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Text Mining — Terminology

« Text mining on a collection of documents:
— The collection is the data set
— The documents are the data points

e Since text is unstructured, a document is usually converted in a
common representation

world

> " wars ) bag-of-words

dog paris




Example: Text Categorization

Textual Feature Extraction Model s Text — s Evaluation
Data Term Weighting Learning Categorization
Applications:

« Opinion mining (sentiment analysis)
« Email spam classification
«  Web-pages classification



Bag-of-Words (BoW) - Issues

Example text

information retrieval is the activity of obtaining
information resources relevant to an information need

from a collection of information resources

Bag of words: [(activity,1), (collection, 1)
(information,4), (relevant,1),
(resources, 2), (retrieval, 1), ...]

« Term independence assumption Assumptions wade by
« Term frequency weighting the Bow model




Graph-based Document Representation

Challenge the term independence and term frequency weighting
assumptions taking into account word dependence, order and
distance

Employ a graph-based document representation capturing the
above

Graphs have been successfully used in IR to encompass relations
and propose meaningful weights (e.g., PageRank)



Graph-based Document Representation - Example

information retrieval is the activity of obtaining

information resources relevant to an information need ‘m
D 1 //\_/4 {8 R retrieval
from a collection of information resources ‘RV)\
e = \ \
information \

aR

ldea: Replace term frequency with \
node centrality .

Captures: frequency, order and distance need



Goal of the Tutorial and Outline

Goal: offer a comprehensive presentation of recent methods
that rely on graph-based text representations to deal with
various tasks in NLP and IR

« Part|. Graph-theoretic concepts and graph-based text
representation

« Partll. Information retrieval
« Part lll. Keyword extraction and text summarization
« Part IV. Text categorization

« PartV. Final remarks and future research directions



Tutorial Outline

« Partl. Graph-theoretic concepts and graph-based text
representation

« Partll. Information retrieval
« Part lll. Keyword extraction and text summarization

« Part |V. Text categorization

« PartV. Final remarks and future research directions



Basic graph-theoretic concepts
and definitions



Graphs and Networks

Graphs: modeling dependencies

Nodes (or vertices)
(objects/entities)

G=(V, E) \ Edges (or links)
)

(network or graph (interconnections)

n=|V| isthe number of nodes
m =|E| is the number of edges



Undirected vs. Directed Networks

Undirected Directed
« Links: undirected « Links: directed
(symmetrical, reciprocal) (arcs)

. Examples * Examples
— Phone calls

_ I ration i '
Collaborations — Following on Twitter

— Friendship on Facebook

11



Node Degree

O\O\Q Node degree k;: the number

§®) . . _
Q of edges adjacent to node | A — 1
O
O
= Average degree:
2 A . | <—n 2|E|
D k:<k>:HZi:1ki: n
In directed networks we define an in-

8 degree and out-degree
5 The (total) degree of a node is the sum of in-
® and out-degrees
a out —

Source: Node with k"= 0 Average: in — Jout

Sink: Node with keut = Q
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More Types of Graphs

Weighted
(undirected)

Unweighted
(undirected)

0 1 1 0 (0 2 05 0)
1 0 1 1
S L0 4 0 0
A.=0 A=A, A. =0 A=A,
N - 1 - 2IE|
|E|=%EAU k=2InE| IEI=El;=lnonzer0(Alj) k= .

i,j=1
Examples: Friendship, Hyperlink Examples: Collaboration, Internet, F%oads13



Subgraphs

- LetG=(V,E)beagraphandlet S C V be any subset of its vertices
(6—@ (5)
/1
(3 @
« Definition: The induced subgraph G[S] = (S, E’) is the graph whose vertex

setis S and its edge set consists of all of the edges in E that have both
endpoints in S

()
5=(1,2,3,5) (3 0

14



Representation Matters!

Choice of the proper network
representation of a given
system determines our
ability to use networks
successfully

15



Centrality criteria



Centrality in Networks (1/2)

« Determine the relative importance of a node in the network

— Applications in Social Network Analysis, the Internet, Epidemiology,
Urban informatics, ...

