Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

En mathématiques, l'espace L1 est l'espace des fonctions à valeurs dans dont la valeur absolue (ou l'espace des fonctions à valeurs dans dont le module) est intégrable au sens de Lebesgue. Il est un cas particulier des espaces Lp et sa norme en découle. C'est donc un espace de Banach.

Si μ est la mesure de Haar d'un groupe localement compact unimodulaire, L1(μ) est même une algèbre de Banach pour le produit de convolution.

Pour tout ouvert Ω de ℝn :

Articles connexes

modifier