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Text Mining – Terminology


•  Text mining on a collection of documents:!
–  The collection is the data set!
–  The documents are the data points!

•  Since text is unstructured, a document is usually converted in a 
common representation!

the	

dog	
barks	 bag-of-words!
world	

paris	
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Example: Text Categorization


Feature Extraction!
Term Weighting!

Textual 
Data!

Model 
Learning!

Text 
Categorization!

Evaluation!

Applications:!
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•  Opinion mining (sentiment analysis)!
•  Email spam classification!
•  Web-pages classification!
•  …!
!



Bag-of-Words (BoW) - Issues


•  Term independence assumption !
•  Term frequency weighting!
!

Bag of words: [(activity,1), (collection,1) !
                  (information,4), (relevant,1), !

                  (resources, 2), (retrieval, 1), …]!

information retrieval is the activity of obtaining!
!
information resources relevant to an information need!
!
from a collection of information resources!

Example text!

4!

Assumptions made by 
the BoW model 
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Graph-based Document Representation


•  Challenge the term independence and term frequency weighting 
assumptions taking into account word dependence, order and 
distance!

•  Employ a graph-based document representation capturing the 
above!

•  Graphs have been successfully used in IR to encompass relations 
and propose meaningful weights (e.g., PageRank)!



information retrieval is the activity of obtaining 

information resources relevant to an information need 

from a collection of information resources

Captures: frequency, order and distance!

Idea: Replace term frequency with 
node centrality!

6!

Graph-based Document Representation - Example




Goal: offer a comprehensive presentation of recent methods 
that rely on graph-based text representations to deal with 

various tasks in NLP and IR!

•  Part I.  Graph-theoretic concepts and graph-based text 
representation!

•  Part II. Information retrieval!

•  Part III. Keyword extraction and text summarization!

•  Part IV. Text categorization!

•  Part V. Final remarks and future research directions!

Goal of the Tutorial and Outline
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•  Part I.  Graph-theoretic concepts and graph-based text 
representation!

•  Part II. Information retrieval!

•  Part III. Keyword extraction and text summarization!

•  Part IV. Text categorization!

•  Part V. Final remarks and future research directions!

Tutorial Outline


8!
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Basic graph-theoretic concepts 
and definitions



Graphs and Networks


Graphs: modeling dependencies!

Nodes (or vertices)!
(objects/entities)!

Edges (or links)!
(interconnections)!

10!

G = (V, E) 
(network or graph)!

n = |V|    is the number of nodes!
m =|E|    is the number of edges!
	



Undirected vs. Directed Networks
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Undirected!
•  Links: undirected 

(symmetrical, reciprocal)!

•  Examples!
–  Collaborations!
–  Friendship on Facebook!

Directed!
•  Links: directed !

(arcs)!

•  Examples!
–  Phone calls!
–  Following on Twitter!
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Node Degree
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of edges adjacent to node i!
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In directed networks we define an in-
degree and out-degree!
The (total) degree of a node is the sum of in- 
and out-degrees!

Average degree:!

Source: Node with kin = 0!
Sink: Node with kout = 0!

kA = 4

k̄ = hki = 1
n

Pn
i=1 ki =

2|E|
n

kinC = 2 kout
C

= 1 kC = 3

k̄in = ¯koutAverage:!



More Types of Graphs
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Unweighted!
(undirected)!

Weighted !
(undirected)!
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Examples: Friendship, Hyperlink! Examples: Collaboration, Internet, Roads!



•  Let G = (V, E) be a graph and let                be any subset of its vertices!

!
•  Definition: The induced subgraph G[S] = (S, E’) is the graph whose vertex 

set is S and its edge set consists of all of the edges in E that have both 
endpoints in S!

Subgraphs
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Representation Matters!
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Choice of the proper network!
representation of a given!
system determines our!
ability to use networks!

successfully!
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Centrality criteria



•  Determine the relative importance of a node in the network!
–  Applications in Social Network Analysis, the Internet, Epidemiology, 

Urban informatics, …!
•  What do we mean by centrality?!

–  A central node is more important or powerful …!
–  Or, more influential ...!
–  Or, is more critical due to its location in the graph!

•  Also, very closely related to the problem of ranking in the 
context of Web search!
–  Each webpage can be considered as a ‘user’!
–  Each hyperlink is an endorsement relationship!
–  Centrality measures provide a query independent link-based score of 

importance of a web page!

Centrality in Networks (1/2)
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Centrality in Networks (2/2)
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•  Starting point: the central node of a star is the most important!
•  Why?!

–  The node with the highest degree!
–  The node that is closest to the rest nodes (e.g., has the smallest 

average distance to other nodes)!
–  The node through which all shortest paths pass!
–  The node that maximizes the dominant eigenvector (the one that 

corresponds to the largest eigenvalue) of the adjacency matrix!
–  The node with highest probability in the stationary distribution of a 

random walk on the graph!

Types of Centrality
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Various competing views of centrality!



•  This observation leads to the following classes of indices of 
centrality:!
–  Measures based on distances (e.g., degree, closeness)!
–  Measures based on paths (e.g., betweenness, Katz’s index)!
–  Spectral measures (eigenvector, PageRank, HITS, SALSA, random 

walks with restarts)!
–  Measure based on groups of nodes (e.g., cliques, plexes, cores)!

•  Related to the “clustering” structure!
•  More on that in another lecture!

Measures of Centrality


20!



A First Example
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Y 

X 

Y 

X 

Y X 

Y 

X 

in-degree!

In each of the following networks, X has higher centrality than Y according to!
a particular measure!

out-degree! betweenness! closeness!



Degree Centrality (1/2)
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•  Idea: A central node is one with many connections!

•  Cd (i) = k(i), where k(i) is the degree of node i!



Degree Centrality (2/2)
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•  Idea: A central node is one with many connections!

•  Normalized degree centrality: divide by the max possible degree 
(n-1) !



•  Motivation: it measures the ability to quickly access or pass 
information through the graph!

Closeness Centrality
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Ccl(i) =
n � 1P
j,i d(i, j)

    d(i, j) is the length of the shortest path between i and j (geodesic distance)!

•  The closeness of a node is defined as the inverse of the sum of the shortest 
path (SP) distances between the node and all other nodes in the graph!

Be close to everybody else 
(e.g., influence on other nodes) 

Values in the 
range [0,1] 

Mean distance 
from a node to 

other nodes!

Why inverse the distance?!
•  Nodes with low mean distance 

should get high score!

[Mateos, ‘17]!



•  Motivation: a node is important if it lies in many shortest paths!

Betweenness Centrality
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•  σ(s, t) is the total number of shortest paths from s to t!
•  σ(s, t|v) is the number of shortest paths from s to t that pass through i!

