a callback.65

2 https://en.wikipedia.org/wiki/Tezos
3 As the programs of the ‘universal’ Turing machine are themselves data on its memory. The ‘regular

upgrade’ property is called a self-amendment in the Tezos literature.
To be more precise, for the sake of space-efficiency, what is on the Tezos blockchain is not the protocol
code but a hash of it (it is a standard trick to store large datastructures off-chain and retain an on-chain
hash). When the protocol self-amends, the hash gets updated, and code matching that hash — which
must (in a sense of ‘must’ precisely as strong as ‘our hash function is computationally infeasible to break’)
be the protocol code itself — is propagated across the nodes of the network for them to load and run.
This low-level functionality is handled by a ‘shell’ (think: BIOS).
4 We mention a few wrapped tokens at the start of Section 4.
5 Like money in the bank is only useful because you could use it to perform transactions. You don’t have

to — at least not all at once — but that’s not the point: what matters is that you could.
6 https://tzip.tezosagora.org/proposal/tzip-7/
7 A smart contract could offer more than this, but if it offers less — then is not an FA1.2-compliant smart

contract.
8 When you use a debit card to pay a merchant for a purchase, you do not pay the merchant directly:

you authorise the merchant to debit your account (occasionally, the merchant may even not do so; the
authorisation is granted but the withdrawal does not take place). Likewise a direct debit is in fact an
approval for a withdrawal. This is how things are done. Thus, %approve does not send tokens directly;
it approves another smart contract to make a token withdrawal, up to a certain limit. Thus when you
sell tokens for tez in an exchange like Dexter, you do not transfer tokens directly to Dexter yourself:
you use %approve to give permission to Dexter to transfer tokens from your account to its own.4

M. J. Gabbay, A. Jakobsson, and K. Sojakova 7:3

5. %getTotalSupply returns the total sum of all balances in the ledger, via a callback.66

▶ Remark 1 (Some background). A call to an entrypoint of a smart contract in Tezos takes67

some parameters, some (possibly zero) quantity of tez, and a continuation address of another68

entrypoint, called a callback, to which flow of control will continue. Thus “returns X via69

a callback” above means that X will get passed as a parameter to the nominated callback70

entrypoint.71

1.3 This is not enough72

This is reasonable per se, but it is not enough, due to the following three points:73

1. The FA1.2 standard is written in English. This means it might be incomplete or74

incoherent,9 and it can’t be directly manipulated using verification tools.75

2. Just because a smart contract claims to be FA1.2-compliant does not mean that it is:76

perhaps it is buggy; perhaps it is hostile; perhaps the implementors just interpreted the77

English specification differently than the standard’s authors intended.78

3. The FA1.2 standard is not itself a standard for verifying compatibility with the FA1.279

standard! That is: given two verifications of two implementations (or even of the same80

implementation), it is not a priori guaranteed that they are verifying the same properties81

— and the FA1.2 standard, which is written in English, cannot help resolve this.82

To now state the obvious: ledgers are safety-critical. This is real money — for a certain 21st83

century definition of ‘real’ — that our smart contracts could be manipulating [4, 1].84

Saying ‘trust us, we’re experts’ is problematic not just because we might be wrong,85

but also because an open permissionless blockchain should not demand such trust: users86

should be able to check correctness, or trust that somebody independent of a central ‘expert’87

authority has checked or could check this, and (since this is an open system) they should88

best also trust that whatever ‘correctness’ means, it means nearly, and preferably precisely,89

the same thing them as it does to the other users with whom they might transact.90

1.4 Our work in a nutshell91

This paper reports on a verification effort undertaken at Nomadic Labs that we argue92

addresses all of the points above. That is:93

we place the FA1.2 standard on a precise mathematical footing that can be both trusted94

and verified, and95

we check correctness of no fewer than three smart contract which claim to be FA1.2-96

compliant.97

The reader should not expect novel maths in this work — indeed, in this context ‘novel’98

= ‘untested’ and is likely to be avoided where possible. However, there are other types of99

innovation to this work:100

1. To our knowledge, this is the only full formalisation of a blockchain ledger standard and101

of multiple implementations against it, in a theorem-prover.102

This addresses all three of the points above, by providing: a formal specification of the103

standard, formal representations within the theorem-prover of the programs themselves,104

9 In fact there’s no ‘might’ about it: a quick scan of the standard reveals points which a suitably naïve,
bloody-minded, or hostile reader could interpret in spectacularly different ways, in spite of the authors’
efforts to be precise. Thus multiple implementations could exist, doing radically different things and all
claiming plausibly to be ‘true’ to ‘the’ FA1.2 standard. This is not a criticism of FA1.2 or its authors:
it is in the nature of the English language itself.

FMBC 2021

5

7:4 The formal FA1.2 ledger standard

proofs of compliance for the latter with respect to the former — and also a gold standard105

for comparing and operating on all of these proofs, since they are all proof-objects within106

the theorem-prover itself.107

2. Also relevant is the theory files’ structure, which is new as we discuss below.108

Having secure and reliable ledgers on Tezos is an existential issue for the blockchain ecosystem,109

so the fact that this could be nailed down, as we have done, has both practical and theoretical110

importance. Thus, this work exemplifies the application to a tangible commercial problem of111

a particular (Coq-based) theorem-prover technology ecosystem.10 We hope that the work112

reported on in this paper can serve as a model for future efforts.113

▶ Remark 2. We may write smart contract and implementation synonymously in this paper.114

Note also that smart contracts may be written in high-level programming languages, but115

to run on Tezos they must always get compiled to a lower-level stack-based language called116

Michelson.11 We may not always distinguish between the original program and its complied117

Michelson executable, but we will when this difference matters and it will always be clear118

what is meant.119

2 Introducing: the formal FA1.2 standard120

The verification files are written in Coq and structured into three files as follows, where the121

later items depend on the earlier ones:122

1. fa12_interface: This specifies internal functions which the smart contract must support123

(see Figure 1), along with axioms on their behaviour.12124

2. fa12_specification: This specifies entrypoint behaviour in terms of these functions.125

Files 1 and 2 render into precise Coq code the English of the FA1.2 standard, and also go126

beyond this by specifying internal functions which must be supported, rather than just127

entrypoints. Thus, the formal FA1.2 standard adds some intensional content, which the128

English FA1.2 standard lacks.129

3. fa12_verification: This contains some useful lemmas and theorems, which are derived130

purely from postulates in the formal FA1.2 standard. Thus, these are properties of any131

FA1.2-compliant smart contract.132

In this paper we will call the three files above the formal FA1.2 standard.133

▶ Example 3 (Component 1: The interface file). The code asserting functions required by134

fa12_interface is in Figure 1, and two example axioms are in Figure 2.135

In Figures 1 and 2, data is a standard Mi-Cho-Coq [2] wrapper mapping (a Coq repres-136

entation of) Michelson types to Coq types,13 and sto is short for ‘storage’ and represents a137

state datum that is threaded through computations.14 We trust that with this information,138

the functions and axioms should be self-explanatory.139

10 . . . yet more proof, if proof were needed, that what starts in universities ends on the engineer’s workbench.
11 Think: the Tezos equivalent of bytecode or machine code, though Michelson is still quite high level.
12 These are not entrypoints and cannot be called from outside the smart contract (see
fa12_specification). Also, the functions may be, but need not be, explicit in the smart con-
tract code — e.g. the smart contract might be in a low-level, non-functional language — so long
as they could be defined on the underlying data. We might call the FA1.2 interface an idealised
implementation, where ‘idealised’ is used in the sense of ‘Platonic ideal’ (rather than the sense of
‘perfect’).

13 https://gitlab.com/nomadic-labs/mi-cho-coq/-/blob/kristina-fa12-verification-rebase/
src/michocoq/semantics.v#L281

14 . . . containing information like e.g. ledger entries, address of admin, total of all balances, and so forth.6

M. J. Gabbay, A. Jakobsson, and K. Sojakova 7:5

getAllowance : data storage_ty -> data address -> data address -> data nat
getBalance : data storage_ty -> data address -> data nat
getTotalSupply : data storage_ty -> data nat
setBalance : data storage_ty -> data address -> data nat

-> data storage_ty
setAllowance : data storage_ty -> data address -> data address ->

data nat -> data storage_ty

Figure 1 Types of key functions from the FA1.2 interface file

(* Set balance to amount and then read that balance: get that amount*)
Parameter getBalance_setBalance_eq : forall sto owner amount,
getBalance (setBalance sto owner amount) owner = amount.

(* Set a balance and then read another balance: other balance unchanged*)
Parameter getBalance_setBalance_neq : forall sto owner owner’ amount,
owner <> owner’ ->
getBalance (setBalance sto owner amount) owner’ =
getBalance sto owner’.

Figure 2 Example axiom from the FA1.2 interface file

(** Entry point: ep_getBalance *)
Definition ep_getBalance

(p : data parameter_ep_getBalance_ty)
(sto : data storage_ty)
(ret_ops : data (list operation))
(ret_sto : data storage_ty) :=

let ’(owner, contr) := p in
let balance := getBalance sto owner in
let op := transfer_tokens env nat balance (amount env) contr in

ret_sto = sto /\ ret_ops = [op].

Figure 3 Example axiom from the FA1.2 specification file

Theorem sumOfAllBalances_constant
(env : @proto_env self_type)
(p : data fa12_parameter_ty)
(sto : data storage_ty)
(ret_ops : data (list operation))
(ret_sto : data storage_ty) :

main env p sto ret_ops ret_sto ->
sumOfAllBalances ret_sto = sumOfAllBalances sto.

Figure 4 Main result of the FA1.2 verification file

Definition contract
:= Eval cbv in extract (contract_file_M fa12_camlcase_string.contract 500) I.

Figure 5 Parsing to a Michelson code string into Mi-Cho-Coq’s deep embedding of Michelson

▶ Remark 4 (Functions, not entrypoints). The functions in Figure 1 are building blocks with140

which we can specify the behaviour of the entrypoints listed in Subsection 1.2. In this respect,141

our verification has done something that looks deceptively simple but is not. By writing down142

fa12_interface we have refined the FA1.2 standard — which speaks only about entrypoints143

and thus is in some sense purely extensional — to a specification which is not just more144

precise (since it is written in Coq); but also, it is intensional, because it specifies certain145

internal functions which must be provided by an implementation.146

▶ Example 5 (Component 2: The specification file). Code asserting the behaviour of entrypo-147

ints is given in fa12_specification; see Figure 3. The example code specifies that a call to the148

FMBC 2021

7

7:6 The formal FA1.2 ledger standard

%getBalance entrypoint should get the balance (this is the balance := getBalance sto owner149

part, which is passed to the callback in the operation op) and any tokens attached to the call150

just get passed through untouched. Let’s spell this out (in small font):151

152
let balance := getBalance sto owner in (* ‘owner‘ balance retrieved from ‘sto‘ and put in ‘balance‘ *)153
let op := transfer_tokens154
(* ‘op‘ is a transfer_token operation, which will act as a callback to the contract ‘contr‘, sending155

it the value ‘balance‘. tez transfers and smart contract calls in Tezos are the same thing! *)156
(* Each transfer_token operation has a recipient contract (+ optional entrypoint), an amount of tez,157

and a parameter.)158
env (* the current environment *)159
nat (* parameter type: each contract (+entrypoint) has a parameter type.160

In this case, recipient parameter type is ‘nat‘, as it is to receive the ‘balance‘,161
which is also ‘nat‘ *)162

balance (* parameter: value sent to ‘contr‘. balance is thus a ‘nat‘ *)163
(amount env) (* amount of tez: using the function ‘amount‘ applied to the environment, we return164

the number of tez that was sent to this contract and that triggered this execution.165
Hence, we just "pass the tez along". *)166

contr (* recipient: the contract ‘contr‘ will be the receiver of this call.167
Note that ‘contr‘ comes from the parameter sent to ‘getBalance‘. Thus we have168
a "callback" pattern: the value requested is not "returned" to the caller,169
instead call back ‘contr‘ (which may be the caller but not necessarily) with170
the requested value *)171

in ret_sto = sto /\ ret_ops = [op]. (* require ‘op‘ to be the only returned operation *)172173

▶ Example 6 (Component 3: The verification file). This contains lemmas derived just from174

postulates in the interface and specification files, which therefore hold ‘once and for all’; they175

are valid for any implementation for which these postulates hold.176

The main result is that the FA1.2 entrypoints do not change the sum of all balances (the177

total number of tokens on the ledger, as also returned by %getTotalSupply): the statement of178

the result is given in Figure 4. This is a relevant result in and of itself, and it is a sanity check179

on the design of the interface and specification, that they specify enough of the behaviour of180

an implementation that this can be proved.181

▶ Remark 7. So far we have sketched how the FA1.2 standard (a short English document)182

has been refined and formalised into the formal FA1.2 standard, which consists of three files:183

1. the FA1.2 interface (specifies internal functions and axioms on those functions),184

2. the FA1.2 specification (how external entrypoints are wired to internal functions), and185

3. the FA1.2 verification file (some logical consequences of the interface and specification file;186

in particular that FA1.2-specified entrypoints do not change the total supply of tokens).15187

Next we discuss the workflow of actually verifying a concrete implementation.188

3 Per-implementation verification189

We have verified three implementations as FA1.2 compliant (see below for what that means):190

1. an implementation by camlCase written in Morley16,191

2. an implementation by Edukera written in Archetype17, and192

3. a liquidity ledger that is part of the (at time of writing) prototype Dexter 2 smart contract193

by the LIGO lang team, written in CameLigo18.194

Verification follows the following steps, which for the sake of argument we consider for the195

camlCase smart contract:196

15 Nothing prevents an implementation from providing additional entrypoints to e.g. mint or burn tokens,
and if it does it might still be FA1.2-compliant. It is just that the FA1.2-specified entrypoints must not
do this.

16 A Haskell eDSL for writing Michelson contracts: https://hackage.haskell.org/package/morley
17 A language and toolchain for specifying, implementing and verifying Tezos smart contracts: https:
//archetype-lang.org/

18 A language with ML-like syntax for implementing Tezos smart contracts: https://ligolang.org/8

M. J. Gabbay, A. Jakobsson, and K. Sojakova 7:7

1. The smart contract is compiled from some high-level smart contract language (Morley,197

Archetype, CameLigo. . .), to a Michelson codestring — Michelson is the low-level stack-198

based native smart contracts language of the Tezos blockchain — and stored as a Coq199

string in a file fa12_camlcase_string.v.200

We do not work further with the original source code of the smart contract directly. We201

may use it for reference, but what gets validated is the Michelson file.19202

2. This Michelson code string is parsed into a term of Mi-Cho-Coq’s deep embedding of203

Michelson, in a file called fa12_camlcase.v. This is a one-line operation; see Figure 5.20204

Thus we now have (dynamically, in memory) a Coq datum contract representing the205

Michelson code string read from disk.21 Properties of this Coq datum are asserted and206

proved.207

3. It is in the file fa12_camlcase_spec.v that any peculiarities of the implementation —208

how data is stored, any additional entrypoints and their behaviour — are packaged up,209

abstracted, and proved as high-level descriptions in Coq of behaviour.210

4. Finally, in a file fa12_camlcase_verification.v we prove that the (high-level description211

of the) implementation satisfies the formal FA1.2 specification.212

And thus we conclude that the contract is FA1.2-compliant.213

Let’s unpack that. The sentence “And thus we conclude that the contract is FA1.2-compliant”214

is shorthand for a fuller statement that:215

“A high-level Coq description of a Mi-Cho-Coq datum representing a Michelson code216

compilation of the original smart contract, satisfies a Coq formalisation of a refinement217

of the FA1.2 standard.218

Let’s unpack that further to spell out what parts of this are mathematically assured:219

1. Refining the English FA1.2 standard to the formal FA1.2 standard (three Coq files as220

discussed in Section 2) is not mathematically assured. This was a creative human step of221

taking the FA1.2 English description and fleshing it out to something formal in Coq that222

is more intensional, extensive, and precise than the English source.223

2. The compilation of the smart contract from its original source code to Michelson is224

not assured, unless the compiler is verified in some way — which currently isn’t the225

case for Morley, Archetype and LIGO.22 The Michelson code is what is actually gets226

executed, so this is no bad thing, but note that it localises any subsequent validation to227

that compilation, and not some other compilation e.g. using a different compiler or a228

different version of that compiler.229

3. The transformation of the Michelson code string into Mi-Cho-Coq takes place in Coq230

but is just a mechanical transformation. We do have to trust that Mi-Cho-Coq does this231

correctly.232

4. Everything else is completely rigorous, provided we trust the Coq kernel.233

19 This is good, in the sense that the Michelson code is what gets executed on-chain. But note that the
Michelson code may be compiler-dependent — so when we say “We validated a contract” what we
actually mean is “We validated one particular compilation to Michelson of that contract”.

20 https://gitlab.com/nomadic-labs/mi-cho-coq/-/blob/kristina-fa12-verification-rebase/
src/contracts_coq/fa12_camlcase.v#L239

21 So when we say “We validated one particular compilation to Michelson of that contract” what we
actually mean is “We validated a Coq datum representing one particular compilation to Michelson of
that contract”.

22 Morley is more of a macro language for Michelson, but it still includes non-trivial transformation of the
source code that are not yet proven semantics preserving.

FMBC 2021

9

7:8 The formal FA1.2 ledger standard

On the one hand, this might seem complicated.23234

On the other hand, we would argue that this is a sensible modular workflow, and may235

also be the best way to structure a verification of this type — especially if we plan to236

verify more than one FA1.2-compliant ledger. The workflow maximises modularity and237

reuse, minimises reinventing of the wheel, and accommodates both a posteriori and a priori238

validation workflows:239

A posteriori. Write your smart contract in whatever language you prefer. Compile it to240

Michelson code as you would have to anyway; then (guided by the original source code)241

rebuild a certified correct high-level description of your contract in Coq, prove that the242

certified high-level description satisfies the FA1.2 interface, and that (the representation243

in Coq of) the compiled Michelson respects this description.244

A priori. Express a high-level design in Coq (or translate one into Coq). Prove it satisfies245

the FA1.2 interface, thus validating your design. Then implement this design in your246

language of choice, and verify that it respects the high-level description.247

We would submit to the reader that this is reasonable and that most software development248

follows some mix of the two patterns above.249

▶ Example 8. We continue Example 6. Two typical results in the per-implementation files,250

which exemplify the kind of results they contain, are that:251

Validity of storage is preserved by all entrypoints. This is a key sanity property which must252

include the five entrypoints mentioned in the FA1.2 standard (as listed in Subsection 1.2)253

but must also include any other operations offered by the smart contract.254

The total supply of tokens is is correctly preserved (or updated, if tokens were minted or255

burned), and in particular that %getTotalSupply really does return the total supply.256

This is not entirely trivial because, for computational efficiency, most smart contracts257

track the total number of tokens separately from the tokens themselves.24 Thus checking258

that %getTotalSupply returns the total supply requires us to write a predicate that259

computes the total supply, and verify that this ‘real’ total supply is correctly tracked by260

whatever computationally efficient tally the smart contract is keeping.25261

For scale, verification of the first property requires 60 lines of Coq code for the camlCase262

contract, 21 lines for the Edukera contract, and 61 for the Dexter 2 contract.263

4 Refining the FA1.2 standard264

FA1.2 is underspecified by design, and often constructively so. For instance, ETHtz, USDtz,265

and tzBTC are all Tezos tokens (wrapping Ether, US Dollars, and Bitcoin respectively),266

and they are all FA1.2-compliant — but clearly they are also different and special. Being267

FA1.2-compliant is just a property of a smart contract. In particular:268

23 In a sense, this is a kind of dual to program extraction, where we start from a high-level specification
(e.g. in Coq) and extract from it an executable which then compiles to byte- or machine-code, which (if
we trust our compilers) is correct by construction.

