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Abstract

To get ultrasound color flow images of high quality, it is important to sufficiently suppress the

clutter signals originating from stationary and slowly moving tissue. Without sufficient clutter

rejection, low velocity blood flow can not be measured, and estimates of higher velocities will

have a large bias. The small number of samples available (8-16) makes clutter filtering in

color flow imaging a challenging problem. In this paper we review and analyze three classes

of filters: FIR, IIR, and regression filters. The quality of the filters was assessed based on the

frequency response, as well as on the bias and variance of a mean blood velocity estimator

using an autocorrelation technique. For FIR filters, the frequency response was improved by

allowing a non-linear phase response. By estimating the mean blood flow velocity from two

vectors filtered in the forward and backward direction, respectively, the standard deviation was

significantly lower with a minimum phase filter than with a linear phase filter. For IIR filters

applied to short signals, the transient part of the output signal is important. We analyzed

zero, step, and projection initialization, and found that projection initialization gave the best

filters. For regression filters, polynomial basis functions provide effective clutter suppression.

The best filters from each of the three classes gave comparable bias and variance of the mean

blood velocity estimates. However, polynomial regression filters and projection initialized IIR

filters had a slightly better frequency response than could be obtained with FIR filters.

1 Introduction

In ultrasound Doppler blood flow measurements, the signal scattered from blood is corrupted by

signals scattered from muscular tissue such as vessel walls, etc. This clutter signal is typically

40-100dB stronger than the signal from blood. The signal scattered by the rapidly moving

blood cells has a larger Doppler frequency shift than the signal reflected from slowly moving

tissue. A high-pass filter can therefore be used to separate the signals from blood and tissue. To

get adequate frame rates in 2D color flow imaging, only 8 − 16 samples are generally available

for high-pass filtering. While there are many conventional filter design techniques, all these

algorithms consider only the steady state frequency response. For the short signals available in

color flow imaging, the transient response is significant, and the steady state response can not
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be used to compare the filters. In this paper we analyze IIR filters with various initialization

techniques [1, 2, 3], FIR filters with and without a linear phase response [4], and regression

filters [5, 3, 6] in order to determine which filter is best for clutter filtering in color flow imaging.

The paper considers more filter types and goes deeper into the design procedure than previous

papers have done [7, 8, 3].

It has been suggested to adapt the clutter filter to the tissue movement by down-mixing

the signal with the estimated mean tissue frequency [9]. This paper does not consider such

an adaptation to the tissue movement, but down-mixing can be done prior to all the filters

considered. Paper [8] suggests initializing an IIR filter to suppress the transient from a complex

exponential with frequency equal to the estimated mean frequency. This is called exponential

initialization, and results in a non-linear filter and is not considered in this paper. The approach,

however, seems similar to down-mixing with the mean frequency prior to a step-initialized IIR

filter.

The paper is organized as follows. General theory for linear clutter filters is presented in

Section 2. In Sections 3, 4, and 5, FIR, IIR, and regression filters are presented, respectively.

Different filters within each of the filter classes are analyzed and compared. The best filters

from each class are compared in Section 6, while Section 7 contains the final discussion and

conclusions.

2 General Linear Clutter Filters

A 2D color flow imaging system scans the ultrasound beam over the region to be imaged, trans-

mits N pulses in each direction, and estimates the blood flow velocities from the backscattered

signals. The number of pulses N will be referred to as the packet size. A well established

technique is to estimate the blood flow velocities based on the temporal samples of the com-

plex demodulated signal from fixed positions in space. The clutter filter thus operates on a

one-dimensional signal consisting of N temporal samples.

It is convenient to organize the N samples of the complex demodulated Doppler signal in

a vector x = [x(0), x(1), . . . , x(N − 1)]T . A general one-dimensional clutter rejection filter can

be described mathematically as a transform on the N -dimensional complex vector space C
N .
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Restricting the treatment to linear filters, a general linear filtering operation can be expressed

by the matrix multiplication

y = Ax (1)

where A is an M×N matrix, and the output vector y = [y(0), y(1), . . . , y(M−1)]T has dimension

M . With the matrix element in row n and column k denoted by a(n, k), the elements of the

output vector are given by

y(n) =
N−1∑
k=0

a(n, k)x(k), n = 0, . . . ,M − 1 (2)