Essential nodes in passing 
information through the 
network 

Oftentimes it is normalized:		
Cbt(i)�n�1

2
�

Cbt(i) =
X

s,i,t2V

�(s, t|i)
�(s, t)
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The HITS Algorithm
(Hubs and Authorities)



Hubs and Authorities (1/3)


Interesting pages fall into two classes:!
!
1.  Authorities are pages containing !

useful information!
–  Newspaper home pages!
–  Course home pages!
–  Home pages of auto manufacturers!

2.  Hubs are pages that link to authorities!
–  List of newspapers!
–  Course bulletin!
–  List of U.S. auto manufacturers!

27!



Hubs and Authorities (2/3)
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•  Pages have double identity!
–  Hub identity!
–  Authority identity!

•  Good hubs point to good 
authorities!

•  Good authorities are pointed by 
good hubs!

hubs! authorities!



Hubs and Authorities (3/3)


•  Two kind of weights:!
–  Hub weight!
–  Authority weight!

•  The hub weight is the sum of the authority weights of the 
authorities pointed to by the hub!

•  The authority weight is the sum of the hub weights that point to 
this authority!

•  Represented as vectors h and α, where the i th element is the 
hub/authority score of the i th node!

29!



•  Initialize: !

•  Repeat until convergence !

–  Authority:!

–  Hub:!

–  Normalize: and  !

HITS Algorithm
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•  HITS in vector notation!
–  α = [α1, α2, ..., αn]T   and h = [h1, h2, …, hn]T!

•  We can rewrite αi and hi based on the adjacency matrix!
!

                              as!
!

•  Thus, h = A α    and    α = AT h!

•  α(t+1) = AT h(t)  and h(t+1) = A α(t)!

•  α(t+1) = AT A α(t) and h(t+1) = AAT h(t)!

HITS and Eigenvectors
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hi =
X

i! j

↵ j hi =
X

j

Ai j · ↵ j

Repeated iterations 
will converge to the 

eigenvectors!

•  Authority weight vector α : eigenvector of ATA!
•  Hub weight vector h : eigenvector of AAT!

The vectors α and h are 
the singular vectors of A!

SVD 



PageRank


•  Good authorities should be pointed by good authorities!
–  The value of a node comes from the value of the nodes that point to it!

•  How do we implement that?!
–  Assume that we have a unit of authority to distribute to all nodes!

•  Initially, each node gets 1/n amount of authority!
–  Each node distributes its authority value to its neighbors!
–  The authority value of each node is the sum of the authority fractions 

that they collect from their neighbors!

⇡
v

=
X

8(u,v)2E

1
k

out

(u)
⇡

u

πv: the PageRank value of node v!
•  Recursive definition!

32!



A Simple Example


•  Solving the system of equations we get the authority values 
for the nodes!
–  π = ½  π = ¼  π = ¼ !

π! π!

π!

π + π + π = 1 !

π =  π + π !
π = ½ π!
π = ½ π!
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A More Complex Example


π1 = 1/3 π4 + 1/2 π5!

π2 = 1/2 π1 + π3 + 1/3 π4!

π3 = 1/2 π1 + 1/3 π4!

π4 = 1/2 π5!

π5 = π2 !

v1!

v2!

v3!

v4!v5!

⇡
v

=
X

8(u,v)2E

1
k

out

(u)
⇡

u
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Computing PageRank Weights


•  A simple way to compute the weights is by iteratively 
updating the weights!
!
! Initialize all PageRank weights to 1/n !

!
Repeat:!
!
!
!
Until the weights do not change!

⇡
v

=
X

8(u,v)2E

1
k

out

(u)
⇡

u

This process converges!
35!
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Core decomposition in networks



Core Decomposition


•  Tool to analyze the structure of real networks!
–  Quantify community and clustering structure!

•  Hierarchical representation of a graph into nested subgraphs 
of increased connectivity and coherence properties!

•  Basic idea:!
–  Set a threshold on the node degree, say k!
–  Nodes that do not satisfy the threshold are removed from the graph!

•  Extensions to other node properties (e.g., triangles)!
•  Plethora of applications!

–  Dense subgraph discovery and community detection!
–  Evaluation of collaboration in social networks!
–  Identification of influential spreaders in social networks!
–  Text analytics!

37!



Example:!

Note:!
The degeneracy and the size of 

the k-core provide a good 
indication of the cohesiveness of 

the graph!

Important property:!
•  Fast and easy to compute!
•  Linear to the size of the graph!
•  Scalable to large scale 

graphs!

k-Core Decomposition


•  Degeneracy for an undirected graph G!
•  Also known as the k-core number!
•  The k-core of G is the largest subgraph in which every vertex has 

degree at least k within the subgraph!

3-core

2-core

1-core

Core number

ci = 1

Core number

ci = 2

Core number

ci = 3

Graph Degeneracy �⇤(G) = 3

G0 = G

G1 = 1-core of G

G2 = 2-core of G

G3 = 3-core of G

G0 ◆ G1 ◆ G2 ◆ G3

Also known as graph degeneracy! 38!



                !
core0(G)	

core1(G)	

core2(G)	

core4(G)	
core3(G)	

Another Example
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Algorithm for k-Core Decomposition


• Many  efficient algorithms have been proposed for the computation!
•  Time complexity: O(m)!

Algorithm k-core(G, k)!
Input: An undirected graph G and  positive integer k!
Output: k-core(G)!
1. let F := G!
2. while there is a node x in F such that  degF(x)<k!

delete node x from F!
3. return F!

[Batagelj and Zaversnik, ‘03]!
40!



Set C
Set T

6

Truss set T!

K-truss Decomposition (Triangles)


•  K-truss decomposition [Cohen ’08], [Wang and Cheng ‘12]!
–  Triangle-based extension of the k-core decomposition!
–  Each edge of the K-truss subgraph participates in at least K-2 triangles!

•  Informally, the “core” of the maximal k-core subgraph!
•  Subgraph of higher coherence compared to the k-core!
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Graph-based text representations



•  Let G = (V, E) be the graph that corresponds to a document d!

•  The nodes can correspond to:!
–  Paragraphs!
–  Sentences!
–  Phrases!
–  Words [Main focus of the tutorial]!
–  Syllables!

•  The edges of the graph can capture various types of relationships 
between two nodes:!
–  Co-occurrence within a window over the text [Main focus of the tutorial]!
–  Syntactic relationship!
–  Semantic relationship!

Graph Semantics


43!



•  Each document d   D is represented by a graph Gd = (Vd, Ed), where the 
nodes correspond to the terms t of the document and the edges capture co-
occurrence relationships between terms within a fixed-size sliding window of 
size w!

•  Directed vs. undirected graph!
•  Directed graphs are able to preserve the actual flow of a text!
•  In undirected graphs, an edge captures co-occurrence of two terms whatever the 

respective order between them is!

•  Weighted vs. unweighted graph!
•  The higher the number of co-occurrences of two terms in the document, the higher 

the weight of the corresponding edge!