24 An analogy: the Bank of England may keep track of how much cash is in circulation, but it would be
computationally prohibitive to actually go out and count all the cash in the country.

25 Another analogy: if the reader has ever lost money down the back of a sofa and then struggled (and
perhaps failed) to find it again, they may appreciate that making sure that absolutely no tokens slip
through any cracks, may require careful discipline. Somewhere in the first author’s childhood home
there may still be a cheque for fifty pounds from his grandfather.10

M. J. Gabbay, A. Jakobsson, and K. Sojakova 7:9

The standard does not restrict the operations returned by the %transfer and %approve269

entrypoints. For instance, a contract may call another contract to access its ledger, e.g.270

if the ledger data is stored remotely.271

A contract may have more entrypoints than are mentioned in the standard, e.g. to mint272

and burn tokens.273

However, it is also possible for FA1.2 to be underspecified in undesirable ways, and our274

verification effort uncovered two such issues, which were updated and corrected:275

4.1 Issue 1: Self-transfer276

When the from and to accounts in the %transfer entrypoint coincide, the operation can be277

treated either as a NOOP, or as a regular transfer (affecting allowances). The camlCase278

implementation originally chose the former; the Edukera and Dexter 2 implementations279

choose the latter.280

It was agreed that this underspecification is undesirable and the FA1.2 standard was up-281

dated to require that this case be treated as a regular transfer. The camlCase implementation282

of the %transfer entrypoint was updated accordingly.283

Note how this was noticed because we checked more than one ledger implementation284

against the same formal standard (cf. comment 1 of Subsection 1.3).285

4.2 Issue 2: passing tokens to a view entrypoint286

As noted in Remark 1, when we call an entrypoint in Michelson we must pass it some287

(possibly zero) number of tez tokens. What should an entrypoint do if it gets passed tokens288

and does not need them? For instance, the entrypoint could be one of the so-called view289

entrypoints of FA1.2, %getAllowance, %getBalance, and %getTotalSupply.26290

All three implementations opted to discard such tokens, thus leaving the tokens with the291

sender. Thus, if we called %getBalance and sent it some tokens, the camlCase, Edukera, and292

Dexter 2 contracts would return the tokens untouched.293

We contacted the creators of the FA1.2 standard and they said this was undesirable: such294

tokens should be forwarded to the entrypoint’s callback — i.e. a passthrough. The standard295

was updated to include this condition, and the implementations updated accordingly.296

4.3 Summary of refinements297

Thanks to this verification work the FA1.2 standard could be updated to eliminate two298

missed corner cases. The implementations were also updated as required.299

Notably, the underlying architecture of our verification (as discussed in Section 3) had a300

subtle but powerful effect on the errors that we could detect: because of how we factorised301

our verification files, and because (thanks to this factoring) we could consider multiple302

implementations uniformly against the same formal standard, it was easier to see where303

different implementations had made substantively divergent design decisions and to trace304

these decisions back to undesirable underspecifications in the core standard.305

26 An OO programmer would call the view entrypoints getters.

FMBC 2021

11

7:10 The formal FA1.2 ledger standard

5 Related and future work306

So far as we know there is nothing else in the literature quite like the FA1.2 formal standard307

and verifications reported on in this work. There have however been some other formalisation308

efforts in this field, notably: the ERC20 standard and its executable semantics in K; and a309

formalisation and verification of FA1.2 in Archetype by Edukera. We discuss each in turn:310

5.1 ERC20-K311

ERC20 is to Ethereum as FA1.2 is to Tezos (in fact, ERC20 came first and FA1.2 follows its312

example). ERC20 is a quite detailed API specification, but just like the FA1.2 standard, it is313

written in English which is neither formal nor executable.314

The ERC20-K semantics27 formalises ERC20 in K and annotates it with unit tests, with315

a particular focus on corner cases. As per the description:316

ERC20-K is . . . a formal executable semantics of a refinement of . . . ERC20 [in] the K317

framework. ERC20-K clarifies [the precise meaning of] ERC20 functions [and] the318

corner cases that the ERC20 standard omits . . . such as transfers from yourself to319

yourself or transfers that result in arithmetic overflows, [and we] manually . . . produced320

. . . a test-suite [of] tests which we believe cover all the corner cases.321

In other words, ERC20-K turns the English API specification into a executable API specific-322

ation in K, and provides a detailed test suite of sixty unit tests.323

The ERC20-K homepage contains references to other work,28 and the broad thrust of its324

argument is, just like ours, that a standard needs written in a formal language.325

5.2 Archetype FA1.2 implementation and verification by Edukera326

The company Edukera have a smart contracts language Archetype, in which they wrote a327

(short and succinct) implementation of an FA1.2-compliant smart contract. Included with the328

Archetype source code is a specification which asserts compliance with the FA1.2 standard.29329

In common with our work and with ERC20-K, the development argues for the need for a330

formal specification against which implementations can be checked.331

The verification itself uses a Why3 library for Archetype that implements and specifies332

Archetype-specific abstractions. Half of this library is currently verified, which includes the333

parts that correspond directly to the FA1.2 smart contract, but not all of the libraries on334

which it depends.30 Verification of the rest is a work in progress.335

Archetype is an expressive environment in which a user can employ a single set of336

convenient high-level abstractions to specify and implement a contract, within a uniform337

and well-automated workflow.31 Thus, the Edukera FA1.2 specification is a reflection of338

the FA1.2 standard into the Archetype toolstack, though as currently written it remains339

27 https://runtimeverification.com/blog/erc20-k-formal-executable-specification-of-erc20/
28 No published academic work, unfortunately. The funniest is a linear logic representation by one Rainy

McRainface https://dapphub.github.io/LLsai/token.
29 https://github.com/edukera/archetype-lang/blob/0a5ad0832709ac102a14534f22d4f94cb185866d/
contracts/fa12.arl#L54

30 Details in an Agora post https://forum.tezosagora.org/t/a-verified-implementation-of-fa1-2/2264; search
for the section on Verification.

31 As per the Archetype README, it provides a single language to describe [a] business logic . . . from
which the different operational versions may be derived.12

M. J. Gabbay, A. Jakobsson, and K. Sojakova 7:11

closely-tailored to the sole FA1.2 implementation which it has to talk about, namely the340

Edukera FA1.2 implementation in Archetype (e.g. if an implementation has additional341

mint or burn entrypoints, like the Dexter 2 contract, then it will not satisfy the Archetype342

specification’s condition that the total supply is unchanged after each entrypoint).32343

By design our work exists at a distance from any specific implementation and indeed from344

any specific source language, and it can be applied to any contract that can be compiled to345

Michelson, following a formal standard that does not require the smart contract programmer346

to buy in to any particular ecosystem except for Tezos itself. The correctness guarantee347

provided by compliance with our formal FA1.2 standard is correspondingly flexible and348

high-level, and our three verifications (including of the Archetype contract’s compilation to349

Michelson) illustrate how this guarantee can be obtained as part of a practical workflow.350

5.3 Future work351

Extending to FA2352

The third author is currently extending the development here to the FA2 standard, which is353

an update and extension of FA1.2 to allow, amongst other things, multiple token types.33354

Property-based testing355

We argued in Remark 9 above, and in point 3 of Subsection 1.3, that proofs of FA1.2-356

compliance using our methodology are by construction comparable, because they are all Coq357

proofs of the same properties — namely, those stated in the formal FA1.2 standard.358

This is true, but not the whole story: what if you have a program and you want to test359

it? Here, our development is of little direct help.360

Contrast with the Edukera specification and ERC-20K, which come bundled with unit361

tests which are visibly more portable (we are not aware of the Edukera tests having been362

made available as a separate portable entity, but the test suite could presumably be ported).363

It would be helpful for future work to extend the formal FA1.2 standard to a library of364

unit tests, or property-based testing properties, against which a prototype smart contract365

could be plugged, before going to the trouble of running the workflow described in Section 3.366

Accessibility367

For sheer accessibility, the work in this paper falls far short of a tool like the ERC20 token368

verifier,34 which will test your bytecode online for compliance with the ERC20 token standard369

while U wait [5], subject to significant restrictions on the code.35370

32 One could argue that the Archetype FA1.2 specification could be relaxed — and anyway, the formal
FA1.2 standard is also ‘just’ a reflection of the FA1.2 standard into Coq. This is true, but it misses
the point: it wasn’t, because there was not any need, because the camlCase and Dexter 2 contracts do
not exist in the Archetype implementation/specification ecosystem, because they are written in other
languages (Morley and CameLigo respectively). The key point here is not one of expressivity but of
scope: Archetype’s uniformity and power are available inside the Archetype toolstack, whereas to benefit
from the formal FA1.2 standard you can use whatever toolstack you like — so long as you add an entry
for a Coq wizard to your budget. This is not either/or, so much as two complementary approaches in a
rich design space.

33 https://gitlab.com/tzip/tzip/-/blob/master/proposals/tzip-12/tzip-12.md and
https://tezos.b9lab.com/fa2

34 https://erc20.fireflyblockchain.com
35 Listed in https://erc20.fireflyblockchain.com/disclaimer.html. For instance: functions not in

the ERC20 standard are ignored — which might sound innocuous but it is not, since without extra

FMBC 2021

13

7:12 The formal FA1.2 ledger standard

To the extent that these restrictions map from ERC20 to FA1.2, they do not apply to371

the work reported in this paper, and we see here the usual trade-off between ease-of-use and372

power (i.e. between price and performance). Which we prefer depends on our use case.373

We could certainly envisage future work in which such a tool is created for FA1.2, based374

on a test-suite automatically derived from our Coq development. More speculatively, one375

could imagine a general-purpose tool which inputs an arbitrary Coq specification like our376

formal FA1.2 standard, and outputs an online test-suite, thus combining the rigour of our377

approach with the accessibility of an online testing suite.378

It is early days in this technology and there is much scope for innovation.379

6 Conclusion380

Having dependable token ledgers is absolutely necessary for the Tezos blockchain. Because381

of the blockchain’s modular and updatable architecture, such ledgers are not primitive to382

the blockchain kernel, and therefore must be coded as smart contracts.36383

Several ledger implementations already exist, both live and deployed (ETHtz, USDtz,384

and tzBTC) and also prototypical and undeployed (camlCase, Edukera, and Dexter 2 by385

Nomadic Labs).386

Smart contracts for ledgers are by design designed to handle real value — and once387

deployed they may be impossible to change or update. Users may lose money if mistakes388

are made, and also any failures may be perceived as reflecting poorly on the parent Tezos389

blockchain.37 Therefore, the standards for safety and correctness for this class of program390

are exceedingly high, not only in the sense that the programs should be right, but also that391

what ‘being right’ means should be described with clarity and precision.392

In particular, it is in the blockchain’s best interests that validation of ledger implementa-393

tions be made as modular as possible, so that proofs and proof-architectures can be reused394

and presented uniformly and reliably.395

▶ Remark 9. Before this research, there was an English standard called ‘the FA1.2 standard’,396

and multiple implementations whose correctness was unknown. If they were certified in some397

way (as is the case for the Edukera contract), then there was no way to systematically say398

what passing that verification meant compared e.g. against another verification by another399

team working to another interpretation of the English standard.400

After this research, we have refined FA1.2 to a precise software artefact in Coq (we call it401

the formal FA1.2 standard in this paper), and verified three implementations against this402

formal standard. Thus, not only are they now proven correct, but implicit in the framework403

in which those proofs of correctness are embedded is also a guarantee that they are correct404

in the same way with respect to the same notion of correctness.405

This development is visibly modular and systematic. Furthermore, the implementations406

and the standard have both been refined in the process, by the detection and elimination of407

some potentially dangerous corner cases. We think it can be considered a success.408

We hope the work presented in this paper may serve as a model for future research and409

development.410

functions we might as well use a well-tested smart contract off-the-shelf. Similarly, the tool does not
support external function calls or loops.

36 This is just one small facet of the general fact that innovation in financial technology would benefit
from any and all techniques to produce scalable, reliable smart contracts.

37 . . . which may find itself blamed even if the smart contract was created by a third party.14

M. J. Gabbay, A. Jakobsson, and K. Sojakova 7:13

References411

1 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum412

smart contracts (sok). In Matteo Maffei and Mark Ryan, editors, Principles of Security and413

Trust, pages 164–186, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg. URL: https:414

//rdcu.be/ck0WJ, doi:10.1007/978-3-662-54455-6_8.415

2 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-cho-coq,416

a framework for certifying tezos smart contracts. In Formal Methods. FM 2019 International417

Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers, Part I, volume418

12232 of Lecture Notes in Computer Science, pages 368–379. Springer, 2019. URL: https:419

//doi.org/10.1007/978-3-030-54994-7_28, doi:10.1007/978-3-030-54994-7_28.420

3 L.M. Goodman. Tezos – a self-amending crypto-ledger, 2014. URL: https://tezos.com/421

whitepaper.pdf.422

4 Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding the423

greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th Annual Computer424

Security Applications Conference, ACSAC ’18, page 653–663, New York, NY, USA, 2018.425

Association for Computing Machinery. URL: https://arxiv.org/pdf/1802.06038.pdf,426

doi:10.1145/3274694.3274743.427

5 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. A formal verification428

tool for ethereum vm bytecode. In Proceedings of the 2018 26th ACM Joint Meeting on European429

Software Engineering Conference and Symposium on the Foundations of Software Engineering,430

ESEC/FSE 2018, page 912–915, New York, NY, USA, 2018. Association for Computing431

Machinery. doi:10.1145/3236024.3264591.432

FMBC 2021

15

Towards Contract Modules for the Tezos1

Blockchain2

Thi Thu Ha Doan !3

University of Freiburg, Germany4

Peter Thiemann !5

University of Freiburg, Germany6

Abstract7

Programmatic interaction with a blockchain is often clumsy. Many interfaces handle only loosely8

structured data, often in JSON format, that is inconvenient to handle and offers few guarantees.9

Contract modules provide a statically checked interface to interact with contracts on the Tezos10

blockchain. A module specification provides all types as well as information about potential failure11

conditions of the contract. The specification is checked against the contract implementation using12

symbolic execution. An OCaml module is generated that contains a function for each entrypoint of13

the contract. The types of these functions fully describe the interface including the failure conditions14

and guarantee type-safe and sometimes fail-safe invocation of the contract on the blockchain.15

2012 ACM Subject Classification16

Keywords and phrases contract API, modules, static checking17

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2318

Funding Thi Thu Ha Doan: supported by a grant from the Tezos foundation19

1 Introduction20

Contracts on the blockchain rarely run in isolation. To be useful beyond shuffling tokens21

between user accounts, they need to interact with the outside world. On the other hand,22

the outside world also needs to interact by initiating transactions and starting contracts23

that feed information into the blockchain. One direction is addressed by oracles that watch24

certain events on the blockchain, create a response by calculation or gathering data, and25

then invoke a callback contract to inject this response into the chain. Trust is an essential26

aspect for an oracle.27

The other direction is about automatizing certain processes in connection with the28

blockchain. For example, opening or closing an auction according to a schedule, programming29

a strategy for an auction, or creating an NFT. To this end, an interface is needed to invoke30

contracts safely. Existing interfaces are lacking because they are essentially untyped (string-31

based or JSON-based) and often low level because they require dealing directly with RPC32

interfaces. Trust is not needed because the process runs on behalf of a certain user.33

Contract modules provide a clean, language-integrated way to interact with a blockchain.34

They abstract over underlying string-based interfaces and details like fee handling. They35

provide a high-level typed interface which reduces a contract invocation to a function call in36

the language.37

Contract modules do not provide a fixed API, but rather generate a specialized interface38

for each contract. This interface is statically checked against the contract implementation to39

ensure type safety and exception safety (every failure condition arising is handled by proper40

error reporting).41

Our work is situated in the context of the Tezos blockchain, which supports Michelson as42

its low-level contract language, and the language OCaml, which comes with an expressive43

© Thi Thu Ha Doan and Peter Thiemann;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Towards Contract Modules for the Tezos Blockchain

16

23:2 Towards Contract Modules for the Tezos Blockchain

parameter (or (unit %close) (unit %bid));
storage (pair bool # bidding allowed

(pair address # contract owner
address # highest bidder ’s address

));

Listing 1 Simple auction contract (auction.tz)

polymorphic type system as well as a powerful module system that we enhance with contract44

modules.45

2 Context46

Tezos is a third generation, account-based, self amendable blockchain [5]. It employs a47

proof-of-stake consensus protocol, which includes ways to evolve the protocol itself. The48

consensus protocol is executed by so-called bakers and their proposed blocks are checked49

by validators. They receive some compensation in the form of tokens (Tezzies) for their50

work. According to proof-of-stake, bakers and validators are just nodes elected by the Tezos51

network according to their token balance.52

Each Tezos contract owns an account as well as some storage. Contracts are pure53

functions of type parameter × storage → operation list × storage. When a contract is54

invoked with a parameter, the blockchain provides the current storage and updates it with55

the second, storage component of its return value. The first component is a list of blockchain56

operations (contract deployments, token transfers, contract invocations) that are executed57

transactionally after the first invocation terminates. Each invocation may be accompanied58

with an amount of tokens that are added to the current account balance of the contract.59

Contracts are implemented in the language Michelson, a fully typed stack-based language.60

Each contract has fixed types for its parameter and for its storage. The storage is initialized61

when the contract is deployed. Besides primitive types like unit, int, bool, address, and62

string, there are pairs, sums, functions, lists, and maps (and many more) that can serve as63

types for storage and parameters.64

3 An auction contract65

As a concrete example, we consider a simple auction contract with the header shown in66

Listing 1. This contract has two entrypoints, close and bid, expressed by giving the single67

parameter a sum type. To call the entrypoint close we invoke the contract with parameter68

Left () otherwise we use Right (), where () is the sole value of type unit. The contract’s69

storage is a nested pair which contains a boolean flag and two addresses.70

The contract works as follows. It is deployed with storage (true,(owner,owner)) which71

indicates that bidding is allowed and the contract owner is currently also the highest bidder.72

On deployment the owner deposits an initial balance to indicate the minimum bid. Closing73

the contract transfers the balance to the owner. It is restricted to the owner. Closing as74

well as bidding fails if the auction is closed. If bidding is open and the amount of tokens75

accompanying the bid exceeds the current highest bid, the current bidder replaces the76

previous highest bidder and the previous highest bidder is reimbursed. Otherwise, bidding77

fails, too.78 17

T.T.H Doan and P. Thiemann 23:3

contract type Auction = sig
paid entrypoint bid ()
raises "closed" (** auction closed *)

| "too␣low" (** bid too low *)

entrypoint close ()
raises "closed" (** auction closed *)

| "not␣owner" (** caller cannot close *)
end

Listing 2 Example contract module

To invoke this contract from an OCaml program, we’d like to generate an OCaml module,79

say Auction, from a specification of the contract. This module contains two functions close80

and bid corresponding to the entrypoints. The type of these entrypoints reflects further81

properties of these entrypoints as well as the ways in which an entrypoint might fail.82

Besides the obvious, technology induced ways that a contract invocation might fail83

(insufficient gas price offered, insufficient gas to complete, timeout due to lack of connectivity,84

etc) a Michelson contract can fail due to a programmer induced condition caused by the85

instruction FAILWITH. It terminates contract execution with an error message which is86

reported back to the caller. This error message includes the top value on the stack.87

We consider the technological failures like Java’s unchecked exceptions, but we wish to88

deal with the explicit failures like checked exceptions [?]. Our generated code handles failures89

in a suitable error monad that makes the failures explicit in a custom datatype.190

Listing 2 shows a contract module for the auction contract. It declares the entrypoint bid91

as paid, i.e., it needs to be invoked with a non-zero amount of tokens, it gives the pattern ()92

for the input value of type unit, and it specifies two possible failure messages that we wish93

to deal with programmatically. The close entrypoint is similar, but requires no tokens.94

Listing 3 contains an OCaml module signature as it could be generated from the contract95

module. The module Tezos supposedly contains types and other low-level Tezos-specific96

definitions. The type pukh for public key hashes identifies contracts, the type mutez stands97

for Tezos tokens, the type status reflects the internal return status, and monad is an internal98

monad type. The signature declares a function and an error type for each entrypoint.99

The error types mirror the raises clauses. The first argument of each function is the100

address of the contract, then an optional argument for the transaction fee, an argument for101

passing an amount of tokens (only for a paid entrypoint), the next argument would be for102

the parameter; it is omitted here because its type is unit. The return type refers to the103

specific error type.104

4 Simple Checking105

We plan to check the contract by symbolic execution against its specification in the contract106

module. Here are some examples of checkable properties.107

For each entrypoint, we collect the set of reachable instructions. For example, the AMOUNT108

1 Alternatively, this could be done using OCaml exceptions, but we chose to stay within the monadic
framework that is already used by existing Tezos APIs.