« What do we mean by centrality?
— A central node is more important or powerful ...
— Or, more influential ...
— Or, is more critical due to its location in the graph

« Also, very closely related to the problem of ranking in the
context of Web search
— Each webpage can be considered as a ‘user’
— Each hyperlink is an endorsement relationship

— Centrality measures provide a query independent link-based score of
importance of a web page

17



Centrality in Networks (2/2)
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Source: https://www.macalester.edu/~abeverid/thrones.html 18



Types of Centrality

« Starting point: the central node of a star is the most important
o Why?

The node with the highest degree

The node that is closest to the rest nodes (e.g., has the smallest
average distance to other nodes)

The node through which all shortest paths pass

The node that maximizes the dominant eigenvector (the one that
corresponds to the largest eigenvalue) of the adjacency matrix

The node with highest probability in the stationary distribution of a
random walk on the graph

Various competing views of centrality

19



Measures of Centrality

« This observation leads to the following classes of indices of
centrality:
— Measures based on distances (e.g., degree, closeness)
— Measures based on paths (e.g., betweenness, Katz's index)

— Spectral measures (eigenvector, PageRank, HITS, SALSA, random
walks with restarts)

— Measure based on groups of nodes (e.g., cliques, plexes, cores)
» Related to the “clustering” structure
« More on that in another lecture

20



A First Example

In each of the following networks, X has higher centrality than Y according to
a particular measure

Y
X X o—0O0—C0—_0C-—0
X Y
X

in-degree out-degree betweenness closeness

21



Degree Centrality (1/2)

« |dea: A central node is one with many connections

« C, (i) = k(i), where k(i) is the degree of node i

22



Degree Centrality (2/2)

« |dea: A central node is one with many connections

O

 Normalized degree centrality: divide by the max possible degree
(n-1)

23



Closeness Centrality

» Motivation: it measures the ability to quickly access or pass
information through the graph

n—1 ) Mean distance
Ccl(i) — V“L“CSI""” ?"e from a node to
+ \  range [0,1
z i d(l, ]) other nodes

d(i, j) is the length of the shortest path between jand j(geodesic distance)

« The closeness of a node is defined as the inverse of the sum of the shortest
path (SP) distances between the node and all other nodes in the graph

1/11 1/11 1/12  1/12
1/11 } 51/6 1/11 1/12/ \/12 1/21 1/13 1/13 1/21
i o—0—0—108 0—0—7™0

e 116 112 1/16 Why inverse the distance?
1/11 1129 112 J1/12 Nodes with low mean distance

should get high score

Be close to every boolg else

(e.9., influence on other nodes) [Mateos, ‘17] ot



Betweenness Centrality

« Motivation: a node is important if it lies in many shortest paths

Cyi) = Z o(s, t|7)

s#i#teV G(S’ t)

* 0(s, t)is the total number of shortest paths from sto t
« 0O(s, t|v)is the number of shortest paths from s to t that pass through i

1/5 1/5
1/5,/ 1/5 O 8/15  8/15 0
000 @ 0 00
1/3  9/15 1/3
1/5 1/5 1/5
® Essential nodes in passing
Lnformation through the
network
Cie (1)

Oftentimes it is normalized: —(n—l)
2 25



The HITS Algorithm

(Hubs and Authorities)



Hubs and Authorities (1/3)

Interesting pages fall into two classes:

1. Authorities are pages containing o ° Qi
useful information ‘®

— Newspaper home pages
— Course home pages °
— Home pages of auto manufacturers

2. Hubs are pages that link to authorities
— List of newspapers
— Course bulletin
—  List of U.S. auto manufacturers

27



Hubs and Authorities (2/3)

« Pages have double identity \ \E
— Hub identity /
— Authority identity B E

« Good hubs point to good

authorities u u
« Good authorities are pointed by u
good hubs u

u u

hubs authorities -



Hubs and Authorities (3/3)

Two kind of weights:
— Hub weight
— Authority weight

« The hub weight is the sum of the authority weights of the
authorities pointed to by the hub

