Matrice unitaire
matrice complexe carrée U telle que UV=VU=I où V est la matrice adjointe de U
En algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités :
où la matrice adjointe de U est notée U* (ou U† en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité.
L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n).
Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.
Propriétés
modifierToute matrice unitaire U vérifie les propriétés suivantes :
- son déterminant est de module 1 ;
- ses vecteurs propres sont orthogonaux ;
- U est diagonalisable : où V est une matrice unitaire et D est une matrice diagonale et unitaire ;
- U peut s'écrire sous la forme d'une exponentielle d'une matrice : où i est l'unité imaginaire et H est une matrice hermitienne.
- U est normale.
Propositions équivalentes
modifierSoit U une matrice carrée de taille n à coefficients complexes ; les cinq propositions suivantes sont équivalentes :
- U est unitaire ;
- U* est unitaire ;
- U est inversible et son inverse est U* ;
- les colonnes de U forment une base orthonormale pour le produit hermitien canonique sur ℂn ;
- U est normale et ses valeurs propres sont de module 1.
Cas particuliers
modifierLes matrices unités sont des matrices unitaires.
Référence
modifier(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Unitary matrix » (voir la liste des auteurs).
Voir aussi
modifierBibliographie
modifier- Éric J. M. Delhez, Algèbre, vol. 1
- Joseph Grifone, Algèbre linéaire, Cépaduès-Éditions,