CVIT 2016

18

23:4 Towards Contract Modules for the Tezos Blockchain

type bid_errors =
| bid_closed (** auction closed *)
| bid_too_low (** bid received is too low *)

val bid
: Tezos.pukh -> ?fee:Tezos.mutez -> amount:Tezos.mutez
-> (Tezos.status , bid_errors) Tezos.monad

type close_errors =
| close_closed (** auction closed *)
| close_not_owner (** caller cannot close the auction *)

val close
: Tezos.pukh -> ?fee:Tezos.mutez
-> (Tezos.status , close_errors) Tezos.monad

Listing 3 Generated signature

instruction obtains the amount of tokens sent with a contract invocation. It should not be109

possible to reach that instruction from an unpaid entrypoint like close.110

For the FAILWITH instructions, we also collect their arguments. The symbolic interpreter111

needs to retain concrete values as much as possible to obtain precise results at this point.112

Each argument to FAILWITH should be accounted for by one raises clause.113

5 Advanced Checking114

As it is expensive to invoke a contract just to find out that it fails, we propose to extend115

entrypoint specifications with preconditions as shown in Listing 4. The idea is that the116

generated OCaml module tries to check the preconditions off-chain before invoking the117

contract. To this end, the off-chain code needs to obtain properties like balance, storage etc118

of the contract, but this information is available from the Tezos node without a fee! We119

discuss two of the preconditions to highlight the properties that need to be analyzed.120

The precondition sender = owner of close can be checked off-chain because the owner’s121

address is part of the storage. However, it is in general unsound to perform such a test122

off-chain because the owner’s address could change if an entrypoint changes that component123

of the storage. To safely check this precondition, the analysis must determine that the124

owner component of the storage remains the same across all possible execution paths of the125

contract.126

Moreover, the gathering of instructions must build path predicates, such that each127

FAILWITH instruction comes with a predicate that must be true to reach the instruction. In128

contract implementation, the path predicate is sender != owner. As the conjunction of path129

predicate and precondition is unsatisfiable and because the owner component is constant, an130

off-chain test for sender = owner precisely predicts whether the failure condition arises.131

The situation is slightly more complex at the bid entrypoint. The failure "closed" is132

guarded by bidding. As the bidding component of the state can change, precise prediction133

is not possible. A closer look reveals some subtlety. If bidding is true, then the flag may134

have changed by some interleaved call to close. However, if bidding is false, then there is135

no point in invoking the contract because bidding will never be reset to true.136 19

T.T.H Doan and P. Thiemann 23:5

contract type SaferAuction = sig
storage (Pair (bidding : bool)

(Pair (owner : address) (hi_bidder : address)))

entrypoint close ()
requires bidding raises "closed" (** auction closed *)
ensures not bidding
requires (sender = owner) raises "not␣owner"

paid entrypoint bid ()
requires bidding raises "closed" (** auction closed *)
ensures bidding
requires (amount > old.balance)
raises "too␣low" (** bid too low *)
ensures (balance >= old.balance)
ensures (owner = old.owner)

end

Listing 4 Enhanced contract module

Hence the analysis should also record value transitions in the storage for non-failing137

executions. For bidding bid transitions from true to true and close transitions from true138

to false. Thus, if the off-chain check finds bidding = false, then we can precisely predict that139

bid would fail and trigger the corresponding error without invoking the contract proper.140

For the failure "to␣low", the analysis is very similar: we need to know that there is no suc-141

cessful execution of bid after an execution of close. Moreover, each invocation of bid raises142

the balance of the contract monotonically. Thus, if the off-chain check amount > balance143

fails, we can be sure that the contract invocation will also fail; either because some closed144

the auction or because the balance is at least as high as in the off-chain sample.145

6 Related work146

Smart contract-based applications often require interaction between a smart contract on147

the blockchain and the outside world. However, smart contracts cannot connect to external148

sources on their own. This is where oracles [10, 3] come into play. Oracles act as a bridge149

between smart contracts and external sources. Namely, they collect and verify external150

information and make it available to smart contracts on the blockchain. Several research151

works have been conducted to provide oracle solutions for the Blockchain. Adler et al.[9]152

proposed a framework to provide developers with a guide for incorporating oracles into153

blockchain-based applications. Oracles may need to observe the state of the chain to determine154

what information to send. In addition, oracles transmit data from external sources to the155

blockchain. Therefore, they would need to have a programmatic interface to interact with156

the blockchain.157

The basic idea of our advanced checking, namely precondition checking, is inspired by158

JML, the Java modeling language [8, 4], in which the behavior of program components159

is described as a contract between Java program and its clients. This contract specifies160

preconditions that must be satisfied by clients and postconditions that are guaranteed by the161

program. A precondition supplied with a client call must be verified before a function defined162

CVIT 2016

20

23:6 Towards Contract Modules for the Tezos Blockchain

by the program is called, and the program guarantees that the postconditions are satisfied163

in return after the call. The original idea of using preconditions and postconditions dates164

back to Hoare’s paper [7]. Software contracts have also been proposed for blockchain [2]. In165

our approach, the safe contract module in the OCaml language comes close to contracts in166

this sense. Several applications are based on JML [11]. Ahrendt et al. [1] propose the KeY167

framework for deductive software verification.168

Our contract module specifies preconditions and then off-chain checks whether a user call169

satisfies those preconditions. Symbolic execution plays an important role in the preconditions170

checking in our method. A smart contract is verified against its specification in the contract171

module by symbolic execution. In a paper on symbolic execution [6], Hentschel et al. proposed172

the symbolic execution debugger (SED) platform, which is based on the KeY framework.173

The platform SED has a static symbolic execution engine for sequential programs.174

7 Conclusion175

Current blockchains often provide low-level interfaces to interact with smart contracts. These176

interfaces work with loosely structured without static guarantees. This paper presents ongoing177

research on the programmatic interaction with smart contracts on the Tezos blockchain that178

could benefit developers of mixed applications and oracles comprised of on-chain and off-chain179

parts. The approach does not provide a general API, but targets each individual smart180

contract by generating a specialized contract module that provides a typed high-level interface181

from a contract specification. In doing so, errors from contract calls are explicitly specified in182

a user-defined data type. A contract call is wrapped in a fully typed and integrated OCaml183

function. In addition, the wrapper can check preconditions before the actual call to reduce184

the waste of gas of a failed call.185

Status: we are currently working on a prototype of the symbolic interpreter.186

References187

1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter Schmitt, and188

Mattias Ulbrich. Deductive Software Verification – The KeY Book: From Theory to Practice,189

volume 10001. Springer-Verlag, 01 2016. doi:10.1007/978-3-319-49812-6.190

2 Davide Ancona, Giovanni Lagorio, and Elena Zucca. A core calculus for Java exceptions. In191

Linda M. Northrop and John M. Vlissides, editors, Proceedings of the 2001 ACM SIGPLAN192

Conference on Object-Oriented Programming Systems, Languages and Applications, OOPSLA193

2001, Tampa, Florida, USA, October 14-18, 2001, pages 16–30. ACM, 2001. doi:10.1145/194

504282.504284.195

3 Massimo Bartoletti. Smart contracts contracts. Frontiers Blockchain, 3:27, 2020. doi:196

10.3389/fbloc.2020.00027.197

4 Giulio Caldarelli. Understanding the blockchain oracle problem: A call for action. Information,198

11(11), 2020.199

5 Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: Advanced200

specification and verification with JML and ESC/Java2. In Proceedings of the 4th International201

Conference on Formal Methods for Components and Objects, FMCO’05, page 342–363, Berlin,202

Heidelberg, 2005. Springer-Verlag.203

6 L. Goodman. Tezos—a self-amending crypto-ledger, 2014. URL: https://www.tezos.com/204

static/papers/white-paper.pdf.205

7 Martin Hentschel, Richard Bubel, and Reiner Hähnle. The symbolic execution debugger (SED):206

a platform for interactive symbolic execution, debugging, verification and more. International207

Journal on Software Tools for Technology Transfer, 21, 10 2019.208 21

T.T.H Doan and P. Thiemann 23:7

8 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,209

12(10):576–580, October 1969.210

9 Gary Leavens and Yoonsik Cheon. Design by contract with JML, 2006. URL: https:211

//www.cs.ucf.edu/~leavens/JML/index.shtml.212

10 Kamran Mammadzada, Mubashar Iqbal, Fredrik Milani, Luciano García-Bañuelos, and213

Raimundas Matulevičius. Blockchain Oracles: A Framework for Blockchain-Based Applications,214

pages 19–34. Springer Verlag, 09 2020.215

11 Roman Mühlberger, Stefan Bachhofner, Eduardo Castelló Ferrer, Claudio Di Ciccio, Ingo216

Weber, Maximilian Wöhrer, and Uwe Zdun. Foundational oracle patterns: Connecting217

blockchain to the off-chain world. Business Process Management: Blockchain and Robotic218

Process Automation Forum, page 35–51, 2020.219

12 Peter W. V. Tran-Jørgensen. Automated translation of VDM-SL to JML-annotated Java.220

Technical Report Electronics and Computer Engineering, 5(29), Mar 2017.221

CVIT 2016

22

Towards Verified Price Oracles for Decentralized1

Exchange Protocols2

Kinnari Dave ! �3

CertiK, USA4

Vilhelm Sjöberg !5

CertiK, USA6

Xinyuan Sun !7

CertiK, USA8

Abstract9

Various smart contracts have been designed and deployed on blockchain platforms to enable10

cryptocurrency trading, leading to an ever expanding user base of decentralized exchange platforms11

(DEXs). Automated Market Maker contracts enable token exchange without the need of third12

party book-keeping. These contracts also serve as price oracles for other contracts, by using a13

mathematical formula to calculate token exchange rates based on token reserves. However, the price14

oracle mechanism is vulnerable to attacks both from programming errors and from mistakes in the15

financial model, and so far their complexity makes it difficult to formally verify them. We present a16

verified AMM contract and validate its financial model by proving a theorem about a lower bound17

on the cost of manipulation of the token prices to the attacker. The contract is implemented using18

the DeepSEA system, which ensures that the theorem applies to the actual EVM bytecode of the19

contract. This theorem could be used as proof of correctness for other contracts using the AMM, so20

this is a step towards a verified DeFi landscape.21

2012 ACM Subject Classification Software engineering, Security and Privacy22

Keywords and phrases Smart Contract Verification, Interactive Theorem Proving, Blockchain,23

Decentralized Finance24

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2325

1 Introduction26

The last two years have seen a rapidly increasing interest in using decentralized finance27

(DeFi) instead of traditional centralized exchanges in order to trade, lend, and borrow28

cryptocurrencies. DeFi puts the trading logic into a smart contract on the blockchain, which29

increases trust and transparency, and lets anyone compose financial applications “like lego30

pieces”. Smart contracts also enable completely new financial primitives, e.g. flash loans [21],31

risk-free lending of very large amounts which will be paid back within a single blockchain32

transaction. Estimates say DeFi total trading volume increased from $0.67 billion in January33

2020 to $70 billion in January 2021, while DeFi investments reached 20.5 billion in January34

2021.[15, 16]35

However, protocols in decentralized finance are vulnerable to hacks. In 2020 there were36

at least 16 large DeFi hacks, with total losses of $196 million. Some of these are due to37

mistakes in the financial model (we give an example below in Section 2.2), while in others38

the financial theory was sound but the contract itself was implemented incorrectly [18].39

The high stakes of DeFi makes it crucial that the smart contracts executing these protocols40

come with formal guarantees. However, applying formal verification to them is challenging.41

Reasoning about the financial models often requires mathematics, e.g. real analysis, that42

goes beyond the capabilities of non-interactive theorem proves such as SMT solvers. And43

even if we can prove theorems about the financial model, we must still show that the actual44

© John Q. Public and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Towards Verified Price Oracles for Decentralized Exchange Protocols

23

23:2 Towards Verified Price Oracles for Decentralized Exchange Protocols

program code correctly implements the model. Existing tools either try to work at the model45

level, or they can prove quite shallow properties about code.46

In this paper, we consider one of the most widely used DeFi protocols, a Uniswap-style47

automated market making (AMM) contract. Various attempts [4, 3, 7] have been made at48

studying the AMM model mathematically and reasoning about specific cases. However, these49

are paper proofs and do not directly reason about the program being executed on the virtual50

machine.51

We make use the the DeepSEA system, a language tailored to support rigorous formal52

verification. The DeepSEA compiler can automatically generate a high-level Coq model for a53

contract, so we know that the theorem we prove in Coq will apply to the actual executed54

code. Achieving this requires some care, because existing work deals with the AMM model55

in terms of real numbers, and we must lift that proof to give bounds for the integer variables56

in the actual program.57

AMM contracts are a basic building block of more complex financial contracts. In the58

future, we envision that such contracts will also be formally verified, e.g. by using the result59

we prove here as one lemma.60

Contributions. We make the following contributions in this paper:61

1. We implement a Uniswap-style AMM contract in DeepSEA (Section 3).62

2. We formalize in Coq the result establishing lower bounds on the cost of manipulating prices63

quoted by a contract implementing the AMM mechanism to an attacker (Section 4.2).64

This proof makes use existing third-party math developments (Section 4.1), which shows65

the benefit of working inside a general-purpose proof assistant.66

3. We also establish the non-depletion property of the contract, i.e it is impossible to67

drain the contract of all it’s reserves by swapping any number of tokens. (Section 4.2).68

This proof requires exporting integer inequalities to reals and using ring homomorphism69

properties to transport them back to integers, as is evident in the math_lemma.v 170

module.71

4. We use the auto generated Coq functions by the DeepSEA compiler frontend to link the72

bytecode to the formalized proof, thus establishing important financial properties of the73

generated bytecode (Section 4.3).74

In the rest of the paper, we first explain the setting of the work (Section 2), then our75

specific contributions, and finally we discuss related work and conclude.76

2 Background77

“Market making” is the process of providing liquidity for various assets by instantaneous78

quoting of the price at which the market maker is willing to buy and the price at which the79

market maker is willing to sell their asset. Traditionally, these price quotes are listed in an80

order book, which records the current assets open for buying/selling. This requires trust81

in the central party managing the liquidity pools. The idea behind an Automated Market82

Maker protocol is to replace the central party with a smart contract that owns reserves of83

two Ethereum-hosted cryptocurrencies (a.k.a tokens), and trades them at a price determined84

using a mathematical formula. Once these smart contracts are deployed, they can also serve85

as price oracles for other smart contracts.86

1 Available online at https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/
math_lemma.v 24

Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun 23:3

2.1 Automated Market Makers87

Automated Market Makers are decentralized exchange protocols which facilitate trading of88

tokens on blockchain based platforms by providing liquidity pools without an order book89

mechanism. These protocols allow exchange between pairs of tokens. Each token pair has a90

corresponding smart contract which facilitates the exchange. The exchange rate is calculated91

using a mathematical formula which is a function of the token reserves in the pair contract.92

We focus on the constant product market makers. This type of automated market makers93

satisfy the invariant:94

xA.yB = k95

where xA, yB are the reserves for token A and token B respectively. The marginal price of A96

with respect to B is determined to be the ratio of the token reserve of A to that of B. Since97

the Uniswap protocol [1] is one of the most popular implementations of the AMM mechanism,98

we briefly describe the functionalities it provides and its mechanism. The protocol is designed99

so that the smart contract implementing it interacts with two kinds of users: Liquidity100

Providers and Traders.101

Liquidity Providers contribute to the pool of reserves of the token pair. This is enabled102

by issuing a liquidity token to the Liquidity Provider when they choose to contribute to103

the pool. The token dictates the proportion of shares of token reserves that the provider is104

entitled to. The provider can treat the liquidity token as an asset that can be traded. To105

incentivize the providers, they receive an interest proportionate to their shares, which is106

funded by charging traders a 0.3% transaction fee for each trade they make with the contract.107

The mint() method facilitates minting of liquidity tokens for the providers.108

At any point, the provider is free to withdraw liquidity from the token reserves by calling109

the burn() method from the smart contract. On doing so, they receive the tokens they had110

lent to the liquidity pool plus the interest they earned from the transaction fees.111

The number of liquidity tokens minted for a particular liquidity provider is determined112

by their share in the token reserve. There are various formulae used to calculate this. The113

Uniswap protocol determines the number of tokens minted using the following formula:114