The filter is linear, but not generally time invariant. It is therefore not possible to define the

frequency response as the Fourier transform of an impulse response. For a general linear filter,

the frequency response is defined as the power of the output signal when the input is a complex

harmonic signal [6] with unit amplitude. A discrete-time complex exponential is defined by

x(k) = ejkω, k = 0, . . . ,N − 1 (3)

where ω ∈ [−π, π] is the normalized frequency, and j =
√−1. With this input signal, the output

becomes

yω(n) =
N−1∑
k=0

a(n, k)ejkω = An(−ω), n = 0, . . . ,M − 1 (4)

where An(ω) is the Fourier transform of row n. The frequency response then becomes

H0(ω) =
1
M

M−1∑
n=0

|yω(n)|2 =
1
M

M−1∑
n=0

|An(−ω)|2 (5)

The parameters describing the frequency response of a high pass filter are illustrated in Figure 1.

The stopband is limited by the stopband cut off frequency ωs, which should be large enough to

remove the clutter signal. The deviation from zero in the stopband is given by ds, which should

be as small as possible to get sufficient clutter rejection. In the passband, all the frequencies

should be passed through unaltered which means that dp should be minimized. Finally, the

passband cut off frequency ωp should be as close as possible to ωs. This ensures that a maximal

range of blood velocities can be measured.
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3 Finite Impulse Response (FIR) Filters

As the name implies, the impulse response of an FIR filter is of finite length. The output of a

(K − 1)th order FIR filter can therefore be written as the finite convolution sum

y(n) =
K−1∑
k=0

h(k)x(n − k) =
n∑

k=n−K+1

h(n − k)x(k) (6)

The output is not valid until all the filter registers are filled up with input data. With packet

size N , and filter order K−1, the number of valid output samples is N −K−1. It can be shown

that for FIR filters, the frequency response defined in Equation 5 becomes H0(ω) = |H(ω)|2,
where H(ω) is the Fourier transform of the impulse response h(n).

3.1 FIR Filters with Linear Phase

A filter has linear phase if the frequency response can be written

H(ω) = G(ω)ej(k1+k2ω) (7)

where G(ω) is a real function, and k1 and k2 are constants. The advantage of linear phase is

that in the passband, the frequency response is H(ω) ∼ ej(k1+k2ω). For a signal x(n) consisting

only of frequencies in the passband of the filter, the spectrum of the filtered signal is Y (ω) ∼
X(ω)ej(k1+k2ω). This is just a constant phase shift and a time delay of the input signal, and the

wave form is not distorted. An FIR filter with real coefficients has linear phase if the impulse

response satisfies the symmetry constraint

h(n) = ±h(K − n − 1) (8)

Many design techniques exist for linear phase FIR filters [4], but we will only consider the

design of equiripple filters using the McClellan-Parks algorithm. The maximum deviation from

the desired stop- and passband response is minimized, and filters designed with this algorithm

are optimal in the minimax sense [4].

3.2 FIR Filters with Minimum Phase

Linear phase imposes a symmetry constraint on the impulse response as shown in Equation 8.

Without any phase constraints, the required order to obtain a specified amplitude response is
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expected to be reduced. FIR filters with optimum amplitude response in the minimax sense can

be designed as described in [10]. Since only the amplitude response is considered, many filters

with the optimum amplitude response but different phase responses exist. Among these filters,

the minimum phase filter has all the zeros inside the unit circle, and has the smallest time delay

[11]. The minimum phase filter also maximizes the partial energy E(n) =
∑n

k=0 |h(k)|2 of the

impulse response [11], and therefore has the most asymmetric impulse response.

Blood flow parameters are commonly estimated from an estimate of the autocorrelation

function of the filtered signal [12]. For an FIR filter, the autocorrelation function of the output

signal y is given by

Ry(m) =
1
2π

∫ π

−π
Sx(ω)|H(ω)|2ejmωdω (9)

when the input signal x has power spectrum Sx(ω). Since Ry(m) is independent of the phase

response of the filter, it is safe to disregard the phase response when designing FIR clutter

filters for use together with autocorrelation estimates. The minimum phase filter has a highly

asymmetric impulse response function, and the input samples are weighted differently if the

impulse response is reversed. The variance might therefore be reduced if the autocorrelation

estimate is calculated from two output vectors filtered in the forward and backward direction,

respectively. This is investigated in Section 6.