•  Size w of the sliding window!
•  Add edges between the terms of the document that co-occur within a sliding 

window of size w!
•  Larger window sizes produce graphs that are relatively dense!

	

∈

Graph-of-Words (GoW) Model


[Mihalcea and Tarau, EMNLP ‘04], [Blanco and Lioma, Inf. Retr. ‘12], 
[Rousseau and Vazirgiannis, CIKM ‘13]!



Example of Unweighted GoW


45!

Data Science is the extraction of knowledge from large volumes of data

that are structured or unstructured which is a continuation of the field of

data mining and predictive analytics, also known as knowledge discovery

and data mining.

data

scienc

extract

knowledg

larg

volum

structur

unstructur

continu

field

mine

predict

analyt

discoveri

known

w = 3!
unweighted, undirected graph!



Example of Weighed Undirected GoW
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problem
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Edge weights
1
2
3
4
5

Mathematical aspects of 
computer-aided share trading. 
We consider problems of 
statistical analysis of share 
prices and propose 
probabilistic characteristics to 
describe the price series. We 
discuss three methods of 
mathematical modelling of 
price series with given 
probabilistic characteristics.



•  Part I.  Graph-theoretic concepts and graph-based text 
representation!

•  Part II. Information retrieval!

•  Part III. Keyword extraction and text summarization!

•  Part IV. Text categorization!

•  Part V. Final remarks and future research directions!

Tutorial Outline
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In-degree based TW
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•  The weight of a term in a document is its in-degree  in the graph-of-words!
•  It represents the number of distinct contexts of occurrence!
•  We store the document as a vector of weights in the direct!

index and similarly in the inverted index!
•  For example:!

information 5!
retrieval 1!
is 2!
the 2!
activity 2!
of 3!
obtaining 2!
resources 3!
relevant 2!
to 2!
an 2!
need 2!
from 2!
a 2!
collection 2!

Bag of words: !
((activity,1), (collection,1),  !
 (information,4), (relevant,1), !
(resources, 2), (retrieval, 1)..)!



TF-IDF and BM25!

49!

•  Term t, document d, collection of size N, term frequency tf(t, d), 
document frequency df(t), document length |d|, average document 
length avdl, asymptotical marginal gain k1 (1.2), slope parameter b!

•  TF-IDF [Singhal et al., TREC-7]!
!

           TF-IDF(t, d) = TFpol-IDF(t, d) = TFpoTFl(t, d) x IDF(t) =!

•  BM25 [Lv and Zhai, CIKM ’11]!

!
!

         BM25(t, d) =!

1+ log 1+ log tf (t,d)( )( )
1− b+ b× | d |

avdl
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TW-IDF


50!

•  Term t, document d, collection of size N, term weight tw(t, d), document 
frequency df(t), document length |d|, average document length avdl, 
asymptotical marginal gain k1 (1.2), slope parameter b!

             TW-IDF(t, d) = !

•  In the bag-of-word representation, tw is usually defined as the term 
frequency or sometimes just the presence/absence of a term (binary tf)!

•  In the graph-of-word representation, tw is the in-degree of the vertex 
representing the term in the graph !

tw(t,d)

1− b+ b× | d |
avdl

#

$

%
%
%

&

'

(
(
(
× log N +1

df (t)
#

$
%

&

'
(

[Rousseau and Vazirgiannis, CIKM ‘13]!



•  Datasets!
•  Platforms!
•  Evaluation!
•  Results!

Experimental Evaluation
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•  Disks 1 & 2 (TREC)!
741,856 news articles from Wall Street Journal (1987-1992), Federal 
Register (1988-1989), Associated Press (1988-1989 and Information from 
the Computer Select disks (1989-1990) !

•  Disks 4 & 5 (TREC, minus the Congressional Record)!
528,155 news releases from Federal Register (1994), Financial Times 
(1991-1994), Foreign Broadcast Information Service (1996) and Los 
Angeles Times (1989-1990) !

•  WT10G (TREC)!
1,692,096 crawled pages from a snapshot of the Web in 1997 !

•  .GOV2 (TREC)!
25,205,179 crawled Web pages from .gov sites in early 2004!

Datasets (1/2)
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Datasets (2/2)
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Dataset!
Statistic!

Disks 1 & 2! Disks 4 & 5! WT10G! .GOV2!

# of documents! 741,856! 528,155! 1,692,096! 25,205,179!

# of unique terms! 535,001! 520,423! 3,135,780! 15,324,292!

average # of terms 
(avdl)!

237! 272! 398! 645!

average # of vertices! 125! 157! 165! 185!

average # of edges! 608! 734! 901! 1,185!

Table: Statistics on the four TREC datasets used; Disks 4&5 excludes the Congressional 
Record. The average values are computed per document. !



•  Mean Average Precision (MAP) and Precision at 10 (P@10)!
–  Considering only the top-ranked 1000 documents for each run!

•  Statistical significance of improvement was assessed using 
the Student’s paired t-test!

–  R implementation (t.test {stats} package), trec_eval output as input!
–  Two-sided p-values less than 0.05 and 0.01 to reject the null hypothesis !

•  Likelihood of relevance vs. likelihood of retrieval [Singhal et al., SIGIR ‘96]!

•  4 baseline models: TF-IDF, BM25, Piv+ and BM25+!
–  Tuned slope parameter b for pivoted document length normalization (2-fold cross-

validation, odd vs. even topic ids, MAP maximization)!
–  Default (1.0) lower-bounding gap [Lv and Zhai, CIKM ‘11]!

Evaluation
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Graph-based Ad Hoc IR


•  Evaluation in terms of:!
–  Mean Average Precision!
–  Precision@10!
–  Probability of relevance!

vs. probability of retrieval!

55!



Likelihood of Relevance vs. Likelihood of Retrieval
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•  Part I.  Graph-theoretic concepts and graph-based text 
representation!

•  Part II. Information retrieval!

•  Part III. Keyword extraction and text summarization!

•  Part IV. Text categorization!

•  Part V. Final remarks and future research directions!

Tutorial Outline
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Single Document Keyword Extraction
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Keywords are used everywhere!
•  Looking up information on the Web (e.g., via a search engine bar)!
•  Finding similar posts on a blog (e.g., tag cloud)!
•  For ads matching (e.g., AdWords’ keyword planner)!
•  For research paper indexing and retrieval (e.g., SpringerLink)!
•  For research paper reviewer assignment  !

!
Applications are numerous!
•  Summarization (to get a gist of the content of a document) !
•  Information filtering (to select specific documents of interest) !
•  Indexing (to answer keyword-based queries)!
•  Query expansion (using additional keywords from top results) !



k-core decomposition of the graph !

Existing graph-based keyword 
extractors:  !
!
-  Assign a centrality based score to a 

node !
-  Top ranked ones will correspond to the 

most representative!