115

sminted = xdeposited

xstarting
.sstarting116

In the event that liquidity is being deposited to the reserves for the first time, the number of117

liquidity tokens minted is given by:118

119

sminted = √
xdeposited.ydeposited120

Additionally, the Uniswap protocol charges a 0.05% protocol fee as a part of the net 0.3%121

transaction fee charged to traders. This fee is optional and is turned off for the DeepSEA122

implementation of the AMM contract.123

2.2 Oracles124

The AMM mechanism also supports a price oracle function. The first protocol designed by125

Uniswap supports an on-chain price oracle which computes prices using the constant product126

market maker formula and reports instantaneous prices when queried. Other contracts can127

e.g. issue loans of one token guaranteed by a collateral in another token, and use the reported128

price to calculate how much the collateral is worth. However, the mechanism of reporting129

instantaneous prices is highly susceptible to attacks, in particular in combination with flash130

CVIT 2016

25

23:4 Towards Verified Price Oracles for Decentralized Exchange Protocols

loans. Let us consider an example of an oracle attack which happened on 18th February131

2020 [5]:132

▶ Example 1. The bZx protocol is a lending protocol which facilitates decentralized borrowing133

and lending of assets on Ethereum. The Kyber network on the other hand is an on-chain134

AMM protocol similar to Uniswap. An attacker flash-borrowed 7500 ETH from the bZx135

protocol, then called the Kyber protocol to swap a net amount of 900 ETH with 155,994136

sUSD. This affects the reserves of ETH and sUSD in the Kyber protocol thus affecting137

the prices reported by it. The attacker later relies on bZx quering the faulty Kyber oracle138

to borrow ETH against sUSD at a cheap rate. To get the sUSD required to perform this139

exchange on bZx, the attacker buys sUSD from an unrelated contract at a normal rate. They140

used the Synthetix depot contract, which had larger reserves and therefore did not change141

price as much as Kyber. They used 3518 ETH from their borrowed ETH to get 943,837142

sUSD. Now, they borrow 6796 ETH from bZx with a collateral of only 1,099,841 sUSD. They143

are able to do this because of the price manipulation on the Kyber oracle which bZx queries.144

Finally, they are able to transfer back the 7500 ETH borrowed from bZx to repay the flash145

loan. In effect, bZx lost $600k in equity.146

How can such attacks be avoided? There are several partial solutions. The lending147

contract can try to avoid being called inside a flash-loan transaction (limiting the amount of148

funds available for oracle manipulations), or use a “slippage check” to detect if a manipulation149

is in progress. The oracle can report a time-weighted average instead of the instantaneous150

price, to smooth out spikes (this approach is adopted by the Uniswap v2 protocol). We151

believe the ideal solution, which we build towards in this paper, is to prove that attacks152

are impossible by calculating the cost of such manipulation to the attacker as a function153

of various parameters of the contract such as token reserves. Once this is achieved, these154

parameters can be modified to make the cost of manipulation high enough that the attack155

can not be carried out using the funds available to the attacker.156

2.3 The DeepSEA system157

DeepSEA (Deep Simulation of Executable Abstractions), is a programming language and158

system that links high-level specifications in Coq [19] to executable code.The original ver-159

sion [17] compiled programs into C, while a new version [9] compiles Ethereum contracts to160

Ethereum Virtual Machine (EVM) bytecode.161

The DeepSEA compiler works in two steps. The front end parses and type-checks the162

input to create a typed intermediate representation. From the intermediate representation it163

then generates two things. First, a set of Coq Gallina functions that serves as a high-level164

model of the program, one function for each method in the contract. Since Gallina is a165

pure functional language, monads are used to capture effects. The end-user can load this166

model into their own Coq project, and prove theorems about the contract just as they would167

about any program written in Coq. Second, there is a backend similar to the CompCert168

compiler [11], which goes through a series of phases of intermediate representations and169

generates an EVM bytecode file. Crucially, there is a proof in Coq (although it is not yet170

complete) that this compilation is done correctly, which will give a high degree of certainty171

that results proven about the high-level specifications also hold for the bytecode.172

Contracts written in DeepSEA are structured similarly to Solidity contracts, as a set of173

objects which contain state (storage) variables and methods which can modify the state. In174

DeepSEA the objects are further organized into “layers”, which can express the modular175

structure of large systems.176 26

Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun 23:5

3 DeepSEA AMM177

The smart contract written in DeepSEA to support AMMs2 uses the Uniswap v2 protocol178

as a blueprint. Instead of dividing the functionality of the protocol into two basic types of179

smart contracts (as is done in the Uniswap protocol), the DeepSEA contract combines the180

functionality of the router contracts and that of the core contracts into a single contract with181

two sets of methods corresponding to the above classification.182

In the DeepSEA setup, the entire contract is defined as a layer AMM on top of an underlay183

layer called the AMMLIB. The AMMLIB layer consists of three objects: two ERC20 tokens184

which are to be swapped and a liquidity token. The AMM layer acts as the interface for the185

contract. This layer consists of an object of type AMMInterface, which defines the methods186

that provide all the functionalities of the protocol. The methods in this object signature are187

given as follows:188

189

simpleSwap0: This method allows the transfer of one token to the contract to be exchanged190

for the other, and returns the amount of the second token to be received in return.191

mint: This method allows the transfer of liquidity to a liquidity pool for a liquidity192

provider.193

burn: This method allows a liquidity provider to withdraw liquidity from a pool.194

sync: This method is a recovery mechanism method to prevent the market for the given195

pair from being stuck in case of low reserves.196

skim: This method prevents any user from depositing more tokens in any reserve than197

the maximum limit, to prevent overflow.198

k: This method tracks the product of the reserves.199

quote0: This method returns the equivalent amount of the second token, given an amount200

of the first token and current reserves in the contract.201

getAmountOut0: This method returns the maximum possible amount of a token than202

can be gained in exchange for a particular input amount of the other token and that of203

the reserves.204

getAmountIn0: This method returns the amount of a given token that must be input in205

order to obtain the desired amount of the other token under the given reserves.206

Compared to the Uniswap protocol, we have made a few simplifications. Unlike Uniswap,207

which offers the option of switching on/off the protocol fee, the DeepSEA contract does not208

model protocol fees. Moroever, instead of using the above mentioned square root formula209

to calculate the share of minted liquidity tokens for a liquidity provider, the DeepSEA210

contract uses the product and burns the first 1000 coins, as in Uniswap v2. The price211

oracle mechanism is based on Uniswap v1, and the DeepSEA contract does not support flash212

swaps. In the future we may add these features, in order to make our contract completely213

ABI-compatible with the original. However, the DeepSEA AMM contract already offers214

all the core functionality offered by the Uniswap protocol, and it contains everything that215

is relevant to the specification that we are verifying. As such, our proof is an example of216

verifying a realistic contract.217

2 Available online at https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/
amm.ds

CVIT 2016

27

23:6 Towards Verified Price Oracles for Decentralized Exchange Protocols

4 Manipulating Prices218

While AMM contracts hold a great deal of promise for the future of Decentralized Finance,219

the stability of the markets generated using smart contracts remains a concern. To address220

such concerns and provide a rigorous comparison with Centralized Finance, Angeris et al.221

carried out a mathematical analysis [4]. They define the conditions on the Uniswap price in222

terms of the market price so that no arbitrage opportunities arise. Moreover, they show that223

it is impossible to drain the contract of all it’s liquidity reserves, and go on to model risk in224

the constant product market maker model. In this paper, we formalize two of their theorems225

inside the Coq proof assistant and connect them to the AMM contract written in DeepSEA.226

Since the AMM contract calculates the prices of tokens based on liquidity reserves using227

a mathematical formula, an attacker can potentially trade with the contract to alter reserves228

in order to manipulate the prices, as illustrated in Section 2.2. Angeris et al. prove that the229

cost of such a manipulation is proportionate to the reserves, thus confirming the intuition230

that large liquidity reserves lead to stable prices. We consider the cost of manipulating231

the market price in the event of the reference market price being infinitely liquid (i.e when232

∆β = mp∆α).233

Suppose an attacker wants to manipulate the Uniswap price, s.t. mu = (1 + ϵ)mp. Hence234

we have, Rβ+∆β

Rα−∆α
= (1 + ϵ)mp.235

The theorem establishes that there is a minimal positive cost to the attacker which is236

proportional to the reserves of the token added. The cost of manipulation of the Uniswap237

price to the attacker is calculated as the difference between the amount of tokens the attacker238

needs to add to the liquidity pools and the value of the tokens they would receive as a result239

of the exchange. The function is calculated as follows:240

241

C(ϵ) = ∆β − mp∆α = Rβ(
√

1 + ϵ + (
√

1 + ϵ)−1 − 2)242

The lower bounds on C(ϵ) are given as follows:243

244

∀0 ≤ ϵ ≤ 1, C(ϵ) ≥ Rβ
ϵ2

2 inf0≤ϵ′≤1C ′′(ϵ′) = (1
32

√
2)

)Rβϵ2
245

246

∀ϵ ≥ 1, C(ϵ) ≥ κRβ

√
ϵ247

where κ = 3/2 −
√

2.248

We have formally proven these lower bounds in the Coq proof assistant.249

Furthermore, we also prove the invariant property that it is impossible to drain the250

contract of all it’s token reserves. The result is stated as follows:251

252

Rα + Rβ > 0253

Proving this requires establishing the invariant that the product of reserves is strictly254

increasing over each swap operation.255

4.1 Importing third-party Coq libraries256

In order to reason about various bounds on expressions used for the proof of the result, we257

chose to use the Coq-interval [14] library. The library supports a high degree of automation, to258

establish approximate preliminary bounds on certain standard functions like the square root259

function, polynomials, trigonometric functions, the exponential function and the logarithm.260

It uses Taylor models (as defined in [13]) to establish such bounds.261 28

Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun 23:7

However, this library by itself doesn’t prove to be sufficient, since it relies on Coquelicot [8]262

to prove certain results and doesn’t provide automation to use them. In order to setup an263

environment compatible with these results, we use Coquelicot as well.264

Additionally, we rely on the injections of natural numbers and integers into reals, and265

the proven ring homomorphism properties of these injection in the Coq standard library, to266

argue about integers in bytecode inside reals and then transport established inequalities over267

reals back to inequalities over integers.268

4.2 Proof Outline269

The formalization3 of the above properties of the constant product market maker protocol in270

the Coq proof assistant requires the use of real analysis results.271

To prove the lower bound in the first case, we use the Taylor series approximation for272

continuous and twice differentiable functions. We state and prove the Taylor series approx-273

imation for the function,
√

1 + ϵ + 1/
√

1 + ϵ − 2 in the interval (0, 1]. The lemma is stated274

as follows:275

276

Lemma taylor_m : 0 < eps <= 1 ->
exists eta,
(0 <> eps -> (0 < eta < eps \/ eps < eta < 0)) /\
sqrt (1 + eps) + 1/sqrt(1 + eps) -2 =
(((2 - eta) / (8* ((1 + eta)^2) * sqrt (1 + eta))) * eps^2).

We use the general version of the Taylor Lagrange theorem formalized in the Coq-interval277

library to prove the above lemma. [13] The statement of the theorem is as follows :278

279

Section TaylorLagrange.
Variables a b : R.
Variable n : nat.
Notation Cab x := (a <= x <= b) (only parsing).
Notation Oab x := (a < x < b) (only parsing).
Variable D : nat -> R -> R.
Notation Tcoeff n x0 := (D n x0 / (INR (fact n))) (only parsing).
Notation Tterm n x0 x := (Tcoeff n x0 * (x - x0)^n) (only parsing).
Notation Tsum n x0 x := (sum_f_R0 (fun i => Tterm i x0 x) n) (only parsing).
Section TL.

Hypothesis derivable_pt_lim_Dp :
forall k x, (k <= n)%nat -> Oab x ->
derivable_pt_lim (D k) x (D (S k) x).

Hypothesis continuity_pt_Dp :
forall k x, (k <= n)%nat -> Cab x ->
continuity_pt (D k) x.

Variables x0 x : R.
Theorem Taylor_Lagrange :

exists xi : R,
D 0 x - Tsum n x0 x =

3 Available online at https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/
cst_man.v

CVIT 2016

29

23:8 Towards Verified Price Oracles for Decentralized Exchange Protocols

Tcoeff (S n) xi * (x - x0)^(S n)
/\ (x0 <> x -> x0 < xi < x \/ x < xi < x0).

End TL.
End TaylorLagrange.

In the above setting, the function D : nat → R → R represents the series of a function and280

it’s nth derivative, where D0 is the function itself and Dn is it’s (n-1)th derivative. Tsum n281

x0 x is the sum of the first n terms of the Taylor series of the function D0. Since, a necessary282

condition for the Taylor Lagrange theorem to hold is that if the approximation is of the283

nth order then each of the kth order derivatives of the function should be continuous and284

differentiable for all k ≤ n, the section in the Taylor.v module includes a hypothesis, which285

we must prove in order to apply the theorem. We define the following function and use it in286

place of the above function D for our application of the Taylor Lagrange theorem:287

Definition T_f_1 (n : nat) :=
match n with
| 0%nat => (fun x => sqrt(1+x) + (1/sqrt (1 + x)))
| 1%nat => (fun x => 1/(2* sqrt(1+x)) - (1/ (2 * (1 + x) * (sqrt (1 + x)))))
| 2%nat => (fun x => (2 - x)/ (4 * ((1 + x)^2) * sqrt(1 +x)))
| _ => (fun x => 0%R)

end.

The required hypothesis are stated and proved as the following lemmas:288

Lemma deriv_lim_T_f : forall (k : nat) (x : R),
(k <= 1)%nat ->
0 < x < 1 ->
derivable_pt_lim (T_f_1 k) x (T_f_1 (S k) x).

Lemma cont_lim_T_f : forall (k : nat) (x : R),
(k <= 1)%nat ->
0 <= x <= 1 -> continuity_pt (T_f_1 k) x.

Once, we have the Taylor approximation, we establish a lower bound on the remainder term289

using the powerful interval tactic. This can be done since we have a range in which ϵ lies for290

the first lower bound on the cost of manipulation (i.e 0 ≤ ϵ ≤ 1). The lemma for the lower291

bound on the remainder term is stated as follows:292

293

Lemma lower_bnd : forall eta, 0 <= eta <= 1 ->
(2 - eta) / (8 * ((1 + eta)^2) * sqrt (1 + eta)) >= 1 / 48.

Note that, the lower bound in (cite) is 1/32
√

2. Since the interval tactic works based294

on approximations [14], it cannot be used to prove exact irrational bounds. Hence, we295

approximate
√

2 with 3/2 to get a lower bound of 1/48. This lower bound can be made296

closer to 1/32
√

2, by using a finer approximation.297

This gives us the first part of the lower bound on the cost of manipulation of the Uniswap298

price for exchange of tokens.299

To prove the second part, we use a different approach from the one suggested in [4]. The300

lower bound for the case when ϵ ≥ 1 involves proving the following inequality:301

x + x−1 − 2 ≥ κx302

where x =
√

1 + ϵ, κ = 3/2 −
√

2. Here again we approximate κ by 5/100 to facilitate the303

use of the interval tactic. Instead of using the analysis of quadratic equations approach as304 30

Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun 23:9

suggested, we use a simpler way. After a small algebraic manipulation, and accounting for305

approximations the above inequality can be re-written as the following lemma:306

Lemma eps_sq : eps >= 1 ->
(sqrt(1 + eps) - 1)^2 - ((5/100) * (1 + eps)) >= 0.

To show this, we use the fact that if the derivative of a continuous function defined on307

a connected domain is positive, then the function is increasing. This coupled with the308

observation that the value of the l.h.s of the above inequality evaluated at 1 is positive, gives309

us the proof. Thus we have the lower bound on the cost of manipulation for the second case :310

311

Lemma cst_func_ge_1 : eps >= 1 ->
sqrt (1 + eps) + (1 / sqrt (1 + eps)) -2 >= ((5/100) * sqrt (1 + eps)).

Combining both the cases into one result, gives us the following lemma :312

313

Definition cost_of_manipulation_val := (IZR (reserve_beta s)) *
(sqrt (1 + eps) + (1/ sqrt (1 + eps)) - 2).

Theorem cost_of_manipulation_min : eps >= 0 ->
cost_of_manipulation_val >= (IZR (reserve_beta s)) * (5/100) * sqrt (eps) \/
cost_of_manipulation_val >= (IZR (reserve_beta s)) * (1/48) * (eps^2).

We further prove another important property towards making the contract hacker resistant.314

We show that after performing an arbitrary swap, if the contract had positive balances of315

both the tokens, it is impossible to drain the contract of all it’s reserves, irrespective of the316

amount of tokens swaped. The result holds for the AMM contract written in DeepSEA :317

Theorem no_depletion_reserves : (IZR (reserve_beta s'')) + (IZR (reserve_alpha s'')) > 0.

Proving this result requires establishing the increasing product invariant over integers. This318

requires some careful reasoning over reals before the result is transported back to integers.319

The increasing product invariant is stated as follows:320

321

Lemma increasing_k : Z.lt (compute_k s) (compute_k s'').

The above lemma states that the product of the reserves always increases with each swap322

operation. Thus, we establish two independent important algorithmic properties of the323

bytecode corresponding to the DeepSEA AMM contract.324

4.3 Connection to the DeepSEA contract325

The results we formalized in the Coq Proof assistant about the cost of manipulation of326

the Uniswap price are for the AMM contract written in DeepSEA. The cst_man.v module327

imports the Coq files generated by the DeepSEA compiler, so that computations can be328

made using the variables of the contract. We want to know how prices are affected by a329

single call to the simpleSwap0 function, we do so by adding the following hypothesis to our file:330

331

Hypothesis del_alp : runStateT (AutomatedMarketMaker_simpleSwap0_opt
toA (make_machine_env a)) s = Some (r' , s'').