3.3 Comparison of Linear and Minimum Phase FIR Filters

When designing both linear- and minimum phase FIR filters, the following parameters defined

in Figure 1 were specified:

• Maximum filter order.

• Minimum stopband cut off frequency, ωs.

• Maximum stopband ripple, ds.

• Maximum passband ripple, dp.

With these parameters specified, the minimum passband cut off frequency ωp was calculated.

When the minimum ωp was found, ds was minimized without altering the other quantities.

Table 1 shows an example of the filter parameters obtained for linear and minimum phase FIR
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filters of order 5. The corresponding frequency responses are shown in Figure 2, where we see

that the passband cut-off frequency decreases from 0.58π to 0.49π when a non-linear phase is

allowed. Filters with minimum phase will therefore be used when FIR filters are compared to

other filter classes.

4 Infinite Impulse Response (IIR) Filters

A Kth order infinite impulse response (IIR) filter is described by the difference equation

y(n) = −
K∑

k=1

aky(n − k) +
K∑

k=0

bkx(n − k) (10)

where we see that each output sample depends on present and past input samples, as well as

past output samples. The recursive part of the filter causes the response to an impulse input to

endure forever, and is the reason why such filters are called IIR filters.

4.1 Steady State and Transient Response

There are many techniques for designing IIR filters based on the steady state magnitude response.

The most common IIR filters are Butterworth, Chebyshev type I and II, and Elliptic filters.

A summary of the properties of these filters can be found in [13]. With an input signal of

finite length, the transient response becomes important. Examples of the transient signal for a

sinusoidal signal input to Butterworth, Chebyshev, and Elliptic high pass filters of order 3 are

shown in Figure 3. The Butterworth filter has the smallest transient since among the three filter

types, Butterworth filters have poles with the smallest magnitude. Butterworth filters have a

wider transition region than the other filters, and there is thus a trade-off between transient

duration and magnitude response.

4.2 State Space Formulation

To investigate different techniques for reducing the transient shown in Figure 3, a state space

formulation [11] of the IIR filter will be convenient. The state vector is defined by v(n) =

[v1(n) v2(n) . . . vK(n)]T where vi(n) is the content of filter memory register i in the direct form

II implementation of the filter [11]. The filter is then described by the following state space
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equations

v(n + 1) = Fv(n) + qx(n) (11)

y(n) = gT v(n) + dx(n) (12)

where the elements of F, q, g, and d are

F =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−aK −aK−1 −aK−2 · · · −a1




, q =




0

0
...

0

1




g =




bK − b0an

bK−1 − b0aK−1

...

b1 − b0a1




, d = b0 (13)

Let the input and output sequences be viewed as N × 1 vectors, x = [x(0) x(1) . . . x(N − 1)]T ,

and y = [y(0) y(1) . . . y(N − 1)]T . The relationship between the input and output of the filter

can then be written as the matrix-vector equation

y = Bv(0) + Cx (14)

where

B =




gT

gTF
...

gT FN−1




, and C =




d 0 · · · 0 0

gT q d · · · 0 0
...

...
...

...

gTFN−2q gTFN−3q · · · gT q d




(15)

We will now investigate different ways v(0) can be chosen to minimize the transient.

4.3 Zero Initialization

The initial filter state vector is set equal to the zero vector, v(0) = 0. This is equivalent to

assuming that the input signal is identical to zero for n < 0. The filtering operation is equal to

y = Cx (16)
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where C is given in Equation 15.

4.4 Step Initialization

The transient response depends on the input signal and can not be removed unless the input

signal is completely known. However, the transient can be partially suppressed by using the

a priori knowledge available about the input signal. In color flow imaging, the input signal is

dominated by the low frequency clutter signal. The input signal is therefore assumed to have

a constant value equal to the first signal sample x(0). For a stable filter, the transient dies out

with time, and for a step input, the filter registers converge to constant values. The transient

can thus be suppressed by setting the initial filter state equal to the state an infinitely long time

after the step is applied at the input. This initial filter state is found by utilizing the final value

theorem of the one-sided Z-transform [11]. Transformation of Equation 11 gives

V+(z) = z(zI − F)−1v(0) + (zI − F)−1qX+(z) (17)

and the transform of the assumed input step signal is given by x(0)z/(z − 1). The initial state

of the filter is then given by

vstep(0) = lim
z→1

(z − 1)
(

z(zI − F)−1v(0) + (zI − F)−1q
x(0)z
z − 1

)

= x(0)(I − F)−1q (18)

Inserting this in Equation 14 the filter with step initialization is given by

y =
(
B(I − F)−1q1 + C

)
x (19)

where 1 is the 1 × N vector [1 0 · · · 0].