-  TextRank (PageRank) [Mihalcea and Tarau, 
EMNLP ‘04] !

-  HITS [Litvak and Last, MMIES ‘08]!
-  Node centrality (degree, betweenness, 

eigenvector) [Boudin, IJNLP ‘13]!

59!

Idea: retain the k-core subgraph of the graph to extract the 
nodes based on their centrality and cohesiveness!

Graph-based Keyword Extraction (1/2) 




•  Single-document keyword 
extraction  !
–  Select the most cohesive sets of 

words in the graph as keywords!
–  Use k-core decomposition to 

extract the main core of the 
graph!

–  Weighted edges!

[Rousseau and Vazirgiannis, ECIR ‘15]!
60!

Graph-based Keyword Extraction (2/2) 




PageRank vs. k-core
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Keywords are not Unigrams


•  500 abstracts from the Inspec database used in our 
experiments, !

•  4,913 keywords manually assigned by human annotators !
•  only 662  are unigrams (13%). !
•  Bigrams (2,587 – 52%) …  7-grams (5). !
⇒ keywords are bigrams, if not higher order n-grams. !
⇒ the interactions within keywords need to be captured in the 
first place – i.e. in the graph. !
⇒ we can consider a k-core to form a “long-distance (k+1)-
gram” [Bassiou and Kotropoulos, 2010] !
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How Many Keywords?


•  Most techniques in keyword extraction assign a score to each 
feature and then take the top ones!

•  But how many? !
–  Absolute number (top X) or relative number (top X%)? !

•  Besides, at fixed document length, humans may assign more 
keywords for a document than for another one !

!
X is decided at document level (size of the k-core 

subgraph)!
!

63!

k-cores are adaptive 



Datasets


•  Hulth2003 – 500 abstracts from the Inspec database [Hulth, 
2003]!

!
•  Krapi2009 – 2,304 ACM full papers in Computer Science 

(references and captions excluded) [Krapivin et al., 2009] !
!
All approaches are unsupervised and single-document!
!

!
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Models and Baseline Methods


Graph-of-words: !
•  Undirected edges !
•  Forward edges!

–  Natural flow of the text!
–  An edge term1 → term2 meaning that term1 precedes term2 in 

a sliding window!
•  Backward edges  !
!
Keyword extractors:!
•  PageRank!
•  HITS (authority scores only) !
•  k-core!
•  Weighted k-core !

Top 33% or top 15% keywords!

Main core!
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Evaluation Metrics  


•  Each document has a set of golden keywords assigned 
by humans !

–  precision, recall and F1-score per document !
!

–  macro-average each metric at the collection level!
!
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Performance Evaluation


Precision!
Recall!
F1-score!
Precision/recall!
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Example – ECIR’15 Paper


•  Stemmed unigrams of the main core of the graph- of-words of 
the paper document: {keyword, extract, graph, represent, 
text, weight, graph-of-word, k-core, degeneraci, edg, vertic, 
number, document}!

•  Using PageRank, “work” appears in the top 5, “term” and 
“pagerank” in the top 10, and “case” and “order” in the top 
15. Central words but not in cohesion with the rest and 
probably not relevant!
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A Different Point of View


Graph degeneracy:!
•  In social networks, nodes part of the 

highest levels of the hierarchy are 
better spreaders than nodes high on 
PageRank!

•  Nodes with high truss numbers are 
even more influential than nodes with 
high core numbers!

•  Spreading influence may be a better 
“keywordness” metric than prestige 
(captured by PageRank)!
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Retaining the top level like in may be an appealing initial idea!

Drawbacks of Graph Degeneracy (1/4)
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But many keywords live below the top level -> good precision, poor recall!

Drawbacks of Graph Degeneracy (2/4)
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Drawbacks of Graph Degeneracy (3/4)


How to automatically select the best level in the 
hierarchy?!
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Drawbacks of Graph Degeneracy (4/4)


How to automatically select the best level in the 
hierarchy?!

In order to improve recall while not losing too 
much in precision?!
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Heuristics:!
•  dens: go down the hierarchy until a drop in k-core (or truss) density is 

observed, i.e., as long as the desirable cohesiveness properties are 
kept!

•  inf: go down the hierarchy as long as the shells increase in size (starting 
at the main – 1 level)!

Graph Degeneracy for Keyword Extraction


Problem: both methods work at the subgraph level -> lack flexibility for!
     large graphs (adding an entire group of nodes or not)!

[Tixier et al., EMNLP ‘16]! 74!



Heuristics:!
•  dens: go down the hierarchy until a drop in k-core (or truss) density is 

observed, i.e., as long as the desirable cohesiveness properties are 
kept!

•  inf: go down the hierarchy as long as the shells increase in size (starting 
at the main – 1 level)!

Graph Degeneracy for Keyword Extraction


Problem: both methods work at the subgraph level -> lack flexibility for!
     large graphs (adding an entire group of nodes or not)!

[Tixier et al., EMNLP ‘16]! 75!

How to work at the node level while still retaining 
the valuable cohesiveness information captured 

by degeneracy?!



CoreRank (CR):!
!

•  Assign to each node the sum of the core (or truss) numbers of its neighbors!
•  Granularity is much finer and allows for much flexible selection!
•  Comparable to applying PageRank to the graph-of-words (aka TextRank) but 

taking into account cohesiveness concerns rather than individual prestige 
only!

Heuristics: nodes can be selected based on the elbow or top p% method!
76!

CoreRank


[Tixier et al., EMNLP ‘16]!



Datasets!
•  Hulth2003: 500 abstracts from the Inspec physics & engineering 

database!
•  Marujo2012: 450 web news stories covering 10 different topics!
•  Semeval: 100 scientific papers from the ACM!

77!

CoreRank – Experimental Evaluation (1/2)




•  For small documents (i.e., small graphs), the subgraph-level heuristics 
significantly outperform main core retention (main) and TextRank (TRP, 
TRE)!

•  Recall is drastically improved, precision is maintained (especially with inf)!
•  For long documents (Semeval), the node-level heuristics are better!
•  CoreRank with top p% retention (CRP) reaches best performance!
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CoreRank – Experimental Evaluation (2/2)
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Extractive summarization



Same as before!

Extension to Extractive Document Summarization
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Same as before!

Extension to Extractive Document Summarization


How to use keywords (and their scores) to select the 
best sentences in a document? !
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•  Generating a summary in an extractive way is akin to 
selecting the best sentences in the document under a budget 
constraint (max number of words allowed)!

•  Combinatorial optimization task:!

–  S is a given summary (a subset of the set of sentences V)!
–  F is the objective function to maximize (measuring summary 

quality)!
–  Cv is the cost of sentence v (number of words it contains)!
–  B is the budget (in words)!

Extractive Document Summarization (1/4)


82!
[Lin and Bilmes, NAACL ‘10]!