CVIT 2016

31

23:10 Towards Verified Price Oracles for Decentralized Exchange Protocols

Here AutomatedMarketMaker_simpleSwap0_opt is an automatically generated Coq function332

which represents the behaviour of the contract method. The hypothesis says that a call to it,333

exchange of the token α for the input token β ,completed without reverting and left us in a334

new contract state s’.335

This is done to calculate ∆α. Once the values Rα, Rβ , ∆α, ∆β are obtained from the336

contract, the fraction by which the exchange price can be manipulated (i.e ϵ) is computed337

using the formula:338

339
Rβ + ∆β

Rα − ∆α
= (1 + ϵ)∆β

∆α
340

Now the results stated in 4 are formalized for the ϵ obtained from above and its possible341

values.342

5 Related Work343

We are only aware of one mechanized proof applied to a DeFi contract: Park et al.’s344

verification of the original Uniswap AMM using the KEVM Framework [22]. They prove that345

the functions implemented by the contract bytecode conforms to a high-level specification346

(the constant-product formulas), and they do not prove any financial correctness properties.347

In other words, the end result of the verification is a set of high-level functions similar to what348

DeepSEA generates automatically and we take as our starting point; however, this is done349

for the already existing and deployed contract, while DeepSEA requires you to re-implement350

the contract in the DeepSEA language.351

As for paper proofs, we already discussed Angeris and Chitra’s theorem [4], which we352

mechanize in this paper. Angeris et al. [3] consider generalizations of the Uniswap formula353

and further desirable properties. Bartoletti et al set out to understand DeFi protocols by354

writing down (on paper) abstract models of AMMs [7] and lending pools [6] as transition355

systems, and then proving theorems such as demand-sensitivity and non-depletion about356

them. In future work, we aim to provide machine-checked proofs of similar properties.357

An alternative to formal proof is to apply model checking [20, 18] or graph search with358

contraints [23] to find DeFi hacks. These works manually translate and simplify the set of359

contracts into a language the model checker can deal with, and can then make a best effort360

to find exploits. Because model checking is automatic (so it requires less user effort) we361

believe this can be a useful complement.362

The kind of oracle we consider provides pricing information based directly on on-chain363

trades. This should be distinguished from oracles that aggregates data from off-chain sources364

and posts them on the blockchain. Analyses of the latter [10, 12] show that they, too, have365

problems with spurious data spikes and possible attacks.366

6 Conclusions and Future Work367

We take the first step in formally verifying financial properties of the contract at the368

algorithmic level. This is enabled by the Coq functional model that is automatically369

generated by the DeepSEA compiler. Not only is the compilation to bytecode verified, but370

we also have a formalization of the desirable properties of the Constant Product Market371

Maker model which is directly tied to the DeepSEA AMM contract. Hence we have a verified372

specification and verified code.373

In the future, we want to extend this line of work in two directions. First, newer oracles374

such as Uniswap v2 [1] and Uniswap v3 [2] are more robust and hacker-resistant than the375 32

Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun 23:11

simple instantaneous-price oracle that we consider. Theoretical results about such models376

however still remain to be established. Second, it will be interesting to prove the correctness377

of a client of this oracle, e.g. to give bounds on when a lending protocol can become378

undercollateralized. Just like the DeFi applications themselves are built from “money lego”,379

we hope that they can be verified by composing together theorems about the individual380

components.381

References382

1 Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core. 2020. URl: ht-383

tps://uniswap. org/whitepaper. pdf.384

2 Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap385

v3 core. 2021.386

3 Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market387

makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,388

pages 80–91, 2020.389

4 Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis390

of uniswap markets. arXiv preprint arXiv:1911.03380, 2019.391

5 Korantin Auguste. The bzx attacks explained. Blog post. https://www.palkeo.com/en/392

projects/ethereum/bzx.html#second-transaction., 2020. (Accessed on 05/23/2021).393

6 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. Sok: Lending pools394

in decentralized finance. CoRR, abs/2012.13230, 2020. URL: https://arxiv.org/abs/2012.395

13230, arXiv:2012.13230.396

7 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory of automated397

market makers in defi. arXiv preprint arXiv:2102.11350, 2021.398

8 Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly library399

of real analysis for coq. Mathematics in Computer Science, 9(1):41–62, 2015.400

9 CertiK Foundation. DeepSEA. (Accessed on 05/23/2021). URL: https://github.com/401

certikfoundation/deepsea.402

10 Wanyun Catherine Gu, Anika Raghuvanshi, and Dan Boneh. Empirical measurements on403

pricing oracles and decentralized governance for stablecoins. Available at SSRN 3611231, 2020.404

11 Xavier Leroy. The CompCert verified compiler. http://compcert.inria.fr/, 2005–2021.405

12 Bowen Liu, Pawel Szalachowski, and Jianying Zhou. A first look into defi oracles. arXiv406

preprint arXiv:2005.04377, 2020. URL: https://arxiv.org/abs/2005.04377.407

13 Érik Martin-Dorel, Laurence Rideau, Laurent Théry, Micaela Mayero, and Ioana Pasca.408

Certified, efficient and sharp univariate taylor models in coq. In 2013 15th International409

Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages 193–200.410

IEEE, 2013.411

14 Guillaume Melquiond. Coq-interval. Retrieved June, 17:2017, 2011.412

15 miscellanous. Cryptocurrency statistics. Blog post. https://duneanalytics.com/queries/413

4494/8769, 2020.414

16 miscellanous. Defi statistics. Blog post. https://cointelegraph.com/news/415

defi-hacks-and-exploits-total-285m-since-2019-messari-reports, 2020.416

17 Vilhelm Sjöberg, Yuyang Sang, Shu-chun Weng, and Zhong Shao. DeepSEA: a language for417

certified system software. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–418

27, 2019.419

18 Xinyuan Sun, Shaokai Lin, Vilhelm Sjöberg, and Jay Jie. How to exploit a defi project420

(extended talk abstract). Talk at the 1st Workshop on Decentralized Finance (DeFi), colocated421

with Financial Cryptography and Data Security 2021 (fc21), March 2021.422

19 The Coq Development Team. The Coq proof assistant. https://coq.inria.fr/. Accessed:423

28/5/2019.424

CVIT 2016

33

23:12 Towards Verified Price Oracles for Decentralized Exchange Protocols

20 Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. Formal analysis of composable425

defi protocols. CoRR, abs/2103.00540, 2021. URL: https://arxiv.org/abs/2103.00540,426

arXiv:2103.00540.427

21 Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang, and428

Kui Ren. Towards understanding flash loan and its applications in defi ecosystem. CoRR,429

abs/2010.12252, 2020. URL: https://arxiv.org/abs/2010.12252, arXiv:2010.12252.430

22 Daejun Park Yi Zhang, Xiaohong Chen. Formal specification of constant product market431

maker model and implementation.432

23 Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. On the433

just-in-time discovery of profit-generating transactions in defi protocols. arXiv preprint434

arXiv:2103.02228, 2021.435

34

Formally Documenting Tenderbake1

Sylvain Conchon2

Nomadic Labs, F-75013 Paris, France3

Alexandrina Korneva4

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, F-911905

Gif-sur-Yvette, France6

Çagdas Bozman7

Functori, F-75012 Paris, France8

Mohamed Iguernlala9

Functori, F-75012 Paris, France10

Alain Mebsout11

Functori, F-75012 Paris, France12

Abstract13

In this short paper, we propose a formal documentation of Tenderbake, the new Tezos consensus14

algorithm, slated to replace the current Emmy family algorithms. The algorithm is broken down15

to its essentials and represented as an automaton. The automaton models the various aspects of16

the algorithm: (i) the individual participant, referred to as a baker, (ii) how bakers communicate17

over the network (the mempool) and (iii) the overall network the bakers operate in. We also present18

a TLA+ implementation, which has proven to be useful for reasoning about this automaton and19

refining our documentation. The main goal of this work is to serve as a formal foundation for20

extracting intricate test scenarios and verifying invariants that Tenderbake’s implementation should21

satisfy.22

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro23

Keywords and phrases Consensus algorithm, Tezos blockchain, TLA+24

Digital Object Identifier 10.4230/OASIcs...25

1 Introduction26

Tenderbake is a new consensus algorithm designed by Nomadic Labs for the Tezos block-27

chain [5]. Tenderbake participates in the blockchain protocol to ensure that all peers reach28

agreement on the state of the distributed ledger. Essentially, the algorithm ensures that all29

participants record the same blocks, in the same order, in their local copy of the blockchain.30

Like Tezos’s current Emmy family protocols, Tenderbake is a Byzantine Fault-Tolerant31

(BFT) algorithm that can tolerate (a limited number of) malicious machine failures on an32

aynchronous network. The main advantage of Tenderbake is related to block finality, i.e.,33

the point at which the parties involved can consider the consensus on adding a block to34

be complete. More precisely, this is the moment when it becomes impossible to go back or35

modify a block that has been added to the blockchain. Unlike the probabilistic finality of36

Emmy algorithms, where the probability that a block will eventually belong to the blockchain37

increases with the number of blocks added in front of it, Tenderbake allows for an almost38

immediate finality: a block is considered to belong to the chain when only two blocks are39

added after it. This new consensus algorithm technology is inspired by pBFT (practical40

Byzantine Fault-Tolerant) protocols [4] like Tendermint [1, 3] in the Cosmos project [6].41

To achieve such a finality result, Tenderbake implements a three-phase pBFT protocol:42

a proposal phase where a single participant (called baker) proposes a new block, and two43

successive voting phases (called preendorsement and endorsement) at the end of which a44

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Formally Documenting Tenderbake

35

XX:2 Formally Documenting Tenderbake

quorum of votes must be reached on the proposed block. If a consensus is reached, each45

participant adds the proposed block locally to their blockchain and a new instance of the46

algorithm can then start for the next block (referred to as the next level in Tezos). However,47

this idyllic scenario can fail for many reasons. For example, Byzantine participants can inject48

fake blocks or fake votes. The consensus can also fail even in the absence of participant49

failure because blocks and votes, which are sent as messages, can be arbitrarily delayed or50

lost by the network. In this case, a new round of proposals/votes is launched, possibly with51

a new block issued by another participant.52

In order to guarantee the correctness of the consensus, Tenderbake implements several53

mechanisms to circumvent Byzantine attacks or asynchrony-related problems. For instance, a54

synchronization mechanism is required for each participant to decide that a round of propos-55

als/votes is over. For this purpose, Tenderbake implements a partially synchronous system,56

where participants synchronize without exchanging messages, by exploiting their internal57

clocks and the information stored in the blockchain. As another example, cryptographic58

certificates about the (pre)endorsing majority are injected into blocks to prevent Byzantine59

attacks.60

Designing and implementing a consensus algorithm like Tenderbake is notoriously chal-61

lenging. While a very precise proof-and-paper description of this algorithm has been given62

in [2], we propose in this paper a TLA+ modeling of Tenderbake. To do this, we break63

down the algorithm to its essentials and represent bakers’ roles as an automaton. We also64

abstract the notion of time, but retain a synchronization mechanism that allows the drift65

of participants’ clocks to be simulated. We do not sacrifice any of the more subtle features66

of Tenderbake’s implementation, like how the protocol is handled by both the mempool (a67

more sophisticated gossip layer) and the bakers themselves.68

The main goal of our work is to provide a formal executable documentation of Tenderbake69

that will serve as a basis for extracting complex test scenarios and invariants that the70

Tenderbake implementation must satisfy. So far, our TLA+ automaton has proven useful for71

reasoning and exchanging with the developers of the actual implementation. The TLA+ model72

is available at https://www.lri.fr/~conchon/tenderbake/.73

2 Tenderbake Automaton74

In this section, we describe the Tenderbake consensus formally, for a set of participants75

BAKERS. Contrary to the implementation in Tezos, where participants change at each level,76

we assume that this set is fixed. Each individual participant, called a baker, runs the same77

automaton. We explain how this automaton is implemented in TLA+ in Section 3.78

The automaton is given in Figure 1. It represents the evolution of a baker’s state and the79

actions perfomed by this baker in the three possible consensus phases. In the rest of this80

section, we give a description of the local state maintained by an arbitrary baker i and we81

detail the transitions of this automaton using a rudimentary guarded command language.82

Notations. By convention, the internal variables of the baker i are denoted by capital83

letters associated with an index i. Thus, Xi represents the internal variable X of i. We84

use lowercase letters for parameters. Certain variables are option variables, meaning that85

they can have a value or not. Not having a value is denoted by the symbol -. When86

comparing variables, X? means that X is an option variable and can therefore be empty.87

By convention, empty variables are (stricly) less than non-empty variables. We stick to88

conventional message passing notation where m(x1, . . . , xk)? stands for the reception of a89 36

Conchon et al. XX:3

message m with parameters x1, . . . , xk, and m(v1, . . . , vk)! is the asynchronous broadcast of90

m with v1, . . . , vk as arguments. Note that when a baker broadcasts a message, he does not91

send it to himself.92

NP

CECP

Timeout

 Preendorsement
Quorum

Proposal

Endorsement
Quorum

Endorsement
Quorum

Timeout

Proposal

Proposal

Timeout

Figure 1 Tenderbake automaton

General architecture. Our modeling follows Tezos’s general architecture and constraints.93

In this architecture, bakers don’t communicate directly with each other, but through a Node94

of the network. A node itself is composed of a Peer-to-Peer layer, a validator (which uses the95

rules of the economic protocol to check blocks and operations), a distributed database, and a96

specific data structure for pending operations (transactions, votes, etc.), called the Mempool.97

All these components are involved in the consensus mechanism. To clarify the presentation,98

we equate all of them to the Mempool.99

Bakers communicate with the Mempool using RPC (Remote Procedure Calls). To simplify100

our modeling, we approximate these communications through a shared memory mechanism.101

Baker’s state. As shown in Figure 1, our automaton has three distinct states, which102

correspond to the possible phases of the consensus algorithm: NP for Non Proposer, CP for103

Collecting Preendorsements, and CE for Collecting Endorsements. In addition to this control104

flow information, a baker i maintains a copy of the blockchain in a variable CHi. Since only105

the two head blocks of the blockchain are needed for the consensus algorithm, CHi contains106

a pair of blocks (B, P), where B is the head block of the blockchain and P its predecessor. A107

block is represented by a record { ℓ; r; t; p; eqc; pqc }, where each component is accessible108

via the standard record access notation (e.g. B.r). The role of each of these components is109

as follows:110

ℓ the level of the block in the blockchain, with the convention that the first block
of the blockchain, Genesis, is at level 0;

r the consensus round during which the block was proposed;
t the timestamp of when the block was proposed;
p the block’s payload - i.e. its contents without the consensus operations;

pqc the preendorsing majority (the first vote), if any, for the proposed block;
eqc then endorsing majority (certificate for the second vote) for the previous block.

111

37

XX:4 Formally Documenting Tenderbake

In addition to the two head blocks stored in CHi, a baker maintains his current consensus112

round in RNDi. For safety and progress reasons, a baker must also keep track of the block113

he voted for and for which a preendorsement voting quorum was first observed. A record114

LOCKEDi of the form { b; q; } stores the head block of CHi (in b) and the list of participants115

who voted for (preendorsed) this block during the first voting phase (in q). In the same way,116

a record ELECTi is used to store the first endorsement quorum for the head block. Finally,117

in order to speed up the convergence of the algorithm, a similar two-component record118

PQCi is used to keep track of the proposed block with the latest round to have achieved a119

preendorsement quorum.120

Time and clocks. Tenderbake runs on the notion of rounds and time. As mentioned in121

section 1, the ideal consensus scenario isn’t always attainable. This is where the concept of122

rounds comes in. Bakers have a predefined number of seconds to decide on a block. Once123

that time is up, and if an agreement hasn’t been reached, a timeout event is triggered, and124

the bakers have to drop what they were doing and start a new round. In Tenderbake, this125

is achieved with clocks and real-time. By combining timestamp information stored in the126

blocks and their current clock, bakers can calculate both their current round in the consensus127

and the time remaining before a timeout is triggered. The protocol is also resistant (to some128

extent) to a possible clock drift between bakers.129

Our model accounts for this clock/real-time mechanism in an abstract way. To do this,130

we first simplify the problem by considering that all rounds have the same duration. Then,131

we get rid of local clocks by replacing them with local counters that contain the number of132

timeouts a baker has received. Finally, we use a global mechanism (the oracle, depicted in133

Figure 2) to notify a baker when a round ends. Although it may seem too simplistic, our134

mechanism allows us to account for the problems related to time in Tenderbake, in particular135

the one related to clock drift.136

To implement our abstract synchronization mechanism, we assign two local variables to137

each baker: a boolean TOi, for timeout, used by the oracle to communicate the end of a138

round to the baker, and an integer TICKi to count the number of rounds elapsed since the139

blockchain was started. We also use a constant ∆ to set the maximum offset on the number140

of ticks (i.e. rounds) between bakers.141

To start a new round for a baker i, our oracle executes non-deterministically the following142

guard/action command as soon as (1) the baker i has no timeout to handle (2) the differences143

between any two bakers’ counted rounds doesn’t exceed ∆, before and after execution of144

the transition. The command’s action sets the timout variable of the baker i to true and

Trigger Timeout

¬TOi ∧ (∀j, k.j ̸= k =⇒ |TICKj − TICKk| ≤ ∆) ∧ (∀j.j ̸= i =⇒ |TICKi + 1 − TICKj | ≤ ∆) −→
TOi := true;
TICKi := TICKi + 1;

Figure 2 Trigger timeout oracle

145

increments its tick counter. This transition guarantees that no two bakers can drift for more146

than ∆ rounds but allows each one to proceed independently. After this transition, the baker147

must handle its timeout and move according to one of the three cases described in the next148

paragraph. In Tenderbake, we use ∆ = 1, which means that internal clocks of the machines149 38

Conchon et al. XX:5

on which bakers run are only allowed to drift by an amount that would result in a difference150

of at most one round.151

Timeout transitions. As shown in Figure 1, a baker is forced to move to state NP when the152

oracle resets his TOi variable. This is when the baker can start a new round if no consensus153

was reached during the current round, or a new level, if the baker has collected a quorum of154

endorsements for his current head block.155

The actions bakers are allowed to perform on timeouts depend on their right to propose156

a new block for the next round (in the same level), or for the earliest possible round of the157

next level in which the baker can propose. We abstract this authorization with a predicate158

IsProposer(i, ℓ, r) which is true when baker i is the proposer at level ℓ and round r.159

Figure 3 (see in the Appendix) contains the possible behaviors (or transitions) of a baker160

after a timeout. In (a) Not the Proposer, the baker first checks that he is not the161

proposer for the next round RNDi + 1 of the current level B.ℓ. Then, either there is no block162

stored in ELECTi (denoted by ELECTi = -), meaning the baker did not obtain a quorum for163

his head block, or the baker is not the proposer for the next level. In the latter case, instead164

of IsProposer(i, B.ℓ + 1, 0), the baker checks for the round RNDi − ELECTi.b.r of the next165

level B.ℓ + 1. This expression takes into account the difference between the baker’s current166

round RNDi and the round during which the baker obtained a quorum for his head block167

(stored in the ELECTi variable). Thus, for instance, if a baker obtains a quorum at round168

RNDi = r, and if he is the proposer for the next level at the end of that round r, then the169

baker checks indeed the first round RNDi − r = 0 of the next level. The actions associated170

to this transition consist only of resetting the TOi variable and incrementing the counters171

TICKi and RNDi.172

In (b) Proposer of next round, the baker communicates a proposal Propose(i, (b, P))173

for the next round to the Mempool through the variable Pi. The block b is built using the174

content of the head block B with new timestamp and round information. The payload of175

this new proposal is either a fresh value (denoted by ε) or the payload of the block stored in176

the baker’s PQCi variable, if it exists. The preendorsement quorum certificate of this new177

block is either empty or the one stored in PQCi.178

In (c) Proposer of next level, the baker must have a block stored in ELECTi and179

he must also be the proposer of the round RNDi − ELECTi.b.r in the next level B.ℓ + 1. The180

new proposal contains a fresh payload, an endorsement quorum for its block predecessor181

taken from ELECTi.q and a timestamp equal to TICKi.182

The Mempool. While a Mempool typically serves as a gossip layer, simply passing on183

messages between bakers, Tenderbake’s Mempool is more sophisticated. For instance, the184