« The authority weight is the sum of the hub weights that point to
this authority

« Represented as vectors h and a, where the i element is the
hub/authority score of the i node

29



HITS Algorithm

- Initiglize: a} =1/vn, h) =1/n

« Repeat until convergence

— Authority: 041(-H1) = Zhg-t), Vi

j—i

Sruos K=Y a0, i

i—]

— Normalize: Z (ocl(.m))z =1 and Z (h;tﬂ))z =1
]

i

[Kleinberg ‘98]
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HITS and Eigenvectors

« HITS in vector notation
— QA= [0.1, 0.2, sany Cln]T aﬂd h - [h1’ h2, Caay hn]T
« We can rewrite @;and h, based on the adjacency matrix

hi:ZOzj as hi:ZAij'ij
]

i—]

e Thus,h=Aa and a=ATh

e at+)) = AT h() gnd hit+1) = A a®) Repeated iterations
will converge to the
e at+1) = ATA a® and ht+1) = AAT h® eigenvectors
SVD
« Authority weight vector a: eigenvector of ATA The vectors aand h are

« Hub weight vector h : eigenvector of AAT the singular vectors of A
31



PageRank

« Good authorities should be pointed by good authorities
— The value of a node comes from the value of the nodes that point to it

 How do we implement that?
— Assume that we have a unit of authority to distribute to all nodes
« |nitially, each node gets 1/n amount of authority
— Each node distributes its authority value to its neighbors

— The authority value of each node is the sum of the authority fractions
that they collect from their neighbors

kout(u)

VY (u,v)eE

m,: the PageRank value of node v
» Recursive definition

32



A Simple Example

T

’ mT+m+7=1
=TT +
m=Yorr

i

« Solving the system of equations we get the authority values
for the nodes

—n=Yn=Ya 1=

33



A More Complex Example

=1/3m,+ 1/2 7,

m,=1/27 +m3+ 1/3 1,

my=1/271, +1/3m,

34



Computing PageRank Weights

* A simple way to compute the weights is by iteratively
updating the weights

Initialize all PageRank weights to 1/n

Repeat:
1
o= Z kout(u)nu

Y (u,v)eE

Until the weights do not change

This process converges
35



Core decomposition in networks



Core Decomposition

« Tool to analyze the structure of real networks
— Quantify community and clustering structure

« Hierarchical representation of a graph into nested subgraphs
of increased connectivity and coherence properties

« Basic idea:

— Set a threshold on the node degree, say k

— Nodes that do not satisfy the threshold are removed from the graph
« Extensions to other node properties (e.g., triangles)

» Plethora of applications
— Dense subgraph discovery and community detection
— Evaluation of collaboration in social networks
— |dentification of influential spreaders in social networks
— Text analytics

37



k-Core Decomposition

« Degeneracy for an undirected graph G

 Also known as the k-core number

« The k-core of G is the largest subgraph in which every vertex has
degree at least k within the subgraph

Example: e -

~ _ 3-core

\ - = -

2-core

Also known as graph degeneracy

@ Core numberc; =1

@ Core numberc; = 2

@ Core numberc; = 3

Graph Degeneracy §*(G) =3

Go=G

G, = l-core of G
Gy = 2-core of G
G3 = 3-core of G

Gp2G12G22Gs3

Important property:

Fast and easy to compute
Linear to the size of the graph
Scalable to large scale
graphs

Note:

The degeneracy and the size of
the k-core provide a good
indication of the cohesiveness of
the graph

38



Another Example

core(G) o T T 5
o e .
5 .;Ore,l(f)_ o ° —o—9 g
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Algorithm for k-Core Decomposition

Algorithm k-core(G, k)

Input: An undirected graph G and positive integer k

Output: k-core(G)

1. letF =G

2. while there is a node x in F such that degg(x)<k
delete node x from F

3. return F

* Many efficient algorithms have been proposed for the computation
» Time complexity: O(m)

[Batagelj and Zaversnik, ‘03]
40



K-truss Decomposition (Triangles)