•  Solving this task is NP-complete!
•  It has been shown that if F is non-decreasing and submodular, a 

greedy !
algorithm can approach the best solution with factor (e – 1)/e!

•  At each step, the algorithm selects the sentence v that maximizes:!
!

!
!

objective function gain 
!

!
! scaled cost 

!

!
!

•  r is a tuning parameter!
!

!

!
!
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Extractive Document Summarization (2/4)




proportion of unique keywords 
contained!

weighted sum of the keywords 
contained in the summary!

84![Lin and Bilmes, NAACL ‘10], [Meladianos et al., EACL ‘17]!

Extractive Document Summarization (3/4)


•  The choice of F, the summary quality objective function, is what matters!
•  A good summary should cover all the important topics in the document,  

while not repeating itself!
•  Maximize coverage!
•  Penalize redundancy (reward diversity to ensure monotonicity) !



Tested for multiparty virtual meetings summarization:!

AMI	corpus	 ICSI	corpus	

85!

Extractive Document Summarization (4/4)
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GoWvis visualization tool



GoWvis Visualization Tool


https://safetyapp.shinyapps.io/GoWvis/ !
87![Tixier et al., ACL ‘16]!



•  Builds a graph-of-words and displays an interactive 
representation of any text pasted by the user!

•  Allows the user to tune many parameters:!
–  Text pre-processing (stopword removal, …)!
–  Graph building (window size, …)!
–  Graph mining (node ranking and community detection 

algorithms, …)!
•  Extracts keyphrases and generates a summary of the input 

text!
•  Built in R Shiny with the visNetwork library!

!

GoWvis


https://safetyapp.shinyapps.io/GoWvis/ !
88!
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Multi-sentence compression 
in word graphs



•  Setting: we are given a group of similar sentences (e.g., first 
sentence of each article on a Google News cluster). Each 
sentence contains important bits of information. Collectively, the 
sentences cover everything, but none single sentence 'gets it all’!

•  Goal: fuse the sentences into a single, compact one, that 
contains as much information as possible while being fluent and 
grammatical!

•  Method: many approaches can be used. However, it is possible 
to produce excellent results in a fully unsupervised way, with only 
a list of stopwords and a part-of-speech tagger!

Multi Sentence Compression/Fusion


90![Filippova et al., ACL ‘10]!



1) Lonesome George, the world’s last Pinta Island giant tortoise, has passed away!
2) The giant tortoise known as Lonesome George died Sunday at the Galapagos 
National Park in Ecuador!
3) He was only about a hundred years old, but the last known giant Pinta tortoise, 
Lonesome George, has passed away!
4) Lonesome George, a giant tortoise believed to be the last of his kind, has died!
!

Word-graph Sentence Compression
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•  Build a directed graph from the first sentence, with 'start' and 'end' nodes. 
Then, consider each word in the remaining sentences.!

i.  if the word is not a stopword, and if there is already a node in the graph for 
it (with same lowercased spelling and POS tag), and assuming that no word 
from the same sentence has already been mapped onto the node => map 
word to the node!

•  Otherwise:!

ii.  if the word is not a stopword, but there are more than one candidate in the 
graph or multiple occurrences of the word in the sentence!

iii.  if the word is a stopword!

=> select the candidate which has larger overlap in context (preceding and 
following words in sentence and neighbors in the graph), or the node which has 
more words mapped onto it!

Word-graph Construction
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Edge weights (the smaller the better):!

Where:!

•  freq(i) is the number of words that have been mapped to node i!
•  diff(s,i,j) is the distance between word i and word j in sentence s !

(1)!

(2)!

•  Intuition for (2): !
•  edges between strongly associated words are given more importance, taking into 

account the overall freq. of the nodes (edge freq. of 3 should count more if the edge connects 2 
nodes with freq. 3 rather than with freq. >>3)!

•  Connections between nodes between which there are multiple paths are also given 
more importance, proportionally to the lengths of the paths!

Word-graph Construction
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Edge weights (the smaller the better):!

Where:!

•  freq(i) is the number of words that have been mapped to node i!
•  diff(s,i,j) is the distance between word i and word j in sentence s !

(1)!

(2)!

•  Intuition for (1):!
•  Eq. (2) is a measure of cohesion between 2 words, but disregards the individual 

importance of the words => we need to take saliency into account. Edges 
connecting two important words are thus favored.!

Word-graph Construction
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•  A K-shortest paths algorithm is applied on the graph to find the 50 
paths with smallest edge weights!

•  All the paths which are shorter than eight words and do not contain a 
verb are filtered out!

•  The survivors are re-ranked by normalizing the total path weight over 
its length!

•  The path which has the lightest average edge weight is finally 
considered as the best compression!

Path Ranking and Selection
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1) Lonesome George, the world’s last Pinta Island giant tortoise, has passed away!
2) The giant tortoise known as Lonesome George died Sunday at the Galapagos 
National Park in Ecuador!
3) He was only about a hundred years old, but the last known giant Pinta tortoise, 
Lonesome George, has passed away!
4) Lonesome George, a giant tortoise believed to be the last of his kind, has died!

Examples
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1) The wife of a former U.S. president Bill Clinton Hillary Clinton visited China last Monday!
2) Hillary Clinton wanted to visit China last month but postponed her plans till Monday last 
week!
3) Hillary Clinton paid a visit to the People Republic of China on Monday!
4) Last week the Secretary of State Ms. Clinton visited Chinese officials!

Examples
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Lessons Learned


•  Syntactic parsers, language models, and/or handcrafted rules are 
not the only way of controlling the grammaticality of the output!

!
•  Redundancy provides a reliable way of generating grammatical 

sentences!
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Event detection in text streams



Sub-event Detection in Twitter Streams


100!

1. Large volume of documents in social media!
2. Events are not covered by traditional media!
3. News appear fast in Twitter!
4. Is Tweet rate suited for sub-event Detection?!

Tweet Rate histogram of a football match!

True Events! Falsely estimated events!

Contribution:!
A novel real-time detection 
mechanism that accurately 
detects sub-events in an 
unsupervised and out-of-

the-box manner !

[Meladianos et al., ICWSM ‘15]!



Sub-event Detection in Twitter Streams


101!

System Architecture!

Real time event summarization!
!
1.  Feature extraction: extracts the 

terms that best describe the 
current state of the event!

!
2.  Sub-event detection: decides 

whether a sub-event has occurred!
!
3.  Tweet selection: ranks all the 

tweets and selects the first one!
•  Steps are repeated every 60 seconds!
•  The summary of the whole event is 

constructed by aggregating the individual 
sub-event descriptions!



Graph-based Representation of Tweets


102!

!
•  Represents all the input tweets !
•  Nodes: unique terms !
•  Edges: #co-occurrences within a 

tweet!