Mempool keeps a local variable NodeCHi, its own copy of the blockchain, the most up-to-date185

version that it has “seen” come through. Since the consensus in Tenderbake depends on the186

last two blocks, NodeCHi contains only the head of the blockchain and its predecessor in our187

model. In addition to these blocks, the Mempool also maintains a set Mi of all of the votes188

(PreEndorse or Endorse messages) that it receives from all bakers.189

Furthermore, when the Mempool receives a proposal, either through a message or a shared190

variable, it first verifies that the proposed block is actually better than its current head. If191

it is indeed better, the Mempool simply updates its version of the blockchain. Otherwise,192

it is ignored. The notion of a better chain is an important part of a consensus algorithm,193

corresponding to a total ordering between blocks. In Tezos, this ordering is based on a notion194

of fitness, which amounts to comparing, in a lexicographic order, the following quadruples195 39

XX:6 Formally Documenting Tenderbake

(H.ℓ, H.pqc.r, −PRE.r, H.r) < (l, pqc.r, −pre.r, r), where H and PRE are the first two head196

blocks of NodeCHi, while h and pre are the blocks received in a Propose(j, (h, pre)) message.197

Moreover, in addition to fitness, the Mempool ensures the information contained in the eqc198

and pqc fields is valid. Last, if this better proposal has been received through a shared199

variable, the Mempool broadcasts it to the other participants. Figure 4 shows transitions200

of the Mempool that handle PreEndorse and Endorse votes (received either by messages or201

through the shared variables PEi and Ei). These messages are simply stored in Mi
1.202

Proposal transition. As seen in Figure 1, a baker can handle a new proposal in any state.203

We give in Figure 5 the Proposal transition that a baker can execute as soon as he is running204

a new round and when the head block B in CHi is different from the one in the Mempool.205

In that case, a baker determines if he can vote (preendorse) for the new head stored in the206

Mempool. There are only two possibilities for a baker to preendorse a proposal:207

1. The chain stored in the Mempool is strictly longer than the one stored in the baker.208

2. Both chains have the same length and the proposal’s round is equal to the current baker’s209

round RNDi. The baker also checks that he is not about to vote twice in the same round,210

except for the same payload. Moreover, the baker only preendorses in this case if:211

a. he has never endorsed (locked) a previous proposal in the same level, or212

b. he is locked to some block payload p0 at some round r0, but the current proposal’s213

payload is equal to p0, or the current proposal got a PQC at some round r1 > r0.214

In (1), a baker synchronizes the value of its current round RNDi in the new level. It also215

checks, before preendorsing, that the block H, while at a higher level, does not correspond to216

an old proposal.217

Quorums. The last two transitions are described in Figure 6. As mentioned above, the218

Mempool keeps a set Mi of all the messages it has received. If the number of preendorse219

messages for the head block B stored in CHi is enough for a quorum, then a baker can220

execute the Preendorsement Quorum transition to update PQCi with his current head and the221

calculated quorum, change LOCKEDi to B, since this is the block he’s about to endorse, and222

communicate an Endorse(i, B.ℓ, B.r, B.p) message to the Mempool. An endorsement quorum223

transition is possible in states CE and CP. The baker observes endorsement quorums only224

when his ELECTi variable is not set. In that case, if enough endorsement messages exist in225

the Mempool for his head block, the baker records that block and its quorum in ELECTi.226

1 Although we could wipe the contents of Mi at each new round startup, we decided not to do it explicitly
to be able to explore different mempool cleaning strategies in practice.40

Conchon et al. XX:7

Initial state. Initially the chain is composed of two genesis blocks (to simplify checks in the
automaton). Initial states for both the baker i and the associated Mempool are given below:

Initial state for Baker i Initial state for Mempool

CHi = (Genesis, Genesis) NodeCHi = (Genesis, Genesis)
RNDi = 0 Mi = ∅
TICKi = 0 Pi = −

LOCKEDi = Genesis Ei = −
PQCi = {b = Genesis; q = ∅} PEi = −

ELECTi = {b = Genesis; q = ∅}
TOi = true

where Genesis = {ℓ = 0; r = 0; t = 0; p = []; pqc = −; eqc = ∅}

Bakers are locked on and have elected the Genesis block (with empty quorums) in order to227

force the progression to go through proposals at level 1.228

3 TLA+
229

In this section we discuss how we go from the previous automaton to its TLA+ implementation.230

The automaton makes it fairly straightforward to convert to TLA+ by simply representing231

the baker, the Mempool, the possible actions, and the synchronization mechanism.232

The Baker and the Mempool. We define a constant set BAKERS of all bakers in the233

network. A variable BakerState maps each baker to their state (i.e. the internal variables234

from section 2), represented as a record structure. We stray from the types in section 2 by235

using n-tuples instead of records to represent LOCKEDi, ELECTi, and PQCi. BakerState[i]236

represents the state of baker i. To model the phases of the algorithm, we add an internal237

variable STATEi for each baker. Initially, each baker starts off in the following state, where238

sequences are delimited by ⟨ ⟩, and Genesis is the genesis block:239

InitialState
∆= [state 7→ "np", pqc 7→ ⟨⟩, ch 7→ ⟨Genesis, Genesis⟩, rnd 7→ 0,

locked 7→ ⟨⟩, elect 7→ ⟨Genesis, {}⟩, timeout 7→ true, tick 7→ 0]
(Initial BakerState)240

The Mempool is a record with the fields - nodeCH, for its local blockchain (the first two241

blocks), msgs, the set of Endorse and PreEndorse messages it has received, and the fields242

propose endorse, preendorse for the variables Pi, Ei, PEi. It starts off with an empty set of243

msgs and two Genesis blocks.244

Synchronization. As mentioned in section 2, we introduce an oracle transition which245

allows bakers to progress individually with timeouts (TOi) while maintaining synchronization,246

i.e. by being at most ∆ rounds apart. We do the same thing in our TLA+ implementation:247

TOi is the first enabling condition of each timeout step definition.248

Actions. Bakers and the Mempool are impacted by the various actions on the network.249

Each of these are defined individually in TLA+. For example, the Endorsement Quorum step250 41

XX:8 Formally Documenting Tenderbake

in Figure. 1, enabled in CP or CE, is defined as follows:251

EndQuorum(i) ∆= ∧ BakerState[i].timeout = false
∧ BakerState[i].elect = ⟨⟩
∧ BakerState[i].state = "cp" ∨ BakerState[i].state = "ce"
∧ CollectEnd(i)
∧ BakerState′ = [BakerState except

![i].elect = ⟨BakerState[i].chain[1].round,

BakerState[i].chain[1].contents,

BakerState[i].chain[1].time⟩,
![i].state = BakerState[i].state]

∧ unchanged Mempool

(Endorsement Quorum)252

Baker i can execute this step iff (i) he is synchronized, (ii) he is in state cp or ce, and (iii)253

CollectEnd(i) is true. CollectEnd (for “collecting endorsements”) counts all of the Endorse254

messages for i’s current head in Mempool.msgs and checks whether that’s enough for a255

quorum. If these three conditions are satisfied, baker i modifies ELECTi and transitions to256

phase NP of the algorithm. Every other transition in Figure 1 is defined in a similar way.257

Test scenarios. While the automaton made writing our TLA+ specification easier, the258

spec itself has, in return, proven extremely useful in debugging the automaton. Sometimes a259

deadlock would be reached when it shouldn’t have been, leading us to review Tenderbake’s260

code, and fixing things we overlooked in our model. The main advantage is, however, being261

able to run various test scenarios. We can easily modify our spec to account for various clock262

drifts or Byzantine bakers.263

4 Conclusion264

In this paper we proposed a TLA+ model of Tenderbake, along with an automaton detailing265

the key parts of Tenderbake. This method simplifies the problem by abstracting the notion266

of time, while retaining Tenderbake’s more nuanced features, such as its more elaborate267

Mempool. Our method gives us a formalized and executable Tenderbake documentation.268

This serves as the foundation for running specific test scenarios and verifying properties269

Tenderbake needs to satisfy. An immediate line of future work is to define those properties270

and check them with the TLC model checker.271

References272

1 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci273

Piergiovanni. Correctness of tendermint-core blockchains. In 22nd International Conference on274

Principles of Distributed Systems, OPODIS 2018, December 17-19, 2018, Hong Kong, China,275

volume 125 of LIPIcs, pages 16:1–16:16, 2018.276

2 Lăcrămioara Astefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara277

Tucci Piergiovanni, and Eugen Zalinescu. Tenderbake - a solution to dynamic repeated278

consensus for blockchains. In Fourth International Symposium on Foundations and Applications279

of Blockchain, 2021.280

3 Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef281

Widder, and Anca Zamfir. Formal specification and model checking of the tendermint282 42

Conchon et al. XX:9

blockchain synchronization protocol (short paper). In 2nd Workshop on Formal Methods for283

Blockchains, FMBC@CAV 2020, July 20-21, 2020, Los Angeles, California, USA (Virtual284

Conference), volume 84 of OASIcs, pages 10:1–10:8, 2020.285

4 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,286

pages 173–186, 1999.287

5 LM Goodman. Tezos—a self-amending crypto-ledger white paper. URL: https://www. tezos.288

com/static/papers/white paper. pdf, 2014.289

6 Jae Kwon and Ethan Buchman. Cosmos whitepaper, 2019.290

43

XX:10 Formally Documenting Tenderbake

A Automaton Transitions291

Not Proposer

CHi = (B, _)

TOi ∧
¬ isP roposer(i, B.ℓ, RNDi + 1) ∧
(ELECTi = − ∨ ¬ isP roposer(i, B.ℓ + 1, RNDi − ELECTi.b.r)) −→

TOi := false
RNDi := RNDi + 1

(a) Not the proposer

Proposer Next Round

CHi = (B, P)

TOi ∧
isP roposer(i, B.ℓ, RNDi + 1) ∧
(ELECTi = − ∨ ¬ isP roposer(i, B.ℓ + 1, RNDi − ELECTi.b.r)) −→

TOi := false
RNDi := RNDi + 1
let p, pqc = if (PQCi = −) then (ε, −)else (B.p, PQCi) in
let b = {B with t = TICKi; r = RNDi; p; pqc} in
Pi := Propose(i, (b, P))

(b) Proposer of next round

Proposer Next Level

CHi = (B, _)

TOi ∧
ELECTi ̸= − ∧
isP roposer(i, B.ℓ + 1, RNDi − ELECTi.b.r) −→

TOi := false
let b = {ℓ = B.ℓ + 1; t = TICKi; p = ε; r = RNDi − ELECTi.b.r;

eqc = ELECTi.q; pqc = −} in
RNDi := RNDi + 1
Pi := Propose(i, (b, ELECTi.b))

(c) Proposer of next level

Figure 3 A baker’s possible actions once timeout has been reset

44

Conchon et al. XX:11

Mempool

NodeCHi = (H, PRE)

PreEndorse(j, ℓ, r, p)? ∨ PEi = PreEndorse(j, ℓ, r, p) −→
Mi := Mi + PreEndorse(j, ℓ, r, p)
PEi ̸= − −→

PreEndorse(i, ℓ, r, p)!
PEi := −

Endorse(j, ℓ, r, p)? ∨ Ei = Endorse(j, ℓ, r, p) −→
Mi := Mi + Endorse(j, ℓ, r, p)
Ei ̸= − −→

Endorse(i, ℓ, r, p)!
Ei := −

Propose(j, (h, pre))? ∨ Pi = Propose(j, (h, pre)) −→
let {ℓ; r; pqc; eqc} = h in
isP roposer(j, ℓ, r) ∧ (H.ℓ, H.pqc.r, −PRE.r, H.r) < (ℓ, pqc.r, −pre.r, r) ∧
valid_eqc(eqc, pre) ∧ (pqc = − ∨ valid_pqc(b)) −→

NodeCHi := (h, pre)
Pi ̸= − −→

Propose(i, (h, pre))!
Pi := −

where the predicate valid_eqc ensures the eqc contained in the proposal is valid with
respect to the previous block pre, and the predicate valid_pqc ensures the pqc of
the proposed block (only in the case of a re-proposal) is valid, i.e. is for the current
payload and on a previous round of the same level. We give here their definitions:

quorum(x) ∆= |x| > 2×|BAKERS|
3

valid_eqc(eqc, pre) ∆= quorum(eqc.q) ∧
∀ Endorse(i, ℓ, r, p) ∈ eqc.q.

p = pre.p ∧ ℓ = pre.ℓ ∧ r = pre.r

valid_pqc(b) ∆= quorum(b.pqc.q) ∧
∀ PreEndorse(i, ℓ, r, p) ∈ b.pqc.q.

p = b.p ∧ ℓ = b.ℓ ∧ r < b.r

Proposers are chosen in a round robin with the formula:

isP roposer(i, ℓ, r) ∆= ((ℓ + r) mod |BAKERS|) + 1 = i

Figure 4 Mempool transitions

45

XX:12 Formally Documenting Tenderbake

Proposal

CHi = (B, _)
NodeCHi = (H, PRE)

¬TOi ∧ B ̸= H −→
let{ℓ; r; p; pqc; eqc} = H in

B.ℓ < ℓ −→
RNDi := TICKi − (PRE.t + 1)
LOCKEDi := −; PQCi := −; ELECTi := −
RNDi = r −→ PEi := PreEndorse(i, ℓ, r, b)
CHi := (H, PRE)
PQCi.r

? < pqc.r? −→ PQCi := pqc

ℓ = B.ℓ ∧ r < RNDi ∧ B.r < r −→
CHi := (H, PRE)
PQCi.r

? < pqc.r? −→ PQCi := pqc

ℓ = B.ℓ ∧ r = RNDi ∧ (r ̸= B.r ∨ p = B.p) −→
CHi := (H, PRE)
PQCi.r

? < pqc.r? −→ PQCi := pqc

LOCKEDi = − ∨ LOCKEDi.p = B.p ∨
(pqc.r ̸= − ∧ LOCKEDi.r ≤ pqc.r) −→

PEi := PreEndorse(i, ℓ, r, p)

Figure 5 Receiving a proposal

Preendorsement Quorum

CHi = (B, _)

let q = {m ∈ Mi | m = PreEndorse(_, ℓ, r, p) ∧ ℓ = B.ℓ ∧ p = B.p ∧ r = RNDi = B.r} in
¬TOi ∧ quorum(q) ∧ LOCKEDi ̸= B −→

PQCi := {b = B; q = q}
LOCKEDi := B
Ei := Endorse(i, B.ℓ, B.r, B.p)

Endorsement Quorum

CHi = (B, _)

let q = {m ∈ Mi | m = Endorse(_, ℓ, r, p) ∧ ℓ = B.ℓ ∧ p = B.p ∧ r = RNDi = B.r} in
¬TOi ∧ quorum(q) ∧ ELECTi = − −→

ELECTi := {b = B; q = q}

Figure 6 Preendorsement and endorsement quorums

46

Using Coq to Enforce the1

Checks-Effects-Interactions Pattern in DeepSEA2

Smart Contracts3

Daniel Britten !4

The University of Waikato, New Zealand5

Vilhelm Sjöberg !6

CertiK, USA7

Steve Reeves !8

The University of Waikato, New Zealand9

Abstract10

Using the DeepSEA system for smart contract proofs, this paper investigates how to use the Coq11

theorem prover to enforce that smart contracts follow the Checks-Effects-Interactions Pattern. This12

pattern is widely understood to mitigate the risks associated with reentrancy. The infamous “The13

DAO” exploit is an example of the risks of not following the Checks-Effects-Interactions Pattern. It14

resulted in the loss of over 50 million USD and involved reentrancy - the exploit used would not15

have been possible if the Checks-Effects-Interactions Pattern had been followed.16

Remix IDE, for example, already has a tool to check that the Checks-Effects-Interactions Pattern17

has been followed as part of the Solidity Static Analysis module which is available as a plugin.18

However, aside from simply replicating the Remix IDE feature, implementing a Checks-Effects-19

Interactions Pattern checker in the proof assistant Coq also allows us to use the proofs, which are20

generated in the process, in other proofs related to the smart contract.21

As an example of this, we will demonstrate an idea for how the modelling of Ether transfer can be22

simplified by using automatically generated proofs of the property that each smart contract function23

will call the Ether transfer method at most once. This property is a consequence of following a strict24

version of the Checks-Effects-Interactions Pattern as given in this paper.25

2012 ACM Subject Classification Security and privacy → Logic and verification; Computer systems26

organization → Distributed architectures27

Keywords and phrases smart contracts, formal methods, blockchain.28

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2329

Supplementary Material https://github.com/Coda-Coda/deepsea-1/tree/fmbc-202130

Acknowledgements I (Daniel Britten) want to thank the University of Auckland and Associate31

Professor Jing Sun for kindly hosting me during this research.32

1 Introduction33

The importance of smart contracts being correct has been voiced many times, most obviously34

because of the high financial risk associated with a smart contract being incorrect and35

exploited (such as “The DAO”[9] and others[2, 3, 4]) which all involved the use of what we36

will refer to as malicious reentrancy.37

Reentrancy involves a smart contract C that triggers the execution of code of another38

smart contract D which then calls a function in the original smart contract C before the39

original execution of C has completed. However, when not handled properly, reentrancy can40

cause a smart contract to behave incorrectly and be exploited. This happens with malicious41

reentrancy, which maliciously exploits the situation that the original execution of C has not42

completed.43

© Daniel Britten, Vilhelm Sjöberg and Steve Reeves;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Using Coq to Enforce the Checks-Effects-Interactions Pattern in DeepSEA Smart Con-
tracts

47

23:2 Enforcing Checks-Effects-Interactions in DeepSEA

This issue can be mitigated by following the Checks-Effects-Interactions Pattern which44

suggests that a smart contract should first do the relevant Checks then make the relevant45

internal changes to its state (Effects), and only then interact with other smart contracts46

which may well be malicious. When following the Checks-Effects-Interactions Pattern a47

reentrant call is essentially no different to a call that is initiated after the first call is finished48

so no additional risk from malicious reentrant calls are possible.49

On the Ethereum blockchain, interacting with a malicious smart contract is even possible50

when transferring Ether. This is because if the recipient is a smart contract then it has the51

opportunity to run some code on receiving funds.52

The problem with all this is that the modelling of smart contract execution when there is53

the possibility of reentrancy is difficult and the related correctness proofs would be complex54

as well. Even modelling the humble Ether transfer needs to take the possibility of reentrancy55

into account.56

Using the DeepSEA[6] system for proofs about smart contract correctness, a method57

of enforcing the Checks-Effects-Interactions Pattern has been developed. Enforcing the58