« K-truss decomposition [Cohen '08], [Wang and Cheng ‘12]
— Triangle-based extension of the k-core decomposition
— Each edge of the K-truss subgraph participates in at least K-2 triangles
 Informally, the “core” of the maximal k-core subgraph
« Subgraph of higher coherence compared to the k-core

Truss set T




Graph-based text representations



Graph Semantics

« Let G = (V, E) be the graph that corresponds to a document d

 The nodes can correspond to:
— Paragraphs
— Sentences
— Phrases
— Words [Main focus of the tutorial]
— Syllables

« The edges of the graph can capture various types of relationships
between two nodes:

— Co-occurrence within a window over the text [Main focus of the tutorial]
— Syntactic relationship
— Semantic relationship

43



Graph-of-Words (GoW) Model

Each document d €D is represented by a graph G4 = (V, Ey), where the
nodes correspond to the terms t of the document and the edges capture co-
occurrence relationships between terms within a fixed-size sliding window of
Size w

Directed vs. undirected graph
» Directed graphs are able to preserve the actual flow of a text
* In undirected graphs, an edge captures co-occurrence of two terms whatever the
respective order between them is

Weighted vs. unweighted graph
» The higher the number of co-occurrences of two terms in the document, the higher
the weight of the corresponding edge

Size w of the sliding window
« Add edges between the terms of the document that co-occur within a sliding
window of size w
« Larger window sizes produce graphs that are relatively dense

[Mihalcea and Tarau, EMNLP ‘04], [Blanco and Lioma, Inf. Retr. ‘12],
[Rousseau and Vazirgiannis, CIKM ‘13]



Example of Unweighted GoW

Data Science i5 th€ extraction|of knowledge from large volumes of data
that are structured or unstructured which is a continuation of the field of

data mining and predictive analytics, also known as knowledge discovery
and data mining.

f field

scienc

predict

knowledg

extract \
structur \ data discoveri
analyt larg unstructur
volum )\ continu

known

w=3
unweighted, undirected graph
45



Example of Weighed Undirected GoW

Mathematical aspects of Computer—aid
computer-aided share trading.
We consider problems of S
statistical analysis of share B /
prices and propose problemf" |
probabilistic characteristics fo S [
describe the price series. We
discuss  three methods of
mathematical modelling of
price  series  with  given
probabilistic characteristics.

Edge weights

46



Tutorial Outline

« Partl. Graph-theoretic concepts and graph-based text
representation

« Partll. Information retrieval
« Part lll. Keyword extraction and text summarization
« Part |V. Text categorization

« PartV. Final remarks and future research directions

47



In-degree based TW

« The weight of a term in a document is its in-degree in the graph-of-words
« It represents the number of distinct contexts of occurrence

« We store the document as a vector of weights in the direct
index and similarly in the inverted index

For example:
information

retrieval
is

the
activity

of
obtaining
resources
relevant
to

an

need
from

a
collection

retrieval

Bag of words:

((activity, 1), (collection, 1),
(information,4), (relevant,1),
(resources, 2), (retrieval, 1)..)

NN MNDNDLONDWNDNNN = O

48



TF-IDF and BM25

« Term t, document d, collection of size N, term frequency tf(t, d),
document frequency df(t), document length |d|, average document
length avdl, asymptotical marginal gain k, (1.2), slope parameter b

e [F-IDF (singhal et al., TREC-7]

TE-IDF(t, d) = TF,-IDF(t, d) = TF,0TF(t, d) x IDF(t) =

pol

1+log(1+log((f(t,d))) § log(N+1)

1-b+bx?] df (1)
avdl

o« BMZ25 [Lvand zhai, CIKM "11]

BM25(t, d) = - +1)x|t];(|t’d) xlog(izm)
k1x(1—b+b>< )'l‘lf(t,d) If (1)
avdl

49



TW-IDF

« Termt, document d, collection of size N, term weight tw(t, d), document
frequency df(t), document length |d|, average document length avdl,

asymptotical marginal gain k, (1.2), slope parameter b

TW-IDF(t, d) = | —2D xlog(i\;;;)

