Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Introduction

modifier

Dans le domaine du traitement du signal et plus particulièrement en télécommunications, le signal analytique est un signal satisfaisant un certain nombre de propriétés, mais qui peut être tout d'abord vu comme le prolongement d'un signal réel   dans le plan complexe  :

Exemple :

Soit un signal réel   de la forme:   On peut le considérer comme étant la partie réelle du signal complexe:  Cependant, le choix se portera sur les fonctions régulières dans le demi-plan complexe supérieur; soit pour  , le signal complexe  .

Introduisons certaines notions pour argumenter ce choix.

Définition et Propriété

modifier

Soit un signal réel  , la transformée de Hilbert de   est définie par: Soit un signal réel  , on dit que   est le signal analytique formé à partir de   s'il est holomorphe dans le demi-plan complexe supérieur et fonction de la variable  . Sous ces conditions, il est défini par: Le terme   (resp.  ) est appelé l'information en quadrature (resp. en phase). La précédente équation provient du filtre   relatif à la transformée de Hilbert, soit: En effet, la symétrie du spectre fréquentiel d'un signal réel permet de ne considérer que les fréquences positives. De plus, étant donné la transformée de Fourier de  , on obtient la réponse impulsionnelle du filtre, soit: 

Relation avec d'autres grandeurs

modifier

En utilisant la définition de la transformée de Hilbert, on obtient également[1]:   .

Notation :  .

Selon la définition d'enveloppe complexe, on a aussi[2]:  

Notes et références

modifier
  1. « TP1 : Signal analytique » (consulté le )
  2. « Signaux passe-bande et enveloppe complexe. » (consulté le )