Checks-Effects-Interactions Pattern greatly simplifies the modelling of any action that might59

involve external calls (including Ether transfers).60

Tangibly, enforcing the Checks-Effects-Interactions Pattern means that the DeepSEA61

code for a smart contract function shown on the left (Listing 1) should not be permitted and62

the code shown on the right (Listing 2) should be allowed.63

Listing 1 ‘Unsafe’ function.
let unsafeExample () =

transferEth (msg_sender , 0u42);
transferSuccessful := true

Listing 2 ‘Safe’ function.
let safeExample () =

transferSuccessful := true;
transferEth (msg_sender , 0u42)

64

The end result of the work in this paper is a system which automatically proves that the65

Checks-Effects-Interactions Pattern has been followed for most cases when it indeed has been,66

though there are some false negatives as a compromise for automation. A related result is67

then used to demonstrate an idea for simplifying the modelling of Ether transfers.68

The main contributions of this paper are as follows:69

A Coq[1] proposition formalising the notion of a smart contract function following the70

Checks-Effects-Interactions Pattern. This is discussed in Subsection 2.4.71

Automatic proofs related to the previous contribution as well as related automated proofs72

that the lists of transfers after function calls are of length at most one. See Section 3 and73

Section 4 respectively.74

A demonstration of an idea for simplifying the modelling of what states are reachable by75

a smart contract by making use of some of these automated proofs (Section 4).76

2 Representing the absence of reentrancy situations as a proof goal77

2.1 The DeepSEA system78

All the modelling and proofs in the paper make use of the DeepSEA system for smart79

contract proofs. DeepSEA[6] is an up and coming framework and smart contract language80

that promises to provably link high-level specifications in Coq[1] to Ethereum Virtual Machine81

(EVM) bytecode. This will give a high degree of certainty that results proven about the82

high-level specifications also hold for the bytecode.83 48

D. Britten, V. Sjöberg and S. Reeves 23:3

Listing 3 ‘Safe’ function in different representations with similarities highlighted.
DeepSEA smart contract source code (not Coq):
let safeExample () =

transferSuccessful := true ;
transferEth(msg_sender, 0u42)

DeepSEA Intermediate Level Language in Coq:
(CCsequence
(CCstore

(LCvar Contract_transferSuccessful := true_var)
(ECconst_int256 tint_bool true Int256 .one))

(CCtransfer
(@ECbuiltin0 _ _ _ builtin0_caller_impl)
(ECconst_int256 tint_U (Int256 .repr 42_var))
(Int256 .repr 42))))

DeepSEA High Level Language in Coq:
(get ;;
MonadState . modify (update_Contract_transferSuccessful true)) ;;
d <- get ;;
(let (success , d’) :=
me_transfer me (me_caller me) (Int256 .repr 42) d in
if Int256 .eq success Int256 .one then put d’ else mzero)

2.2 The Checks-Effects-Interactions Pattern84

The Checks-Effects-Interactions Pattern suggests that a smart contract should follow a85

pattern in which calls to external contracts are always the last step [11]. In this paper, a86

stricter version of the Checks-Effects-Interactions Pattern is used where only one Interaction87

is permitted. This eliminates modelling complications in the situations where two external88

calls are done but the first one turns out to throw an error. It is virtually impossible to89

know, when modelling, whether an arbitrary external call will throw an error, particularly90

due to the possibility of gas being exhausted.91

This strict version of the Checks-Effects-Interactions Pattern will now simply be referred92

to as the Checks-Effects-Interactions Pattern.93

2.3 Relevant aspects of the DeepSEA system94

Listing 3 shows the same DeepSEA smart contract function in different representations. The95

Intermediate Level and High Level representation are both generated automatically from the96

DeepSEA source. First, the Intermediate Level Abstract Syntax Tree in Coq is generated97

from the source. The denotational semantics of the AST gives the High Level representation98

(by the synth_stmt_spec_opt Coq function as a part of the DeepSEA system). The AST for99

each function contains the relevant information required to formulate the notion of whether100

the function adheres to the Checks-Effects-Interactions Pattern. The inductive proposition101

described in the next section makes use of the Intermediate Level AST representation.102

2.4 Coq Inductive Proposition: cmd_constr_CEI_pattern_prf103

The typing rule (Figure 1) corresponds to the definition of cmd_constr_CEI_pattern_prf104

which is an inductive proposition in Coq capturing the notion of a function following the105

Checks-Effects-Interactions Pattern. The ○ icon indicates that the contract cannot in any106

way have triggered reentrancy yet and the ○ icon indicates that reentrancy may have been107

CVIT 2016

49

23:4 Enforcing Checks-Effects-Interactions in DeepSEA

Figure 1 Selected typing rules for a command that adheres to the Checks-Effects-Interactions
Pattern. See the appendix for more.

{ρ1} c1{ρ2} {ρ2} c2 {ρ3}
{ρ1} let x = c1 in c2 {ρ3} {○} load {○} {○} e1 := e2 {○}

{ρ1} c1{ρ2} {ρ2} c2{ρ3}
{ρ1} c1 ; c2 {ρ3}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{ρ} c {ρ}
{ρ} for e1 to e2 do c {ρ} {○} transferEth(e1, e2) {○}

Listing 4 Defining Checks-Effects-Interactions Pattern adherence for CCTransfer.
| CCCEIPtransfer :

forall e1 e2 ,
cmd_constr_CEI_pattern_prf
_ (* Infer the return type *)
Safe_no_reentrancy (* ○ *)
(CCtransfer e1 e2) (* Typically related to a ’transferEth ’ call. *)
Safe_with_potential_reentrancy (* ○ *)

(* After , the possibility of reentrancy is noted. *)

triggered by that point (and so no unsafe commands such as writing to storage should108

be allowed after that point). The ○ icon would indicate a contract that is vulnerable to109

malicious reentrancy but does not occur in the typing rule as the rule defines what is safe.110

The transfer related rule in Coq is shown in Listing 4. The notion that at most one external111

call is allowable is captured by the fact that the proof requires the state Safe_no_reentrancy112

(○) beforehand. Due to the transfer the contract is then in a state where reentrancy may113

have occurred and this is captured by the state Safe_with_potential_reentrancy (○).114

In Listing 5 we define that if the body of a for loop stays at state ρ (either ○ or ○) then115

the for loop as a whole is also defined to stay at state ρ.116

The remaining definitions are available in the GitHub repository1. This defines what117

it means for a DeepSEA smart contract function to follow the Checks-Effects-Interactions118

Pattern. To be precise, if cmd_constr_CEI_pattern_prf can be proven for a given function119

then that function follows the Checks-Effects-Interactions Pattern.120

A drawback of this formulation is that interrelated if statements are not able to be121

reasoned about. If the logical content of interrelated if statements made it possible to know122

the Checks-Effects-Interactions Pattern was indeed followed, this formulation would not allow123

those functions to be proved to be safe. This does however simplify proof automation.124

Another drawback is that other techniques to manage reentrancy issues such as locks125

are not considered to be safe by this method, even when they may have been used in a way126

which is safe. On the other hand, this does simplify modelling by only needing to consider127

the case when no reentrancy at all occurs.128

1 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 - See README for the specific files
relevant to this paper. 50

D. Britten, V. Sjöberg and S. Reeves 23:5

Listing 5 Defining Checks-Effects-Interactions Pattern adherence for CCFor.
| CCCEIPfor :

forall {ρ} id_it id_end e1 e2 c,
cmd_constr_CEI_pattern_prf _ ρ c ρ

(* Given a command that stays at state ρ *)
-> cmd_constr_CEI_pattern_prf _ ρ (CCfor id_it id_end e1 e2 c) ρ

(* Then the for loop as a whole stays at state ρ *)

Listing 6 Coq tactic to prove adherence to the Checks-Effects-Interactions Pattern.
Ltac CEI_auto :=

repeat (
reflexivity

+ typeclasses eauto
+ eapply CCCEIPskip + eapply CCCEIPlet + eapply CCCEIPload
+ eapply CCCEIPfor + eapply CCCEIPtransfer + ...).

3 Automatically proving the absence of reentrancy situations129

Now that we have defined the notion of a smart contract following the Checks-Effects-130

Interactions Pattern the goal is to automatically prove this for every function that does131

indeed follow the Checks-Effects-Interactions Pattern (or at least, most). The automation132

will be carried out by Coq tactics.133

The tactic, partially shown in Listing 6, will repeatedly apply the constructors from134

the cmd_constr_CEI_pattern_prf definition along with resolving certain typeclass goals135

automatically. The + used to combine the tactics is critical to ensure the tactic backtracks136

as necessary because sometimes it is not the first matching constructor that is relevant.137

See GitHub2 for the full definitions of all the tactics involved. The proofs are done138

automatically and provide the user with an error if they fail (which would likely indicate the139

Checks-Effects-Interactions Pattern was not followed).140

4 Simplifying the modelling of Ether transfer141

Since the Checks-Effects-Interactions Pattern has been followed we can now prove in Coq that142

no more than one transfer occurs (since that would violate the Checks-Effects-Interactions143

Pattern). Using these proofs we can simplify the modelling of Ether transfer as we now only144

need to consider the case that at most one transfer has occurred.145

When modelling Ether transfer in DeepSEA, at the end of a smart contract function146

call a list of transfers is produced and the modelled overall balances need to be updated147

based upon that list. If the list contains more than one element, how the balances should148

be updated is unclear due to the possibility of reentrancy having occurred. This is where a149

proof that only one transfer at most occurred is particularly useful. Coq allows us to pass150

this proof as an argument to our definition and use it to discharge the case where the list is151

longer than one element, as shown in Listing 7. This is greatly useful for simplifying the152

modelling by allowing us to demonstrate to Coq that we do not need to model reentrancy153

2 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 - See README for the specific files
relevant to this paper.

CVIT 2016

51

23:6 Enforcing Checks-Effects-Interactions in DeepSEA

Listing 7 Updating balances for a list of length at most one.
Program Definition update_balances_from_transfer_list transfers

(length_evidence : length transfers <= 1) previous_balances a :=
match transfers with
| [] => previous_balances a
| [t] => update_balances_from_single_transfer contract_address

(recipient t) (amount t) previous_balances a
| (h :: i :: t) as l => _ (* Coq allows us to discharge this case. *)
end.
Next Obligation . (* This is the case where transfers = h :: i :: t *)
intros .
exfalso . (* There is an impossible situation . *)
rewrite <- Heq_transfers in length_evidence. simpl in length_evidence. lia.
Defined .

related to multiple transfers. If we did not have the proof we would be stuck with either154

truncating the list (which would be inaccurate) or assuming all the transfers took place155

with no reentrancy (which would also be inaccurate and leave the supposedly proven correct156

contract open to potential malicious reentrancy). It would also be possible in theory to fully157

model reentrant calls but clearly this would not simplify the model.158

The relevant proofs that each smart contract function makes at most one transfer are159

similar to the proofs about the Checks-Effects-Interactions Pattern being followed in the160

sense that the DeepSEA inv_runStateT_branching tactic considers all branches of code161

execution like done by the CEI_auto tactic (Listing 6).162

This technique simplifies the modelling of Ether transfer without leaving the door open163

for malicious reentrancy. The proofs are automated, only requiring the DeepSEA smart164

contract programmer to follow the strict version of the Checks-Effects-Interactions Pattern.165

5 Related Work166

A number of other tools aim to tackle the problem of reentrancy, such as [7, 8, 5] and [10].167

This work is unique in that it explicitly makes use of proofs related to the Checks-Effects-168

Interactions Pattern in simplifying modelling smart contracts. It also is a step towards a169

smart contract proof system that uniquely targets the EVM as well as allowing proofs to be170

done on a high-level representation of the smart contract with strong guarantees that the171

properties proven about the high-level representation will also apply to the EVM bytecode.172

6 Conclusion173

This paper discusses an approach for representing and automatically proving that DeepSEA174

smart contracts follow the Checks-Effects-Interactions Pattern (code available on GitHub3).175

This is demonstrated by defining an inductive proposition in Coq that states that a particular176

smart contract function follows the Checks-Effects-Interactions Pattern. A proof that each177

smart contract function calls the Ether transfer function at most once is also discussed. An178

application of these proofs to simplify the modelling of Ether transfer is then discussed.179

3 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 - See README for the specific files
relevant to this paper. 52

D. Britten, V. Sjöberg and S. Reeves 23:7

References180

1 The Coq proof assistant. https://coq.inria.fr/. (Accessed on 05/23/2021).181

2 DeFi platform dForce hacked for $25m - ERC777 reentrancy attack. https://defirate.com/182

dforce-hack/. (Accessed on 05/23/2021).183

3 Living in a lego house: The imBTC DeFi hack explained. https://www.zengo.com/184

imbtc-defi-hack-explained/. (Accessed on 05/23/2021).185

4 The reentrancy strikes again — the case of Lendf.Me. https://valid.network/post/186

the-reentrancy-strikes-again-the-case-of-lendf-me. (Accessed on 05/23/2021).187

5 Remix - Ethereum IDE. http://remix.ethereum.org/#optimize=false&runs=188

200&evmVersion=null&version=soljson-v0.8.1+commit.df193b15.js. (Accessed on189

05/23/2021).190

6 CertiK Foundation. DeepSEA. (Accessed on 05/23/2021). URL: https://github.com/191

certikfoundation/deepsea.192

7 Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis framework for smart193

contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software194

Engineering for Blockchain (WETSEB), pages 8–15. IEEE, 2019.195

8 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart196

contracts smarter. Proceedings of the 2016 ACM SIGSAC Conference on Computer and197

Communications Security, 2016.198

9 Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong, Gabrielle199

Fletcher, Ryan Sanayhie, Henry M. Kim, and Marek Laskowski. Understanding a Revolutionary200

and Flawed Grand Experiment in Blockchain: The DAO Attack. Journal of Cases on201

Information Technology, 21(1):19–32, January 2019.202

10 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken203

Chan Guan Hao. Safer smart contract programming with Scilla. Proceedings of the ACM on204

Programming Languages, 3(OOPSLA):1–30, 2019.205

11 Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns in the Ethereum206

ecosystem and solidity. In 2018 International Workshop on Blockchain Oriented Software207

Engineering (IWBOSE), pages 2–8. IEEE, 2018.208

CVIT 2016

53

23:8 Enforcing Checks-Effects-Interactions in DeepSEA

A Appendix209

Figure 2 Typing rule for a command that adheres to the Checks-Effects-Interactions Pattern,
corresponding to the Coq inductive proposition cmd_constr_CEI_pattern_prf.
(Some rarely used rules have been omitted).

{ρ} skip {ρ}
{ρ1} c1{ρ2} {ρ2} c2 {ρ3}
{ρ1} let x = c1 in c2 {ρ3} {○} load {○} {○} e1 := e2 {○}

{ρ1} c1{ρ2} {ρ2} c2{ρ3}
{ρ1} c1 ; c2 {ρ3}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{ρ} c {ρ}
{ρ} for e1 to e2 do c {ρ}

{ρ1} function {ρ2}
{ρ1} function call {ρ2}

{○} transferEth(e1, e2) {○}
{ρ} c {ρ}

{ρ} assert c {ρ}
{ρ} c {ρ}

{ρ} deny c {ρ}

54

Part II.

Accepted Extended Abstracts

55

Towards a Theory of Decentralized Finance

Massimo Bartoletti1, James Hsin-yu Chiang2, Alberto Lluch Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

Abstract. Decentralized Finance (DeFi) has brought about decentral-
ized applications which allow untrusted users to lend, borrow and ex-
change crypto-assets or crypto-derivatives. Many of such applications
fulfill the role of markets or market makers, and thus feature complex,
highly parametric incentive mechanisms to equilibrate interest rates or
prices. This complexity makes the behaviour of DeFi archetypes dif-
ficult to understand and to predict: indeed, ineffective incentives and
attacks could potentially lead to emergent unwanted behaviours. Rea-
soning about DeFi applications is made even harder by the lack of ex-
ecutable models of their behaviour: to precisely understand how users
interact with DeFi instances, eventually one has to inspect their different
implementations, where the incentive mechanisms are intertwined with
low-level implementation details. To this end, we are developing new exe-
cutable specifications of the DeFi archetypes lending pools and automatic
market makers, allowing us to prove universal properties and precisely
describe their interactions, vulnerabilities and attacks. In this presenta-
tion, we introduce this new line of research which aims to bridge the
research communities of economic analysis and formal methods, paving
the way for the development of formally secure, domain specific languages
for DeFi.

1 DeFi Archetypes and their Formalization

The emergence of permissionless, public blockchains has given birth to an entire
ecosystem of crypto-tokens representing digital assets and derivatives. Facilitated
and accelerated by smart contracts and standardized token interfaces [1], these
so-called decentralized finance (DeFi) applications promise an open alternative
to the traditional financial system. Prior foundational research in the domain of
DeFi has been thoroughly summarized in [11].

To study properties emerging from the interaction between users and DeFi
applications, we have initiated our line of research towards a theory of DeFi
by focusing on the identification of archetypal DeFi applications and on the
development of executable specifications for them, based on manual inspection
of the underlying implementations of mainstream implementations. Our formal
specifications encompass (abstractions of) the underlying economic incentive
mechanisms [6, 9, 10] and pave the way towards a generalized theory of DeFi
archetypes and their interactions, which may be intractable from analysis at
the implementation level alone. These executable semantics represents a first

Towards a Theory of Decentralized Finance

56

step towards domain-specific languages for decentralized finance, where DeFi
contracts are composed from formally specified primitives and thus exhibit well-
defined, analyzable behaviour inferred from the language semantics. The main
archetypes we have considered so far are Lending Pools (LPs) [8] and Automatic
Market Makers (AMMs) [7].

As of May 2021, the two leading LP platforms hold $18B [3] and $14B [2]
worth of tokens in their smart contracts, whereas the two leading AMM platforms
hold $8.3B and $7.7B worth of tokens, and process $1.4B and $270M worth of
transactions daily [4, 5].

Lending Pools Lending pools are decentralized applications which allow mu-
tually untrusted users to lend and borrow crypto-assets. In [8], we formalize all
interactions between users and LPs, thereby providing a complete specification
for the economic functionality of LPs. Our model allows to formally state and
specify fundamental properties of LPs, like e.g. correct accounting of minted
tokens and preservation of the supply of deposited tokens, which are crucial
to ensure consistency in exchange and distribution of tokens enabled by LPs.
Furthermore, our model allows one to reason about rational agents, which are
incentivized to liquidate loans in return for discounted collateral or perform de-
posits immediately prior to interest accrual. We also provide solid arguments for
the design of incentives of LPs, for example by formally proving that depositors
can potentially redeem more tokens than they deposited, and by identifying the
conditions under which redeems are not possible. In this regard, we formalize
notions of utilization safety, which represents a utility trade-off between bor-
row and redeem actions, moderated by a dynamic interest rate. In LPs, loans
are secured by collateral: yet, there exist LP states in which the borrower is
no longer incentivized to return loan should the agent’s collateralization drop
below a certain threshold. We formally characterize such collateral-safe states.
Finally, we exploit both notions of safety to illustrate attacks on utilization and
collateralization, aimed at undermining the incentive mechanisms of LPs.

