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Abstract: This paper presents an improved stability condition for Takagi-Sugeno (TS) fuzzy
systems based on a new fuzzy Lyapunov function. This new fuzzy Lyapunov function aggregates
more information with respect to the membership function variation (time-derivative) via an
augmented state vector. This new fuzzy Lyapunov function is not just parametrized by the
membership functions variations but it is also based on a polynomial combination of them. To
derive LMI based stability condition using the proposed new fuzzy Lyapunov function two ideas
are invoked: i) the inclusion of the membership function time-derivative information using a
finite number of vectors and, ii) the use of the so-called null term. Two numerical examples are
presented to illustrate the improvements.
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1. INTRODUCTION

Over the last two decades, control design and stability
issues for Takagi-Sugeno (TS) fuzzy systems (Takagi and
Sugeno, 1985) have been widely handled as convex opti-
mization problems that describe Lyapunov stability con-
straints, formulated either as LMIs (Tanaka et al., 1996) or
as SOS problems (Tanaka et al., 2009). Quadratic stability
has been of paramount importance in this field since the
polytopic nature of TS systems can be easily explored to
get LMI conditions, whereas some time-varying features
are left aside. Recently, Montagner et al. (2009) presented
quadratic stability conditions that are sufficient with a
certificate of convergence to necessity, as a parameter
increase. However, as pointed out by Sala (2009), a major
source of conservativeness in the Lyapunov approach is
the unsuitable choice of the candidate function. This mo-
tivated the appearance of alternative types of candidates
functions: piecewise (Johansson et al., 1999) and fuzzy
(Jadbabaie, 1999) combination of quadratic forms; integral
over conservative fields (Rhee and Won, 2006); k-sample
variation approach (Kruszewski et al., 2008); polynomial
dependency on the states (Tanaka et al., 2009). Among
those, the fuzzy Lyapunov function is quite interesting
because carries into the LMI formulation information re-
garding the membership functions which can better char-
acterize the time-varying nature of TS systems. As shown
in Mozelli et al. (2009b) and Souza et al. (2009) this
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information can potentially decrease conservativeness in
stability analysis.

As far as the authors’ concern, this paper presents three
novelties for stability analysis of TS systems. First, a new
Lyapunov function for stability analysis of TS systems is
proposed. An augmented state vector is considered which
brings more information about the membership functions
variation, following the ideas proposed by Ebihara et al.
(2005), providing a fuzzy Lyapunov function with poly-
nomial dependency on the membership functions. Second,
the systematic rationale proposed by Mozelli et al. (2009a)
is improved to cope with this new function and to allow
that more information regarding derivatives is available
in LMI conditions. Finally, to include the time-derivative
of the membership functions in a non-conservative way
the strategy discussed in Geromel and Colaneri (2006)
and Chesi et al. (2007) is adopted. Those three steps
combined lead to a new LMI stability condition. Numerical
examples are performed to illustrate the main features
of the proposed condition and to compare it with recent
results reported in the literature

Notation: Uppercase and lowercase indicate matrices and
vectors, respectively; superscript (′) is for transpose; M >
0 (< 0) means that M positive (negative) definite; •
denote the transposed term in symmetric matrix; He(M)
indicates M + M ′; M(i,j) stands for the element (i, j)
in matrix M ; co{·} denotes the convex hull; the subsets
{1, 2, . . . , r} ⊂ N

∗, {1, 2, . . . , 5} ⊂ N
∗ e {1, 2, . . . ,m} ⊂ N

∗

are denoted by R, F and M, respectively.
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2. PRELIMINARIES

In this paper the stability analysis of Takagi-Sugeno (TS)
fuzzy systems is investigated, which are described by:

ẋ = A(h)x, A(h) ,

r
∑

i=1

hiAi, (1)

where hi are the normalized membership functions and
the model is obtained trough a center-average defuzzifier,
product inference and singleton fuzzifier (Tanaka et al.,
1996). The membership functions satisfy the following
properties

hi ∈ [0, 1],
r

∑

i=1

hi = 1,
r

∑

i=1

ḣi = 0. (2)