1-b+bx——
avdl

* In the bag-of-word representation, tw is usually defined as the term
frequency or sometimes just the presence/absence of a term (binary tf)

* Inthe graph-of-word representation, tw is the in-degree of the vertex
representing the term in the graph

[Rousseau and Vazirgiannis, CIKM ‘13]
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Experimental Evaluation

« Datasets

« Platforms
« Evaluation
* Results

51



Datasets (1/2)

- Disks 1 & 2 (TREC)
741,856 news articles from Wall Street Journal (1987-1992), Federal
Register (1988-1989), Associated Press (1988-1989 and Information from
the Computer Select disks (1989-1990)

* Disks 4 & 5 (TREC, minus the Congressional Record)

528,155 news releases from Federal Register (1994), Financial Times
(1991-1994), Foreign Broadcast Information Service (1996) and Los
Angeles Times (1989-1990)

- WT10G (TREC)
1,692,096 crawled pages from a snapshot of the Web in 1997

« .GOV2 (TREC)
25,205,179 crawled Web pages from .gov sites in early 2004

52



Datasets (2/2)

# of documents 741,856 528,155 1,692,096 25,205,179
# of unique terms 535,001 520,423 3,135,780 15,324,292
average # of terms 237 272 398 645
(avdl)

average # of vertices 125 157 165 185
average # of edges 608 734 901 1,185

Table: Statistics on the four TREC datasets used; Disks 4&5 excludes the Congressional
Record. The average values are computed per document.
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Mean Average Precision (MAP) and Precision at 10 (P@10)

— Considering only the top-ranked 1000 documents for each run

Statistical significance of improvement was assessed using
the Student’s paired t-test

— R implementation (t.test {stats} package), trec_eval output as input
— Two-sided p-values less than 0.05 and 0.01 to reject the null hypothesis

Likelihood of relevance vs. likelihood of retrieval (singrai et al. sicir ‘96

4 baseline models: TF-IDF, BM25, Piv+ and BM25+

— Tuned slope parameter b for pivoted document length normalization (2-fold cross-
validation, odd vs. even topic ids, MAP maximization)

— Default (1.0) lower-bounding gap [Lv and Zhai, CIKM “11]
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Graph-based Ad Hoc IR

Evaluation in terms of:
— Mean Average Precision
— Precision@10

— Probability of relevance
vs. probability of retrieval

Probability of relevance/retrieval vs. document length on WT10G

0.04

0.03

0.02

Probability of relevance/retrieval

0.01

Piv+

Relevance
TF-IDF

BM25

BM25+
TW-IDF
TW-IDF [b = 0]

Document length

Model b TREC1-3 Ad Hoc TREC 2004 Robust TREC9-10 Web TREC 2004-2006 Terabyte

MAP P@10 MAP P@10 MAP P@10 MAP P@10
TF por 0.20 0.1471 0.3960 0.1797 0.3647 0.1260 0.1875 0.1853 0.4913
TFkop 0.75 0.1346 0.3533 0.2045 0.3863 0.1702 0.2208 0.2527 0.5342
TW none 0.1502 0.3662 0.1809 0.3273 0.1430 0.1979 0.2081 0.5021
W, 0.003 || 0.1576** | 0.4040** | 0.2190** | 0.4133** | 0.1946** | 0.2479** 0.2828%** 0.5407**
TF-IDF 0.20 0.1832 0.4107 0.2132 0.4064 0.1430 0.2271 0.2068 0.4973
BM25 0.75 0.1660 0.3700 0.2368 0.4161 0.1870 0.2479 0.2738 0.5383
TW-IDF || 0.003 || 0.1973** | 0.4148* | 0.2403** | 0.4180* | 0.2125** | 0.2917** 0.3063** 0.5633**
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Likelihood of Relevance vs. Likelihood of Retrieval

Probability of relevance/retrieval vs. document length on WT10G

0.04

— Relevance
—— TF-IDF
0.03 - Piv+ _I - Probability of retrieval
' BM?25 / (TW-IDF, b = 0)
BM25+ '