4.5 Projection Initialization

The transient part of the output signal is of the same form as the response with just a zero input

signal [2]. By setting x = 0 in Equation 14 we see that the transient is in the subspace spanned

by the columns of the matrix B. The projection matrix PB = B(BT B)−1BT is the projection

into this transient subspace [2]. The component of the output signal in the transient subspace

is removed by forcing PBy = 0. This is obtained by the following initial state vector

v(0) = −(BTB)−1BTCx (20)

8



Inserting this in Equation 14 the filter with projection initialization is given by

y = (I − B(BT B)−1BT )Cx (21)

4.6 Mirroring of the Input Sequence

The transient decays with time, and the effect of the transient can be reduced by discarding

some of the first output samples. This reduction in the number of output samples, however,

increases the variance when estimating flow parameters. A better approach is to “increase” the

input signal length based on the available samples and then discard the first output samples.

One way to obtain this is to mirror the input vector around the first sample, producing the

2N −1 dimensional vector xm as shown in Figure 4. Mathematically, this mirroring is expressed

by the (2N − 1) × N matrix M1:

xm = M1x, where M1 =




2 0 · · · 0 −1

2 0 · · · −1 0
...

... · · · ...
...

2 −1 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 1




(22)

The matrices in Equation 15 must be adjusted for an input vector of length 2N − 1, and give

the output vector ym. The initial state vector v(0) is calculated based on xm. The final output

vector y is the last N samples of ym. This selection of samples is obtained by the N × (2N − 1)

matrix M2:

y = M2ym, where M2 = [0N×N−1 IN×N ] (23)

The entire filter including this mirroring operation is given by

y = M2Bv(0) + M2CM1x (24)

The matrix M1B has dimensions N × N , while the matrix M2B has dimensions N × K. The

mirroring operation can be repeated several times, i.e. the mirrored input vector xm can be

mirrored to obtain a vector of length 4N − 3.
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4.7 Comparison of Initialization Techniques

Examples of frequency responses for Butterworth, Chebyshev, and elliptic filters with different

initialization techniques are shown in Figure 5. In this figure we see that for packet size N = 8,

zero initialization results in insufficient stopband rejection. The step initialized filters have a

zero at zero frequency, but the stopband is very narrow. The projection initialized filters have a

stopband width equal to the steady state response, but with a wider transition region. Frequency

responses for the Chebyshev filter when the input vector is mirrored are shown in Figure 6.

Comparing the responses in Figure 6 with those in Figure 5, we see an improvement for zero-

and step initialization. For projection initialization, however, mirroring results in a degradation

of the response. From Figures 5 and 6, we can conclude that projection initialization without any

mirroring of the input vector is the preferred initialization technique for IIR filters. Among the

different IIR responses, the Chebyshev response is a good choice since it has a steep transition

region and a monotonic stopband. An IIR Chebyshev filter with projection initialization will

therefore be used when comparing IIR filters to other filter classes. The stopband width of a

projection initialized Chebyshev filter can be increased either by increasing the order or the

cut-off frequency of the steady state response. It is, however, not possible to get a significant

increase in the −80dB stopband width by increasing the cut-off frequency, the only result is an

undesirable widening of the transition region. A better approach is to increase the filter order

while keeping the cut-off frequency low. This is illustrated in Figure 7. The frequency responses

were also relatively independent of the passband ripple specified for the steady state response.

A peak-to-peak ripple of 1dB was used in all the designs of IIR filters.

No symmetry properties can be stated for the rows of an IIR filter matrix. As for minimum

phase FIR filters, there is thus a potential reduction of estimator variance if flow parameters

are estimated based on two output vectors filtered in the forward and backward direction,

respectively. This is investigated in Section 6.