2.1 On the time-derivative of membership functions

Usually when considering fuzzy Lyapunov functions, in-
cluding the time-derivative of the membership functions
it is done by taking its upper bounds, as in Tanaka et al.
(2003). However, since the time-derivative of the member-
ship functions are related by the equation

r
∑

i=1

ḣi = 0, (3)

this approach tends to be conservative, because all deriva-
tives assuming its maximum is an impossible scenario. As
noticed in Geromel and Colaneri (2006) and in Chesi et al.
(2007) the time-derivative of the membership functions are
confined to the polytope

Ω , co{v1, v2, . . . , vm}

= {vj ∈ R
r| − φk ≤ vj

k ≤ φk, c′vj = 0},
(4)

with c′ = [1 1 . . . 1] ∈ R
r, k is the kth coordinate of

vj
k and |ḣk| ≤ φk. Thus it is possible to include the time-

derivative information using a finite number of vectors as
in Geromel and Colaneri (2006). To accumulate this set of
vectors the following matrix is employed

VΩ ,











v1 v2 · · ·











vj
1

vj
2
...
vj

r











· · · vm











. (5)

Remark 1. The price to be paid by considering the time-
derivative of the membership functions as in Geromel and
Colaneri (2006) is an exponential growth in the number of
constraints, since for r = 2 → VΩ ∈ R

2×2, r = 3 → VΩ ∈
R

3×6, and so on.

2.2 Lyapunov Function

The new fuzzy Lyapunov function proposed is:

V (x, ẋ, h) , [x′ ẋ′]

r
∑

i=1

hi

[

P1i P ′
2i

P2i P3i

] [

x
ẋ

]

, (6)

where P2i are any n×n matrices and P1i, P3i are symmetric
of appropriated order. As proposed in Ebihara et al. (2005)
this function takes into account the time-derivative of the
state by using an augmented vector. In the context of
TS systems this function is parametrized by a polynomial
combination of the membership functions. It is easily
checked replacing ẋ by A(h)x in (6) and rewriting it in
a quadratic form:

V (x, ẋ, h) = x′

r
∑

i=1

r
∑

j=1

r
∑

k=1

hihjhk ×

[

P1i + A′
jP2i + P ′

2iAj + A′
jP3iAk

]

x. (7)

Notice that third degree monomials appear combining the
matrices of this function, instead of an affine combination
as occurs in Jadbabaie (1999); Tanaka et al. (2003) and
Mozelli et al. (2009b).

The time-derivative of this function is given in a compact
form by

V̇ (x, ẋ, h) = [x′ ẋ′ ẍ′]
r

∑

i=1

hi





0 P1i P ′
2i

P1i P2i + P ′
2i P3i

P2i P3i 0





[

x
ẋ
ẍ

]

+[x′ ẋ′ ẍ′]
r

∑

i=1

ḣi





P1i P ′
2i 0

P2i P3i 0
0 0 0





[

x
ẋ
ẍ

]

. (8)

Notice that the information concerning the time-derivative
of the membership functions appears twice. Explicitly,
as occurs in Jadbabaie (1999); Tanaka et al. (2003) and
Mozelli et al. (2009b) and also implicitly due to the
presence of ẍ since

ẍ = A(h)ẋ + Ȧ(h)x =

r
∑

i=1

hiAiẋ +

r
∑

i=1

ḣiAix. (9)

2.3 Null Terms

In Mozelli et al. (2009a) the following null term was
successfully used to reduce simultaneously conservatism
and complexity of LMIs in stability analysis:

2
[

x′M1 + ẋ′M2

]

× [ẋ − A(h)x] = 0. (10)

This approach is also suitable for the new fuzzy Lyapunov
function as well and it is shown in Mozelli et al. (2010) that
it is equivalent with Finsler’s lemma and the descriptor
approach for stability analysis purposes. Nevertheless, in
this paper this strategy is further improved and two new
null terms are coined

2
[

x′M3 + ẋ′M4 + ẍ′M5

]

×
[

ẍ − Ȧ(h)x − A(h)ẋ
]

= 0
(11)

and
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0 = 2

[

x′

r
∑

i=1

ḣiXi + ẋ′

r
∑

i=1

ḣiYi

]

× [ẋ − A(h)x]

= 2
[

x′Ẋ(h) + ẋ′Ẏ (h)
]

× [ẋ − A(h)x] . (12)

3. STABILITY ANALYSIS CONDITION

Considering the previous discussion, in this section a new
stability analysis condition for TS fuzzy systems based on
LMIs is presented.