Automatic Market Makers Automatic market makers allow users to ex-
change units of different types of crypto-assets, without the need to find a
counter-party. In [7], we develop a theory for AMMs, specifying their possi-
ble interactions and their economic mechanisms. One of the results we provide
is a concurrency theory for AMM actions. In particular, we show that sequences
of deposit and redeem actions can be ordered interchangeably, resulting in ob-
servationally equivalent AMM states. We prove fundamental preservation prop-
erties for our AMM specification, like e.g. the preservation of deposited token
supplies, and token liquidity, which ensures that deposited tokens cannot be
frozen in an AMM application. Furthermore, we introduce a formal notion of
incentive-consistency : AMM’s rely on a dynamic exchange rate governed by a
so-called trading invariant. Notably, we formalize the key incentive mechanism,
the arbitrage game, for all trading invariants which are incentive-consistent, thus
facilitating formal analysis of AMM behaviour which can be generalized beyond
the mainstream constant-product AMMs.

2

57

2 Proposed talking points

If accepted, this presentation will provide an example-driven introduction to
our formal models of lending pools [8] and automatic market makers [7], which
precisely describe their interactions as transitions of a state machine. Our model
exhibits the typical user interactions with such archetypes, and all the main
economic features. More specifically, our proposed presentation will include:

1. selected fundamental behavioural properties of our formal models of LP’s
and AMM’s, some of which were informally stated in literature, and are
expected to be satisfied by any implementation;

2. key aspects of the formalization of LP and AMM incentive mechanisms, and
a discussion of their properties, vulnerabilities and attacks;

3. a preliminary discussion on the interplay between LP’s, AMM’s and other
DeFi archetypes, like stable coins and margin trading contracts;

4. the opportunities of bridging economic analysis and formal methods research
in decentralized finance.

References

1. ERC-20 token standard
2. Aave markets website (2021), https://app.aave.com/markets
3. Compound markets website (2021), https://compound.finance/markets
4. Curve statistics (2021), https://www.curve.fi/dailystats
5. Uniswap v2 statistics (2021), https://v2.info.uniswap.org
6. Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? Curvature

and market making. arXiv preprint arXiv:2012.08040 (2020), https://arxiv.org/
pdf/2012.08040

7. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of Automated Market
Makers in DeFi. In: COORDINATION (2021), (to appear) https://arxiv.org/
abs/2102.11350

8. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: Sok: Lending pools in decentral-
ized finance. In: 5thWorkshop on Trusted Smart Contracts (2021), (to appear)
https://arxiv.org/abs/2012.13230

9. Evans, A., Angeris, G., Chitra, T.: Optimal Fees for Geometric Mean Market Mak-
ers (2021), https://web.stanford.edu/˜guillean/papers/g3m-optimal-fee.
pdf

10. Gudgeon, L., Werner, S., Perez, D., Knottenbelt, W.J.: Defi protocols for
loanable funds: Interest rates, liquidity and market efficiency. In: ACM
Conference on Advances in Financial Technologies. pp. 92–112 (2020).
https://doi.org/10.1145/3419614.3423254

11. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: Sok: Decentralized finance (defi) (2021)

3

58

A formal model of Algorand smart contracts
(extended abstract)

Massimo Bartoletti1, Andrea Bracciali2, Cristian Lepore2,
Alceste Scalas3, Roberto Zunino4

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Stirling University, Stirling, UK

3 Technical University of Denmark, Lyngby, Denmark
4 Università degli Studi di Trento, Trento, Italy

Abstract. Algorand is a late-generation blockchain that features several
interesting features, including high-scalability and a no-forking consensus
protocol based on Proof-of-Stake. Besides this, Algorand features a com-
plex transaction mechanisms, which supports both stateless and stateful
smart contracts. Although this mechanism is already used in practice to
develop industrial use cases, it is still largely unexplored by the research
community. In this extended abstract we summarize our ongoing work
on formal modelling of Algorand smart contracts.

1 Introduction

Smart contracts are agreements between two or more parties that are auto-
matically enforced without trusted intermediaries. Blockchain technologies rein-
vented the idea of smart contracts, providing trustless environments where they
are incarnated as computer programs. However, writing secure smart contracts
is difficult, as witnessed by the multitude of attacks on smart contracts platforms
(notably, Ethereum) — and since smart contracts control assets, their bugs may
directly lead to financial losses.

Algorand [10] is a late-generation blockchain that features a set of interesting
features, including high-scalability and a no-forking consensus protocol based
on Proof-of-Stake [6]. Its smart contract layer (ASC1) aims to mitigate smart
contract risks, and adopts a non-Turing-complete programming model, natively
supporting atomic sets of transactions and user-defined assets. These features
make it an intriguing smart contract platform to study.

The official specification and documentation of ASC1 consists of English
prose and a set of templates to assist programmers in designing their contracts
[1,3]. This conforms to standard industry practices, but there are two drawbacks:

1. Algorand lacks a mathematical model of contracts and transactions suitable
for formal reasoning on their behaviour, and for the verification of their
properties. Such a model is needed to develop techniques and tools to ensure
that contracts are correct and secure;

A formal model of Algorand smart contracts

59

2 Bartoletti et al.

2. furthermore, even preliminary informal reasoning on non-trivial smart con-
tracts can be challenging, as it may require, in some corner cases, to resort
to experiments, or direct inspection of the platform source code, in the lack
of a more abstract model.

Given these drawbacks, in [8] we have introduced a formal model of Algorand
smart contracts that:

o1. is high-level enough to simplify the design of Algorand smart contracts and
enable formal reasoning about their security properties;

o2. expresses Algorand contracts in a simple declarative language, similar to
PyTeal (the official Python binding for Algorand smart contracts) [5];

o3. provides a basis for the automatic verification of Algorand smart contracts.

More in detail, our formal framework features:

– an executable semantics of stateless ASC1 providing a solid theoretical foun-
dation to Algorand smart contracts. Such a model formalises both Algorand
accounts and transactions, and stateless smart contracts;

– a validation of our model through experiments [4] on the Algorand platform;
– the formalisation and proof of some fundamental properties of the Algorand

state machine: no double spending, determinism, value preservation;
– an analysis of Algorand contract design patterns, based on several non-trivial

contracts (covering both standard use cases, and novel ones). Quite surpris-
ingly, we have shown that stateless contracts are expressive enough to encode
finite state machines;

– the proof of relevant security properties of smart contracts in our model;
– a prototype tool that compiles smart contracts (written in our formal declar-

ative language) into TEAL, the bytecode language interpreted by Algorand
nodes.

Ongoing work and future directions Perhaps, the most interesting current
effort is to adapt the formal model to the ongoing evolution of the Algorand
framework. A notable development is that, in mid August 2020, Algorand has
introduced stateful ASC1 contracts [2], which provide the contracts execution
environment with a persistent key-value store, accessible and modifiable through
a new kind of transaction (which can use an extended set of TEAL opcodes).
This extension appears to increase the expressivity of Algorand smart contracts
in a way that poses new challenges for the formalisation and verification of their
security.

The stateful paradigm leads to a further research direction: investigating
declarative languages for stateful Algorand smart contracts, and their associated
verification techniques.

Another relevant research direction is the mechanization of our formal model,
e.g. through verification techniques such as proof assistants or model checking.
this would allow for machine-checking the proofs developed by pencil-and-paper
in [7, §D]. Similar work has been done, e.g., for Bitcoin [11] and for Tezos [9].

60

A formal model of Algorand smart contracts (extended abstract) 3

By objectives o1–o3, our formal model strives at being high-level and simple
to understand, while faithfully describing the most commonly used primitives
and mechanisms of Algorand, and supporting the specification and verification
of non-trivial smart contracts. To achieve these objectives, we have introduced
some high-level abstractions over low-level details: e.g., since TEAL code has the
purpose of accepting or rejecting transactions, we model it using expressions that
evaluate to true or false. Hence, another possible direction for future research is
to cover all the possible TEAL contracts with bytecode-level accuracy, as well
as all the low-level details of Algorand transactions.

References

1. Algorand developer docs (2020), https://developer.algorand.org/docs/
2. Algorand developer docs: stateful smart contracts (2020), https://developer.

algorand.org/docs/features/asc1/stateful/
3. Algorand developer docs: Transaction Execution Approval Language (TEAL)

(2020), https://developer.algorand.org/docs/reference/teal
4. ASC1 coherence-checking experiments (2020), https://github.com/blockchain-

unica/asc1-experiments
5. PyTeal: Algorand smart contracts in Python (2020), https://github.com/

algorand/pyteal
6. Alturki, M.A., Chen, J., Luchangco, V., Moore, B.M., Palmskog, K., Peña, L.,

Rosu, G.: Towards a verified model of the Algorand consensus protocol in Coq. In:
Formal Methods Workshops. Lecture Notes in Computer Science, vol. 12232, pp.
362–367. Springer (2019). https://doi.org/10.1007/978-3-030-54994-7 27

7. Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., Zunino, R.: A formal model
of Algorand smart contracts. CoRR abs/2009.12140v3 (2020), https://arxiv.
org/abs/2009.12140v3

8. Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., Zunino, R.: A formal model of
Algorand smart contracts. In: Financial Cryptography (2021), (to appear) https:
//arxiv.org/abs/2009.12140

9. Bernardo, B., Cauderlier, R., Hu, Z., Pesin, B., Tesson, J.: Mi-Cho-Coq, a frame-
work for certifying Tezos smart contracts. In: Sekerinski, E., Moreira, N., Oliveira,
J.N., Ratiu, D., Guidotti, R., Farrell, M., Luckcuck, M., Marmsoler, D., Cam-
pos, J., Astarte, T., Gonnord, L., Cerone, A., Couto, L., Dongol, B., Kutrib, M.,
Monteiro, P., Delmas, D. (eds.) Workshop on Formal Methods for Blockchains.
LNCS, vol. 12232, pp. 368–379. Springer (2019). https://doi.org/10.1007/978-3-
030-54994-7 28

10. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001

11. Rupić, K., Rozic, L., Derek, A.: Mechanized formal model of Bitcoin’s blockchain
validation procedures. In: Workshop on Formal Methods for Blockchains
(FMBC@CAV). OASIcs, vol. 84, pp. 7:1–7:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/OASIcs.FMBC.2020.7

61

A Technique For Analysing Permissionless1

Blockchain Protocols2

Stefano Bistarelli !3

University of Perugia, Perugia, Italy4

Rocco De Nicola !5

IMT School for Advanced Studies, Lucca, Italy6

Letterio Galletta !7

IMT School for Advanced Studies, Lucca, Italy8

Cosimo Laneve !9

University of Bologna, Bologna, Italy10

Ivan Mercanti !11

IMT School for Advanced Studies, Lucca, Italy12

Adele Veschetti !13

University of Bologna, Bologna, Italy14

Abstract15

In this work we present our research with the main goal of formally model and analyze the main16

blockchain consensus protocols. We have analyzed the protocol of the Bitcoin blockchain by using17

the PRISM probabilistic model checker. The probabilistic analysis of the model highlights how forks18

happen and how they depend on specific parameters of the protocol, such as the difficulty of the19

cryptopuzzles and the network communication delays. We also study the behaviour of networks with20

churn miners, which may leave the network and rejoin afterwards, and with different topologies.21

2012 ACM Subject Classification Theory of computation Ñ Formalisms22

Keywords and phrases Bitcoin, blockchain, security, CTMCs, PRISM, fork, Casper23

Digital Object Identifier 10.4230/OASIcs...24

1 Introduction25

The main goal of our research is to formally model and analyze the main blockchain consensus26

protocols. In particular, we adopt the approach of [10, 6], and we model the network of27

nodes as the parallel composition of processes and the time needed to mine a block and to28

broadcast a message as an exponential distribution. As done in [1, 5], we use Continuous29

Time Markov Chains (CTMCs) for providing a probabilistic model of our processes, where30

each process action is associated with a rate representing its duration.31

In [2], we apply this methodology to analyze the probabilistic behaviour of the Bitcoin32

protocol by using the probabilistic model checker PRISM [7]. In our model, we consider33

every implementation detail of Bitcoin that influences the probability of reaching a state of34

fork, and ignore every detail that does not impact on our analysis, e.g., the verification of35

digital signature and the actual computation of the hashes.36

The formal definition of the abstract model of Bitcoin is described using the language37

provided by PRISM, which is a process calculus with a probabilistic and stochastic semantics.38

Actually, in order to deal with the complex data types used by Bitcoin, e.g., blocks and39

ledger, and with the operations upon them, we extend this language, and introduce the40

richer variant, called PRISM+, that provides these concepts natively, thus simplifying the41

definition of the model. We remark that PRISM+ is not strictly tied to Bitcoin but can be42

used to model other blockchain systems. In this work, we briefly provide an overview of our43

© S. Bistarelli Public, R. De Nicola Public, L. Galletta Public, C. Laneve Public, I. Mercanti Public
and A. Veschetti Public;
licensed under Creative Commons License CC-BY 4.0

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

A Technique For Analysing Permissionless Blockchain Protocols

62

XX:2 A Technique For Analysing Permissionless Blockchain Protocols

Bitcoin model in PRISM+ and of the results of the different analyses we performed. Finally,44

we briefly discuss about our current and future works.45

2 The Bitcoin Model46

We model the Bitcoin protocol as the parallel composition of n Miner processes, n Hasher47

processes and a process called Network. Hasher processes model miners’ attempts to solve48

the cryptopuzzle, while the Network process models the communication infrastructure the49

miners rely on. To abstract out the solution of the cryptopuzzle and the emission of new50

blocks, we use rates. It turns out that every process can be modelled as a CTMC because:51

the time spent by a miner mi to mine a block can be described by an exponential52

distribution 1 ´ e´λmi
t, where the parameter λmi depends on the miner hashing power53

and the difficulty level of the crytopuzzle (see [9]);54

the communication delay across the Bitcoin network can be also approximated by an55

exponential distribution [4].56

The behaviour of processes can be summarized as follow:57

The Hasher_i processes represent the PoW algorithm performed by miners: the Miner_i58

who wants to solve the cryptopuzzle synchronizes with the Hasher_i which “answers”59

telling the him if he succeeded or not.60

A Miner_i may win the cryptopuzzle and create a new block or lose and wait for new61

blocks. In our setting, mining a block amounts to synchronizing with the Hasher. This62

synchronization has a rate hR_i, with 0 ă hR_i ă 1, indicating the computational power63

of the node. When a block is mined, it is added to the local ledger of the miner and it is64

forwarded to all the other, by synchronizing with the Network process. When the miner65

loses the cryptopuzzle, the miner may receive a block from the network or may try to66

add blocks stored in his local set.67

The Network process contains a set of blocks for each Miner_i that represents the68

messages to be delivered to the miner.69

3 Probabilistic Analyses70

We performed four probabilistic analyses covering different aspects. The first analysis assessed71

the coherence of our model with the real protocol, in a simple scenario, i.e. we assumed that72

miners all communicate with each other, so the Network process implements the broadcast73

of messages. To achieve that, we verified that the probability of mining a new block within74

a given amount of time, and that of reaching a fork correspond to those of Bitcoin, and75

coincide with the values available in the literature. Those results are consistent with the ones76

of Laneve and Veschetti [8], which provide a formal proof of the probability that Bitcoin77

ledgers may devolve into inconsistent states, also in presence of a double spending attack.78

The second analysis concerned the trade-off between security and the difficulty of the79

cryptopuzzle. Our results show that a slight decrease of the difficulty level of the cryptopuzzle80

leads to a significant increase of the speed of mining at the cost of an almost irrelevant81

increase of the probability of a fork.82

We also modeled and analyzed a network with churning nodes, i.e., nodes that can leave83

and rejoin the network, which provide a more realistic account of the behaviour of this84

complex platform. Our results show that churn nodes have a strong impact on the way the85

mining intervals vary with time: indeed, when a node leaves the network frequently, there is86

an immediate consequence on how the hashing power is distributed in the network.87 63

S. Bistarelli et al. XX:3

Finally, we modeled and analyzed the Bitcoin protocol taking into account different kinds88

of network topologies (daisy topology, round topology, tree topology and fully connected89

topology). The driving question of our analyses was checking whether the considered90

alternative topologies have a resistance to forks equal to or greater than the original one91

of Bitcoin. The results of our simulations clearly pointed out that the less the nodes are92

connected, the higher is the probability of reaching a state of fork. Moreover, our results93

made evident that the dynamism of nodes affects how blocks propagate across the network.94

Indeed, when a node disconnects, the network connectivity is reduced and this leads to an95

increase of the mean number of hops required for a block to reach all miners. So this delay96

in propagation increases the probability of forks.97

4 Future Works98

So far we assumed that miners are honest and work to extend the blockchain. As a future99

work, we would like to weaken this assumption and analyze also Bitcoin security issues, in100

particular, considering scenarios with malicious miners.101

Moreover, the methodology we adopted to model Bitcoin and the language PRISM+ are102

generic and can be used for other consensus algorithms. We are currently working on the103

analysis of the Casper protocol, the future PoS protocol of Ethereum [3]. Casper introduces104

the notions of justification and finalization of blocks, and the main chain is the one whose105

justified and finalized blocks received the most of the votes by validators, i.e., the nodes106

taking part to the consensus. The aim of our work is piq to obtain a faithful representation of107

what the system will be; piiq to study the probability of creating a new block within a certain108

amount of time, the probability of forks, and of justification and finalization of blocks; and109

piiiq to analyse its resilience to attacks. In particular, we are focusing on the Eclipse attack110

and the 51% attack. The first can be modeled by changing the Network process, whereas the111

second one can be analyzed by introducing malicious Miner processes.112

References113

1 Bruno Biais, Christophe Bisiere, Matthieu Bouvard, and Catherine Casamatta. The blockchain114

folk theorem. The Review of Financial Studies, 32(5):1662–1715, 2019.115

2 Stefano Bistarelli, Rocco De Nicola, Letterio Galletta, Cosimo Laneve, Ivan Mercanti, and116

Adele Veschetti. Stochastic modelling and analysis of the bitcoin protocol. Under review, 2021.117

3 Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23, 2013.118

4 Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In119

P2P, pages 1–10. IEEE, 2013.120

5 Ittay Eyal and Emin Gün Sirer. Majority is not enough: bitcoin mining is vulnerable. Commun.121

ACM, 61(7):95–102, 2018. doi:10.1145/3212998.122

6 Vincent Gramoli. From blockchain consensus back to byzantine consensus. Future Gener.123

Comput. Syst., 107:760–769, 2020. doi:10.1016/j.future.2017.09.023.124

7 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of125

probabilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585–591. Springer, 2011.126

8 Cosimo Laneve and Adele Veschetti. A formal analysis of the bitcoin protocol. In Gabbrielli’s127

Festschrift, volume 86 of OASIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für128

Informatik, 2020.129

9 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/130

bitcoin.pdf, 2008.131

10 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous132

networks. In EUROCRYPT (2), volume 10211 of LNCS, pages 643–673, 2017.133
64