5 Regression Filters

A regression filter calculates the best least-square fit of the signal to a set of curve forms modeling

the clutter signal, and subtracts this clutter approximation from the original signal. The curve
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forms span a subspace of the N -dimensional signal space which we call the clutter space. The

best least-square fit is the projection of the signal into the clutter space, and the filter matrix is

given by

A = I −
K−1∑
k=0

bkb∗T
k (25)

where bk is a set of orthonormal basis vectors spanning the K-dimensional clutter space, and I

is the identity matrix. The frequency response is

H0(ω) = 1 − 1
N

K−1∑
k=0

|Bk(ω)|2 (26)

where Bk(ω) is the Fourier transform of basis vector k [6]. We see from Equation 26 that to get

a high pass filter, the basis vectors should be low-frequency functions. Conventional frequency

analysis suggests using low-frequency sinusoids as basis vectors. The regression filter is then

equivalent to calculating the Discrete Fourier Transform and then setting the low-frequency

coefficients equal to zero prior to the inverse transform. An example of the obtained frequency

response is shown with a dotted line in Figure 8, where we see that this basis does not provide

sufficient stopband attenuation. There is a large distance between the zeros in the frequency

response, and small attenuation between them. A better frequency response is obtained by

increasing the sinusoidal period beyond the packet size. The frequency response when the period

of the sinusoids is four times the packet size is shown with a solid line in Figure 8. The zeros

come closer together with greater attenuation between them. In the limit, when the period of

the sinusoids is increased, they become polynomials within the signal interval. An orthonormal

basis is obtained by using the Legendre polynomials as basis vectors, and the resulting filter

is called a polynomial regression filter [5, 3, 6]. Frequency responses for polynomial regression

filters with different dimensions of the clutter space are shown in Figure 9a. The polynomial

regression filters have a smooth and monotonic frequency response, and a polynomial basis

for the clutter space will therefore be used when regression filters are compared to other filter

classes. The frequency response of polynomial regression filters changes in discrete steps with

clutter space dimension as seen in Figure 9a. The frequency response also varies with packet

size. To obtain the same stopband width with a larger packet size, the clutter space dimension

has to be increased.

Frequency responses in between those shown in Figure 9a can be obtained by using the filter
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matrix

A = I −
K−1∑
k=0

ck · bkb∗T
k (27)

where ck are real constants. Examples of the resulting frequency responses are shown in Figure 9b

for clutter space dimension equal to three, and c0 = c1 = 1 while c2 was 0.25, 0.5 and 0.75 in

the three examples shown. The −80dB stopband width is not significantly different from the

regression filter with clutter space dimension equal to 2. The transition region is, however,

significantly wider, and the best performance is obtained with the conventional polynomial

regression filter in Equation 25.

The polynomial basis vectors bk are either odd or even symmetric, b(k) = ±b(N − 1 − k).

Using this property in Equation 25, the filter matrix elements satisfy a(n, k) = a(N − 1 −
n,N − 1 − k). Therefore, a reversal of the input vector only results in a reversal of the output

vector. Thus no reduction in estimator variance is obtained by filtering in both the forward and

backward direction.

6 Comparison of the Different Filter Classes

In the previous sections, the filters with best frequency responses within the FIR, IIR, and

regression filter classes were found. Examples of frequency responses for these three filter classes

are shown in Figure 10a for packet size N = 8 and in Figure 10b for packet size N = 16.

The filters were designed with the parameters given in Table 2. These parameters were chosen

to achieve filters with comparable frequency responses. The polynomial regression filters have

frequency responses almost identical to the projection initialized IIR filters. This is expected

since the output vector for both filters is projected into the orthogonal complement of a subspace

with low frequency basis functions. The FIR filters have the widest transition regions, and is

not the preferred choice based on the frequency response. Figure 10 also contains examples of

the power spectra used in the simulations described later in this section.