Theorem 2. Consider ḣi ∈ C1, |ḣ|i ≤ φi. The TS fuzzy
system (1) is stable if there exist symmetric matrices
P1i, P3i ∈ R

n×n, any matrices P2i,Xi, Yi,Mp ∈ R
n×n,

i ∈ R, p ∈ F such that the following LMIs are satisfied

[

P1i •
P2i P3i

]

> 0,
i∈R

(13)

Θi + Pi +

r
∑

k=1

VΩ(k,j)

(

Θ̆(k,i) + P̆k

)

< 0,

i∈R,j∈M

(14)

where

Θi , (15)




−He(M1Ai) • •
−A′

iM3−M2Ai+M ′
1 He(M2) − He(M4Ai) •

M ′
3 M ′

4 − M5Ai M5+M ′
5



,

Θ̆(k,i) ,





−M3Ak − A′
kM ′

3 − XkAi − A′
iX

′
k • •

−M4Ak − YkAi + X ′
k Yk+Y ′

k •
−M5Ak 0 0



,

(16)

Pi ,





0 • •
P1i P2i + P ′

2i •
P2i P3i 0



 , P̆i ,

[

P1i • •
P2i P3i •
0 0 0

]

. (17)

Proof.

Due to the convexity in hi, LMI (13) is sufficient to guar-
antee the positiveness of the candidate Lyapunov function
(6). Then the time-derivative of the candidate function (8)
is taken and the null terms in (10)-(12) are added with it.
Since the time-derivatives of the membership functions lie
on the polytope given in (4), it suffices to look its vertices
acumulated in matrix VΩ. Thus the terms multiplied by
∑r

k=1 ḣk are replaced by j terms with
∑r

k=1 VΩ(k,j)
, where

j is the number of columns in VΩ, thus j ∈ M. Once again,
relying on the convexity in hi, the LMI (14) is sufficient,
completing the proof.

4. EXAMPLES

In this section numerical examples are explored to illus-
trate the new stability conditions.

4.1 Example 1

Consider the following nonlinear system (Tanaka et al.,
2003, 2009):

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

t

V
(x

,
ẋ
,
h
)

Fig. 1. Time evolution of the Lyapunov function for some
initial conditions: x = [−1 1] (dashed line) and x =
[1 1] (solid line).

ẋ1 =−

(

7

2
+

3

2
sin(x1)

)

x1 − 4x2,

ẋ2 =

(

19

2
−

21

2
sin(x1)

)

x1 − 2x2.

The following TS model can be obtained by sector nonlin-
earity approach (Ohtake et al., 2001) for |x1| < π/2:

A1 =

[

−5 −4
−1 −2

]

, A2 =

[

−2 −4
20 −2

]

,

h1 =
1 + sin(x1)

2
, h2 =

1 − sin(x1)

2
,

ḣ1 = − cos(x1)

(

7

4
x1 + 2x2

)

−
3

4
x1 sin(x1) cos(x1).

Even though the analysis of the phase plane shows that
this system is stable no quadratic function can prove
stability. Using a grid with resolution 0.05 the maximum
value of ḣ1 is computed as 3.45 and the minimum as −3.62.
Using φi = 3.7, Theorem 2 provides the following matrices
for i = 1, 2:

P1 =







0.6737 0.3842 0.1318 −0.0128
0.3842 0.8019 0.1548 −0.0058
0.1318 0.1548 0.0592 −0.0034

−0.0128 −0.0058 −0.0034 0.0032






,

P2 =







1.2728 0.2731 0.1306 −0.0050
0.2731 0.5565 0.1094 −0.0041
0.1306 0.1094 0.0452 −0.0028

−0.0050 −0.0041 −0.0028 0.0018






.