Example graph!
1.  Good goal by Neymar!
2.  Goal! Neymar scores for brazil!
3.  Goal!! Neymar scores again!
4.  Watching the game tonight!

The graph that was built from 4 tweets!
Dataset: tweets from the 2014 FIFA 
World Cup in Brazil!



k-core Decomposition for Feature Extraction
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!
•  Each term is given a score 

corresponding to its core 
number!

•  Extract the k-core subgraph!
•  Detect sub-events by 

considering how the sum of 
the core numbers extracted 
from the graph at time t has 
changed from a previous time 
point t-1!

k-core decomposition of the Graph-of-Words!



Sub-event Detection
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Core number of term at time slot !
Number of terms selected!
Decision Threshold!
Number of previous time slots!

!

Sub-event Detection steps:!
(every 60 seconds)!
!
1.  Extract the top     terms with highest 

weights!
2.  Sum the term weights!
3.  If it exceeds the threshold a sub-

event is detected!



Germany’s Goal - 2014 World Cup
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Snapshot of the four highest cores of the graph generated after 
Germany’s goal in the 2014 FIFA World Cup final!



•  Activated only if a sub-event has been detected!

•  Tweets are scored based on the sum of their term weights!

•  Selects the most informative tweet of the sub-event!
–  The tweet with the highest score is chosen!

Tweet Selection as Sub-event Summarization
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Expreimental Setup


107!

Baselines-Approaches!
(Detection -Term Weight)!
➢ Rate–Freq: the common baseline!
➢ Rate–Core!
➢ Weight–Core: Our approach!
➢ Weight–Freq!

Sub-Event Detection!

Tweet Rate!  Term Weights!

Sub-Event Summarization!

Frequency of terms! Core number of terms!



Dataset
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Match! #sub-events! #tweets!
Germany - Argentina ! 8! 1,907,999!
Argentina - Belgium ! 7! 1,355,472!
France - Germany ! 6! 1,321,781!
Honduras-Switzerland! 7! 168,519!
Greece - Ivory Coast ! 10! 251,420!
Croatia - Mexico ! 11! 600,776!
Cameroon - Brazil ! 11! 532,756!
Netherlands - Chile ! 7! 301,067!
Australia - Spain ! 9! 252,086!
Germany - Ghana ! 8! 718,709!
Australia - Netherlands ! 11! 126,971!
All Matches! 95! 7,537,556!

FIFA 2014 World Cup Dataset!



Evaluation (1/2)
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Average DET curves over 11 matches 
for the 4 considered approaches!

False Alarm probability (%)!
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Evaluation (2/2)
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Average micro and macro F1-score 
over 11 matches for the 4 
considered approaches! Number of sub-events detected!

Method! Micro!
F1-score!

Macro!
F1-score!

Weight-Core ! 0.68! 0.72!

Rate-Core ! 0.61! 0.63!

Weight-Freq! 0.61! 0.64!

Rate-Freq ! 0.54! 0.60!

Event type! #actual!
Events!

#detected!
Events!

Goal          ! 32! 30!

Penalty    ! 2! 2!

Red Card! 1! 0!

Yellow Card ! 27! 14!

Match Start ! 11! 8!

Match End ! 11! 11!

Half Time ! 11! 10!



Tweet Summarization Performance
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Summary of the Argentina vs. Belgium match generated automatically 
using Weight–Core and manually by ESPN!

Time! Summary! ESPN FC!

8’!
Goal!!!!Argentina!! After eight 
minutes Argentina lead Belgium by 
1-0 scored by Higuain!

Goal! Argentina 1, Belgium 0. Gonzalo Higuain 
(Argentina) right footed shot from the centre of 
the box to the bottom left corner.!

45’+2’!
HT: Argentina 1-0 Belgium. Fantastic 
goal by Higuain gives Argentina the 
slight lead over the red devils.!

First Half ends, Argentina 1, Belgium 0.!

52’! 52m - Belgium's Eden Hazard with 
the first yellow card of the game!

Eden Hazard (Belgium) is shown the yellow 
card for a bad foul.!

75’!
Argentina 1 - 0 Belgium | Biglia 
booked a yellow card. Meanwhile, 
Chadli on for Eden Hazard.!

Lucas Biglia (Argentina) is shown the yellow 
card for a bad foul. !

90+5' !

Well at least that goal makes them 
advance to the semi finals. Argentina 
gets the ticket to advance and 
Belgium goes home.!

Match ends, Argentina 1, Belgium 0.!



•  Sub-event detection approach based on the k-core decomposition on 
graph-of-words!

•  The algorithm exploits the fact that the vocabulary of tweets gets more 
specific when a sub-event occurs!

•  The detection mechanism is able to accurately detect important moments 
as they occur!

•  The tweets selected by our system give an overview of the event!

Summary
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•  Part I.  Graph-theoretic concepts and graph-based text 
representation!

•  Part II. Information retrieval!

•  Part III. Keyword extraction and text summarization!

•  Part IV. Text categorization!

•  Part V. Final remarks and future research directions!

Tutorial Outline
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Text Categorization (TC) Pipeline


Feature Extraction!
Term Weighting!

Textual 
Data!

Model 
Learning!

Text 
Categorization!

Evaluation!

main focus 
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Applications of TC


•  Applications of text classification are numerous:!
–  News filtering!
–  Document organization!
–  Spam detection!
–  Opinion mining !

•  Text documents classification compared to other domains:!
–  High number of features!
–  Sparse feature vectors!
–  Multi-class scenario !
–  Skewed class distribution !

115!
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TC as a graph classification problem



•  Single-label multi-class text categorization !
•  Graph-of-words representation of textual documents!
•  Mining of frequent subgraphs as features for 

classification!
•  Main core retention to reduce the graph’s sizes !
•  Long-distance n-grams more discriminative than 

standard n-grams !

TC as a Graph Classification Problem


117!
[Rousseau et al., ACL ‘15]!



Background (1/2)


•  Text categorization!
–  Standard baseline: unsupervised n-gram feature mining + 

supervised linear SVM learning  !
–  Common approach for spam detection: same with Naive Bayes !

•  n-grams to take into account some word order and some 
word dependence as opposed to unigrams !

•  Word inversion? Subset matching? !

[Sebastiani, CSUR ‘02], [Aggarwal and Zhai, Mining Text Data ‘12] !
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Background (2/2)



•  Graph classification!
–  Subgraphs as features!
–  Graph kernels [Vishwanathan et al., JMLR ‘10] !

•  Frequent subgraph feature mining !
–  gSpan [Yan and Han, ICDM ‘02]!
–  FFSM [Huan et al., ICDM ’03]!
–  Gaston [Nijssen and Kok, Elect. Notes TCS ‘04] !

•  Expensive to mine all subgraphs, especially for “large” 
collections of “large” graphs !

•  Unsupervised discriminative feature selection? !