Blood flow parameters are estimated from the output signal of the clutter filter. It is therefore

of interest to see how the clutter filter affects such estimates. A commonly used estimator for

the mean velocity in color flow imaging is calculated from an estimate of the autocorrelation
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function with temporal lag m = 1 [12]. Mathematically, the estimator is expressed by

v̂ =
c

2f0T
· f̂b, where f̂b = arg(R̂(1))/2π (28)

where c is the sound velocity, f0 is the ultrasound center frequency, T is the pulse repetition

interval, R̂(1) is the autocorrelation estimate, and f̂b is an estimate of the center frequency of

the blood signal. The autocorrelation function can be estimated by the sample mean estimator

R̂(m) =
1

M − m

M−m−1∑
k=0

y∗(k)y(k + m)

=
1

M − m

M−m−1∑
k=0

N−1∑
j=0

N−1∑
n=0

a∗(k, j)a(k + m,n)x∗(j)x(n) (29)

and we want to investigate how the filter matrix elements a(k, j) influence the mean frequency

estimate f̂b. A set of simulations with varying mean blood frequencies was performed with

signals having power spectra of the form shown in Figure 10. Both the clutter and blood signal

power spectra had a Gaussian shape with parameters given in Table 3. To model the transit

time effect, the bandwidth of the blood signal was proportional to the center frequency. The

synthetic blood signal was generated by first calculating the Discrete Fourier Transform of a

signal consisting of 512 · N samples of complex white Gaussian noise. This signal was then

multiplied by a mask corresponding to the power spectrum of the blood signal, and transformed

back to the time domain. The clutter signal was calculated in a similar manner. Finally, the

signal used in the simulations was the sum of these two signals and complex white Gaussian

noise, giving a power spectrum as shown in Figure 10. Subdividing this signal into vectors

of dimension N , we got 512 realizations of a signal with packet size N . This procedure was

repeated 512 times giving a total of 262 144 realizations for each blood signal center frequency.

When aliasing of the velocity estimates occurred, ±2π was added to arg(R̂(1)) in Equation 28

to ensure that the estimates were contained in the interval [fb − 0.5, fb + 0.5].

Figure 11 shows the bias and standard deviation of the mean frequency estimate with no

clutter signal and a signal-to-noise ratio (SNR) of 30dB. The packet size is N = 8. The filters

are designed to suppress signals with frequencies in the stopband, and therefore yield a large

bias and standard deviation for Doppler frequencies within the stopband. The transition region

should be as narrow as possible, and in this region we see that the polynomial regression filter

yields a considerably larger bias than the other filters. The regression filter also yields bias for a
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larger range of frequencies. In the passband, however, all the filters yield a negligible bias. For

the FIR filter, the standard deviation in the passband is reduced when the estimate is calculated

from two vectors filtered in the forward and backward direction. The improvement is largest for

high frequencies since the bandwidth of the blood signal is proportional to the center frequency.

Figure 12 shows the results when the SNR is reduced to 6dB. Compared with the results

for SNR=30dB, we see that the bias in the transition region and passband increases for all

the filters. We also see that the regression filter has the largest bias. The difference in bias

between the regression filter and the other filters is, however, much smaller for SNR=6dB which

is a realistic signal-to-noise ratio. The standard deviation in the passband increases for all the

filters, and the FIR filter yields a considerably higher standard deviation in the passband than

the other filters. When the estimate is calculated from two vectors filtered in the forward and

backward direction, the standard deviation within the passband is significantly reduced, and is

comparable to the IIR and regression filter. For a linear phase FIR filter the standard deviation

was approximately equal to the values obtained with a minimum phase filter applied only in the

forward direction. For IIR filters there was no significant reduction of the standard deviation

when filtering in both the forward and backward direction.

To see how clutter affects the mean frequency estimate, we repeated the simulations including

a clutter signal denoted Clutter signal 1. To study the decay in performance with increased

clutter level, we also performed simulations with Clutter signal 2 where both the amplitude and

bandwidth was increased. The detailed parameters for these two signals are given in Table 3.

The results for Clutter signal 1 are shown in Figure 13 where we see that they are very similar to

the results with no clutter signal shown in Figure 12. This means that all the filters sufficiently

suppress a clutter signal with this amplitude, bandwidth, and center frequency.

The results for Clutter signal 2 are shown in Figure 14 where we see that the mean frequency

estimates are strongly affected by this clutter signal. When studying Figure 10a, we see that

the power of Clutter signal 2 after filtering is above the thermal noise level. This low frequency

signal component is an explanation for the significant negative bias in Figure 14a. The standard

deviation within the passband is also large for Clutter signal 2. Based on the results in Figure 14

it can be concluded that none of the filters sufficiently suppress Clutter signal 2. The results

also indicate that all the filters break down at approximately the same clutter power, bandwidth
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and center frequency.