Figure 1 shows the evolution of the Lyapunov function for
different initial conditions x = [−1 1] (dashed line) and
x = [1 1] (solid line). Notice how its decay is monotonic.
Figure 2 depicts the level curves of the Lyapunov function
and the system trajectories for those initial conditions
considered in Figure 1. Notice that the level curves are
convex but are not ellipses, as occurs in quadratic stability,
and the trajectories go from one contour to another
innermost. Finally, Figure 3 shows the phase portrait
illustrating that this function is indeed a Lyapunov for
this system.

4.2 Example 2

Consider the nonlinear system from (Tanaka et al., 2009)
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x
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Fig. 2. Some level curves of the Lyapunov function and
two trajectories of the system (dashed lines).

−1.5 −1 −0.5 0 0.5 1 1.5
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0
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1
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x
2

Fig. 3. Some level curves of the Lyapunov function and the
phase portrait.

ẋ1 = x2,

ẋ2 =−2x1 − x2 − f(t)x1. (18)

where f(t) ∈ [0, k] is at least C1.

The dynamics in (18) can be exactly described by the TS
model (1) with 2 rules assuming that

A1 =

[

0 1
−2 −1

]

, A2 =

[

0 1
−2 − k −1

]

,

and with the following membership functions

h1 = (k − f(t))/k, h2 = f(t)/k.

Several values of λ (a single upper bound for the absolute
value of all time-derivatives of the membership functions)
were considered. In each case, the maximum value of k for
which the system is stable using Theorem 2 was verified.
For further reference Theorem 2 will be indicated by T2.
The maximum k was also calculated using different ap-
proaches: quadratic stability, using Theorem 2 in Montag-

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

 

 

λ

k

T2

MPA09

RW06

TYOW09

MOP09

XFS97

Fig. 4. Maximum values of k for several bounds on the
time-derivatives of the membership functions

ner et al. (2009) with g = d = 5 [MOP09]; piecewise func-
tion, using Theorem 3.1 in Xie et al. (1997) [XFS97]; fuzzy
Lyapunov approach that depends on the time-derivative of
membership functions, using Theorem 1 in Mozelli et al.
(2009a) [MPA:09]; another fuzzy Lyapunov approach that
is membership derivative independent, using Theorem 3
in Rhee and Won (2006) [RW06]; a tenth-order polyno-
mial function using Theorem 1 in Tanaka et al. (2009)
[TYOW09].

Figure 4 depicts the values of parameter k for different
values λ bounding the time-derivatives of the membership
functions. Table 1 sumarizes the extremes in Figure 4.
When the approaches that depend on the time-derivative
of the membership functions are compared with each other
(T2 against MPA09) there is a clear superiority for the
proposed approach. Notice that MPA09 converges to the
results of quadratic stability (MOP09) as the value of k
increases. This result is expect because the fuzzy Lyapunov
function includes the quadratic Lyapunov function as
special case, see the discussion in Mozelli et al. (2009b).
Notice however that the proposed approach outperforms
the quadratic stability for all values of λ. Even for values of
λ larger than those shown in Figure 4 this is verified. The
same conclusions can be made comparing the proposed
approach with XFS97. It emphasizes the relevance of the
augmented Lyapunov function proposed.

When compared with the approaches that do not depend
on the time-derivative of the membership functions the
proposed approach is also very competitive. For values of
λ > 2, T2, RW06, and TYOW09 differ at most by 30%, see
Table 1. However as λ decreases T2 can be 500% better.
This is a great improvement, considering for instance that
MPA09 differs at most by 400% from the time-derivative
independent approaches.

5. CONCLUSION

In this paper an improved stability analysis condition
for Takagi-Sugeno fuzzy systems based on a new fuzzy
Lyapunov function is presented. This Lyapunov function
includes more information related to the membership func-
tion variation in a new fashion. The LMI test conditions
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obtained from this Lyapunov function are derived using
extra null terms and including the time-derivative infor-
mation using a finite number of vectors. The numerical
examples illustrates the potential of this new approach.
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