[Covered next] 
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Subgraph-of-words 


•  A subgraph of size n corresponds to a long-distance n-gram!
–  Takes into account word inversion and subset matching !

•  For instance, on the R8 dataset, {bank, base, rate} was a 
discriminative (top 5% SVM features) long-distance 3-gram for 
the category “interest”!
–  “barclays bank cut its base lending rate”!
–  “midland bank matches its base rate”!
–  “base rate of natwest bank dropped” !

!
Patterns hard to capture with traditional n-gram bag-of-words !

!
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Graph of Words Classification


Unsupervised feature mining and support selection !

•  gSpan mines the most frequent “subgraph-of-words” in the 
collection of graph-of-words !

•  Subgraph frequency == long-distance n-gram document frequency !
•  Minimum document frequency controlled via a support parameter !
•  The lower the support, the more features but the longer the mining, 

the feature vector generation and the learning !
–  Unsupervised support selection using the elbow method (inspired from 

selecting the number of clusters in k-means) !

[Rousseau et al., ACL ‘15]!
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Multiclass Scenario


•  Text categorization == !
multiple classes + skewed class distribution + single overall 
support value (local frequency)!

•  100k features for majority classes vs. 100 features for minority 
ones !

•  Mining per class with same relative support value !
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•  Complexity to extract all features!!
–   Reduce the size of the graphs!

•  Maintain word dependence and subset matching ⇒ keep the 
densest subgraphs !

•  Retain the main core of each graph-of-words use gSpan to 
mine frequent subgraphs in main cores!

•  Extract n-gram features on remaining text (terms in main 
cores) !

Main Core Mining and n-gram Feature Selection 
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Experimental Evaluation


•  WebKB: 4 most frequent categories among labeled webpages from 
various CS departments – split into 2,803 for training and 1,396 for 
test [Cardoso-Cachopo, ‘07]!

•  R8: 8 most frequent categories of Reuters-21578, a set of labeled 
news articles from the 1987 Reuters newswire – split into 5,485 for 
training and 2,189 for test [Debole and Sebastiani, ‘05]!

•  LingSpam: 2,893 emails classified as spam or legitimate messages 
– split into 10 sets for 10-fold cross validation [Androutsopoulos et al., 
‘00]!

•  Amazon: 8,000 product reviews over four different sub-collections 
(books, DVDs, electronics and kitchen appliances) classified as 
posi- tive or negative – split into 1,600 for training and 400 for test 
each [Blitzer et al., ‘07] !
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Models


•  3 baseline models (n-gram features)!
–  kNN (k=5)!
–  Multinomial Naive Bayes (similar results with Bernoulli)!
–  Linear SVM !

•  3 proposed approaches!
–  gSpan + SVM (long-distance n-gram features)!
–  MC + gSpan + SVM (long-distance n-gram features) !
–  MC + SVM (n-gram features) !
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Evaluation Metrics 


•  Micro-averaged F1-score (accuracy, overall effectiveness) !
•  Macro-averaged F1-score (weight each class uniformly) !
•  Statistical significance of improvement in accuracy over the 

n-gram SVM baseline assessed using the micro sign test (p < 
0.05) !

•  For the Amazon dataset, we report the average of each 
metric over the four sub-collections !
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Effectiveness Results (1/2) 


127!
[Rousseau et al., ACL ‘15]!



Effectiveness Results (2/2) 


128!
[Rousseau et al., ACL ‘15]!



Dimension Reduction – Main Core
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Unsupervised Support Selection
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Distribution of Mined n-grams
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Figure: Distribution of n-grams 
(standard and long-distance ones) 

among all!
the features on WebKB dataset!

Figure: Distribution of n-grams (standard 
and long-distance ones) among the!

top 5% most discriminative features for 
SVM on WebKB dataset!



Summary


•  Explored a graph-based approach, to challenge the 
traditional bag-of-words for text classification!

•  First trained a classifier using frequent subgraphs as features 
for increased effectiveness!

•  Reduced each graph-of-words to its main core before mining 
the features for increased efficiency!

•  Reduced the total number of n-gram features considered in 
the baselines for little to no loss in prediction performances!
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Regularization for Text Categorization



•  Why regularization?!
•  Address overfitting: high training score, low test score!
•  Better accuracy!

•  We want our model to generalize in new unseen test instances!

•  Harvest the full potential hidden in the rich textual data!

•  Feed meaningful group of words to group lasso for 
regularization!

134!

Regularization for Text Categorization




•  Text categorization as a loss minimization problem:!

!
•  Logistic regression with binary predictions (y={-1,1}), hθ,b(x) = θΤx+b and 

L(x,θ,y) = e-yh(x) (log loss)!
•  Only minimizing the empirical risk can lead to overfitting.!

•  L1, L2 regularization aka lasso [Tibshirani, ’96] and ridge [Hoerl, Kennard, ‘70]!

135!

Objective Function + Loss




•  A constrained optimization problem is formed that can be solved as 
an augmented Lagrangian problem:!

•  The problem becomes the iterative update of θ, v and u:!

•  [Yogatama and Smith ’14] proved that ADMM for sparse overlapping 
group lasso converges. A good approximate solution is reached in 
a few tens of iterations!

136!

Learning




•  In L1 and L2 regularization, features are considered as independent!
!
•  Group lasso: [Bakin, ’99], [Yuan and Lin, ‘06] introduced group sparsity 

in the model:!
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Structured Regularization




!
Statistical regularizers:!
•  Sentence regularizer (state-of-the-art) (overlapping) !

•  Large numebr of groups but small group sizes. !

Semantic regularizers:!
•  LDA and LSI regularizers!

•  groups are considered the LDA/LSI results – keep top10 
words in each group!

Graph-of-words regularizers!
•  Graph-of-words regularizer: community detection on collection 

graph!
•  Word2vec regularizer: k-means clustering in word2vec space 

(overlapping)!
!
! Trying to extract groups of words that talk about similar topics.  !

138!

Structured Regularization in NLP


[Skianis et al., EMNLP ‘16]!
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Results (1/2)
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Results (2/2)




•  Find and extract semantic and syntactic structures that lead to 
sparser feature spaces → faster learning times!

•  Linguistic prior knowledge in the data can be used to improve 
categorization performance for baseline bag-of-words models, by 
mining inherent structures!

•  No significant change in results with different loss functions as the 
proposed regularizers are not log loss specific!

•  How can we create and cluster graphs, i.e., covering weighted and/or 
signed cases?!

•  Find better clusters in word2vec? (+overlapping with GMM)!
•  Explore alternative regularization algorithms diverging from group-lasso?!
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Summary


Interesting questions 
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Graph representation learning 
with applications in NLP

(text categorization and word analogy)



•  The first step of any ML algorithm for graphs is to extract 
graph features!
–  Node features (e.g., degree)!
–  Pairs of nodes (e.g., number of common neighbors)!
–  Groups of nodes (e.g., community assignments)!