The influence of the packet size on the quality of the mean frequency estimator was investi-

gated by increasing the packet size from 8 to 16. To maintain approximately the same stopband

width, the dimension of the clutter space used in the regression filter was increased from 3 to

5. The other filter types were also redesigned with parameters given in Table 2 to get frequency

responses similar to the regression filter as shown in Figure 10b. The results for Clutter signal

1 are shown in Figure 15. When comparing Figure 15a and Figure 13a, we see that the range

of frequencies with considerable bias is reduced when the packet size is increased from 8 to

16. This effect is related to the narrower transition region of the filters used for N = 16. The

standard deviation of the estimates decreases with packet size since the estimates are based on

a larger number of samples. The relative advantage achieved by applying the FIR filter in both

directions is the same for N = 8 and N = 16.

The results for Clutter signal 2 are shown in Figure 16 where we see that all the filters

have similar performance and yield a small negative bias for Doppler frequencies within the

passband. We also see that the standard deviation is significantly increased for the highest

Doppler frequencies compared to the results for Clutter signal 1 shown in Figure 15. The filters

do not completely suppress the clutter signal, but they perform significantly better than the

filters used for packet size N = 8. An explanation for this is the wider stopbands of the filters

used for N = 16.

7 Discussion and Conclusions

The frequency response of FIR filters is improved when a nonlinear phase response is allowed.

The commonly used autocorrelation estimates do not depend on the phase response, so a filter

with non-linear phase response can safely be chosen. A significant reduction of the variance of

the mean frequency estimator was obtained by filtering with a minimum phase filter in both the

forward and backward direction. Linear phase FIR filters have symmetric impulse responses,

and nothing is gained by filtering in both the forward and backward direction. A large gain in

performance can thus be obtained by using a minimum phase filter instead of a linear phase

filter.
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For short signal lengths, the frequency response for IIR filters is highly dependent on the

initialization technique. We found that the best frequency response for IIR filters is obtained

when projection initialization is used. The other initialization techniques do not provide a

sufficient stopband width for clutter rejection.

Within the class of regression filters, polynomial basis functions were shown to provide useful

frequency responses. Polynomial regression filters and projection initialized IIR filters of the

same order have almost identical properties. An explanation for this is that the output vector

for both filters is projected into the orthogonal complement of a subspace with low frequency

basis functions.

Among the three filter classes, polynomial regression filters and projection initialized IIR

filters have the best frequency response. For equal stopband width, the transition regions were

narrower than for FIR filters. An advantage of FIR filters is the greater flexibility in specifying

the filter cut-off frequency, which is also independent of the packet size. To increase the stopband

width for projection initialized IIR filters, it was better to increase the filter order than to increase

the steady state cut-off frequency.

Simulations were performed to investigate how the bias and standard deviation of the mean

frequency estimator were affected by the clutter filters. The simulations showed that for all

the filter types, the frequency response is a reliable indicator of the range of blood velocities

that can be measured with good quality. For Doppler frequencies within the passband, there

was no significant differences in the bias produced by the different filters for realistic noise

and clutter levels. The different filter types break down at approximately the same clutter

level. IIR and regression filters provide a larger number of output samples than FIR filters

provide. The simulations showed that this larger number of samples reduces the variance of the

mean frequency estimator within the passband compared to FIR filters. By using a minimum

phase FIR filter in both the forward and backward direction, there was, however, no significant

difference in variance between the three filter classes. The simulations also showed that the

relative performance between the filters did not change significantly with packet size.

When using projection initialization, IIR filters have a computational complexity similar to

that of regression filters. The computational complexity is considerably smaller for FIR filters.

However, if minimum estimator variance is desired, the FIR filter should be applied twice, and
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more computations are needed for the autocorrelation estimate.
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Figure captions

Figure 1:

Design parameters for a high pass filter.

Figure 2:

Frequency responses for linear and minimum phase FIR filters of order 5.

Figure 3:

The transient signal for the Butterworth, Chebyshev, and Elliptic filters shown in Figure 5. The

input signal was sin(nπ/5 + π/4).

Figure 4:

Mirroring of the input sequence around the first sample.

Figure 5:

Frequency responses for Butterworth, Chebyshev, and elliptic filters with different initialization

techniques. Packet size N = 8.

Figure 6:

Frequency responses for the Chebyshev filter with different initialization techniques when the

input signal is mirrored. Packet size N = 8.