Feature Extraction From Graphs
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•  Link prediction!
•  Node classification!
•  Clustering!
•  Anomaly detection!
•  Attribute prediction!
•  …!

ML tasks Input graph! Adjacency matrix!

|V| x |V|!

Feature 
engineering 



•  Create features by transforming the graph into a lower 
dimensional latent representation!

Graph Representation
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•  Link prediction!
•  Node classification!
•  Clustering!
•  Anomaly detection!
•  Attribute prediction!
•  …! ML tasks 

Input graph! Adjacency matrix!

|V| x |V|!

|V|!

d << |V|!

Latent dimensions!

How to learn a latent 
representation of a 

graph?!

Rd
[f1, …, fd]!



Example: Community Detection
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Input graph! Learn latent representation!

Other applications: classification, link prediction, …!

[Perozzi et al., KDD ’14]!



Problem Statement


•  How to embed large networks into low-dimensional spaces?!

•  Requirements!

–  Globality/Locality: It is desirable to preserve both local and 
global network structure when seeking for node representations!

–  Scalability: When considering network with millions of nodes 
and billions of edges: traditional methods (nonlinear 
dimensionality reduction) suffer from lack of scalability!

146!
[Tang et al. ‘15]!



Intuition – Local and Global Structures


•  Local structure: observed edges in the network!
–  First order proximity!
–  Most traditional embedding methods (e.g., Isomap) capture first order 

proximity!
•  Global structure: nodes with shared neighbors are likely to be similar 

(homophily)!

•  Nodes 6 and 7: first-order proximity!
•  Should be represented closely in the 

embedded space!
 !

•  Nodes 5 and 6: second-order proximity!
•  Same for those nodes!

LINE algorithm: Form an objective function that 
optimizes both local and global network structure!

147!
[Tang et al., WWW ‘15]!



LINE with First-order Proximity (1/2) 

Joint probability between vi and vj 

Empirical distribution over 
the space V×V 

Find vectors               to make those 
distributions to be as close as possible 

Model the probability of an edge (i, j) between vi  and vj as!

p
1

(vi, vj) =
1

1 + exp(�~uT
i · ~uj)

~ui 2 Rd Low dimensional vector 
representation of node vi 

p̂1(i, j) =
wijP

(i, j)2E wij

Embeddings space Original (graph) space 

Logistic function!

LINE with First-order Proximity (1/2) 
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edge!

~ui 2 Rd



LINE with First-order Proximity (2/2) 

O1 = d(p̂1(·, ·), p1(·, ·))

How to preserve first-order proximity?!

Minimize the distance between 
two distributions!

O
1

= �
X

(i, j)2E

wij log p
1

(vi, vj)

KL-divergence 

O1 = KL(p̂1(·, ·), p1(·, ·))
KL(P||Q) =

X

i

P(i) log

P(i)
Q(i)

By finding those                  that minimize O1, we can 
represent every node in the d-dimensional space!

{~ui}i=1..|V|
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•  It assumes that nodes sharing many connections to other nodes are 
similar to each other!

•  Each node plays two roles: !
–  The node itself!
–  A specific “context” of other nodes!

•  For each node vi, we model the conditional distribution p2(!|vi) over 
all the “contexts” (all the nodes in the network)!

•  Assumption of second-order proximity: Nodes with similar 
distributions p2(!|vi)  over the “contexts” are similar!

!

LINE with Second-order Proximity (1/3)
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LINE with First-order Proximity (1/2) 

Conditional distribution p2(!|vi) over 
the contexts  

Empirical distribution over 
the space V×V 

Make those distributions to be as 
close as possible 

~ui 2 Rd Low dimensional vector 
representation of node vi 

Embeddings space Original (graph) space 

LINE with Second-order Proximity (2/3) 
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For directed edge (i, j), model the probability of context vj  generated 
by node vi (i.e., probability of an edge from vi to vj)!

p
2

(vj|vi) =
exp(

~u0Tj · ~ui)

P|V|
k=1

exp(

~u0Tk · ~ui)

p̂2(vj|vi) =
wij

di

di =
X

k2N(i)

wikOut-degree of 
node i!



LINE with Second-order Proximity (3/3) 

To preserve second-order proximity, minimize the distance between 
true and empirical distributions!

Minimize the distance between 
two distributions!

KL-divergence 

By finding those                  and                  that minimize O2, 
we can represent every node i with d-dimensional space       !

{~ui}i=1..|V|
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O2 =
X

i2V

�id(p̂2(·|vi), p2(·|vi))

O
2

= �
X

(i, j)2E

wij log p
2

(vj|vi)

•  λi : represents the prestige 
of node i in the graph!

•  Set λi = di!

{~u0i }i=1..|V|
~ui



•  Goal: Embed the networks by preserving both the first-order and 
second-order proximity!

1.  Train the LINE model for first-order proximity!
2.  Train the LINE model for second-order proximity!

•  Then, concatenate the embeddings trained by the two methods for 
each node!

Combining Both Models
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Train separately 



Experiments - Datasets
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[Tang et al., WWW ‘15]!

Word co-occurrence 
network!



•  Language network: word analogy!
–  Find solution to (“China”, “Beijing” à “France, “?”)!
–  Given word embeddings, find word d* whose embedding ud is 

closest to vector uBeijing – uChina + uFrance!

!

Line (2nd) outperforms other embedding methods in the word 
analogy task!

Experiments – Word Analogy


Proximity in terms of 
cosine similarity!

“Paris”!
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Experiments – Document Classification
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•  Classification of Wikipedia articles!
–  Choose articles from 7 categories!

•  How to obtain the document vectors for classification?!
–  Average of the corresponding word vector representations!

!



•  Part I.  Graph-theoretic concepts and graph-based text 
representation!

•  Part II. Information retrieval!

•  Part III. Keyword extraction and text summarization!

•  Part IV. Text categorization!

•  Part V. Final remarks and future research directions!

Tutorial Outline
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•  Graphs have been widely used as modeling tools in !
–  NLP !
–  Text Mining!
–  Information Retrieval!

•  Goal of the tutorial!
–  Presentation of recent methods that rely on graph-based text 

representations to deal with various tasks in NLP and IR!
–  Focus on the graph-of-words model!
–  Borrow ideas from the graph mining and network analysis field!

Summary
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Thank You! - Questions? 


•  Fragkiskos D. Malliaros!
 University of California San Diego!
 fmalliaros@ucsd.edu!
 http://fragkiskos.me!

•  Michalis Vazirgiannis!
 École Polytechnique, France!

      mvazirg@lix.polytechnique.fr!
http://www.lix.polytechnique.fr/~mvazirg!

!

Tutorial material: http://fragkiskosm.github.io/projects/graph_text_tutorial 
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