Figure 7:

Projection initialized Chebyshev responses as a function of order and steady state cut-off fre-

quency. Packet size N = 8.

Figure 8:

Frequency responses for regression filters with sinusoidal basis vectors. Clutter space dimension

K = 3, and packet size N = 8.
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Figure 9:

(a) Frequency responses for polynomial regression filters with packet size N = 8. The clutter

space dimension is indicated on each curve. (b) Frequency responses for filters described in

Equation 27 with c0 = c1 = 1 and c2 equal to 0.25, 0.5 and 0.75 are plotted with dashed lines.

Figure 10:

Comparison of frequency responses of polynomial regression filters, projection initialized IIR

Chebyshev filters, and a minimum phase FIR filters. (a) Packet size N = 8. (b) Packet size

N = 16. The design parameters are given in Table 2.

Figure 11:

(a) Bias and (b) standard deviation of the mean frequency estimate for the three different fil-

ters in Figure 10a. The frequency of the polynomial regression filter is plotted to indicate the

passbands of the filters. No clutter is present and the SNR is 30dB. The packet size is N = 8.

Figure 12:

(a) Bias and (b) standard deviation of the mean frequency estimate for the three different fil-

ters in Figure 10a. The frequency of the polynomial regression filter is plotted to indicate the

passbands of the filters. No clutter is present and the SNR is 6dB. The packet size is N = 8.

Figure 13:

(a) Bias and (b) standard deviation of the mean frequency estimate with Clutter signal 1 for the

three different filters in Figure 10a. The frequency of the polynomial regression filter is plotted

to indicate the passbands of the filters. The SNR is 6dB and the packet size is N = 8.
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Figure 14:

(a) Bias and (b) standard deviation of the mean frequency estimate with Clutter signal 2 for the

three different filters in Figure 10a. The frequency of the polynomial regression filter is plotted

to indicate the passbands of the filters. The SNR is 6dB and the packet size is N = 8.

Figure 15:

(a) Bias and (b) standard deviation of the mean frequency estimate with Clutter signal 1 for the

three different filters in Figure 10a. The frequency of the polynomial regression filter is plotted

to indicate the passbands of the filters. The SNR is 6dB and the packet size is N = 16.

Figure 16:

(a) Bias and (b) standard deviation of the mean frequency estimate with Clutter signal 2 for the

three different filters in Figure 10a. The frequency of the polynomial regression filter is plotted

to indicate the passbands of the filters. The SNR is 6dB and the packet size is N = 16.
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Table captions

Table 1:

Optimum linear and minimum phase FIR filters of order 5. Design parameters: minimum

ωs = 0.02π, maximum dp = 0.5dB, and minimum ds = −80dB

Table 2:

Filter design parameters.

Table 3:

Parameters for the simulated spectra. Clutter signal 1 is plotted with a dashed line in Figure 10,

while Clutter signal 2 is plotted with a solid line.
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Min. phase Lin. phase
ωp 0.49π 0.58π
ds [dB] -87dB -91dB

Table 1
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Packet size N = 8 Packet size N = 16
Filter type Parameter Filter type Parameter

Proj. init. IIR Order = 3 Proj. init. IIR Order = 5
Chebyshev ωp = 0.2π Chebyshev ωp = 0.1π

dp = 0.5dB dp = 0.5dB
Min. phase FIR Order = 5 Min. phase FIR Order = 8

Minimum ωs = 0.02π Minimum ωs = 0.03π
Maximum dp = 0.5dB Maximum dp = 0.5dB
Minimum ds = −80dB Minimum ds = −80dB
Achieved ds = −87dB Achieved ds = −92dB
Achieved ωp = 0.49π Achieved ωp = 0.40π

Pol. reg. Clut. space dim. = 3 Pol. reg. Clut. space dim. = 5

Table 2
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Clutter signal 1 Clutter signal 2
Clutter-to-flow-signal power ratio, CSR 40dB 50dB
Clutter signal RMS Bandwidth, Bc 0.01PRF 0.015PRF
Clutter signal center frequency, fc 0.0075PRF 0.0075PRF
Blood signal center frequency, fb 0 to 0.5PRF 0 to 0.5PRF
Blood signal RMS Bandwidth, Bb 0.1fb 0.1fb

Table 3
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