— TW-IDF

¢/
0.02 TW-IDF [b = O] / /,’0\ |

Probability of retrieval
(TW-IDF)

Probability of relevance/retrieval

Probability of relevance
(ground truth)

1000 10000
Document length
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Tutorial Outline

« Partl. Graph-theoretic concepts and graph-based text
representation

« Partll. Information retrieval
« Part lll. Keyword extraction and text summarization
« Part |V. Text categorization

« PartV. Final remarks and future research directions
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Single Document Keyword Extraction

Keywords are used everywhere

« Looking up information on the Web (e.g., via a search engine bar)
« Finding similar posts on a blog (e.g., tag cloud)

« For ads matching (e.g., AdWords’ keyword planner)

» Forresearch paper indexing and retrieval (e.g., SpringerLink)

« Forresearch paper reviewer assignment

Applications are numerous

« Summarization (to get a gist of the content of a document)

« Information filtering (to select specific documents of interest)
* Indexing (to answer keyword-based queries)

* Query expansion (using additional keywords from top results)

58



Graph-based Keyword Extraction (1/2)

Existing graph-based keyword o -
extractors:

- Assign a centrality based score to a
node

- Top ranked ones will correspond to the
most representative

- TextRank (PageRank) [Mihalcea and Tarau,
EMNLP ‘04]

- HITS [Litvak and Last, MMIES ‘08] -
- Node centrality (degree, betweenness, k-core decomposition of the graph

eigenvector) [Boudin, IUNLP ‘13]

|dea: retain the k-core subgraph of the graph to extract the
nodes based on their centrality and cohesiveness

59



Graph-based Keyword Extraction (2/2)

A method for solution of systems of linear algebraic equations with
m-dimensional lambda matrices.

A system of linear algebraic equations with m-dimensional lambda ma-
trices is considered. The proposed method of searching for the solution
of this system lies in reducing it to a numerical system of a special kind.

« Single-document keyword
extraction

— Select the most cohesive sets of
words in the graph as keywords

— Use k-core decomposition to
extract the main core of the
graph

— Weighted edges

special

kind

Keywords manually assigned by human annotators
linear algebra equat; numer system; m-dimension lambda matric

[Rousseau and Vazirgiannis, ECIR ‘15] 0



PageRank vs. k-core

kind

[Keywords manually assigned by human annotators

linear algebra equat; numer system; m-dimension lambda matric

J

WK-core PageRank
system 6 | system 1.93
matric 6 | matric 1.27
lambda | 6 | solut 1.10
linear 6 | lambda | 1.08
equat 6 | linear 1.08
algebra | 6 | equat | 0.90
m-dim... | 6 | algebra | 0.90

" method | 5 | m-dim... | 0.90
solut 5 | propos 0.89
propos 4 | method 0.88
numer 3 | special 0.78
specia 2 | numer 0.74
kind 2 | kind 0.55
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Keywords are not Unigrams

« 500 abstracts from the Inspec database used in our
experiments,

« 4,913 keywords manually assigned by human annotators
« only 662 are unigrams (13%).

« Bigrams (2,587 —52%) ... 7-grams (5).

= keywords are bigrams, if not higher order n-grams.

= the interactions within keywords need to be captured in the
first place —i.e. in the graph.

= we can consider a k-core to form a “long-distance (k+1)-
gram” [Bassiou and Kotropoulos, 2010]
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How Many Keywords?

« Most techniques in keyword extraction assign a score to each
feature and then take the top ones

« But how many?
— Absolute number (top X) or relative number (top X%)?

» Besides, at fixed document length, humans may assign more
keywords for a document than for another one

X is decided at document level (size of the k-core
subgraph)

lkR-cores are adap’c'we
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Hulth2003 — 500 abstracts from the /Inspec database [Hulth,
2003]

Krapi2009 — 2,304 ACM full papers in Computer Science
(references and captions excluded) [Krapivin et al., 2009]

All approaches are unsupervised and single-document
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Models and Baseline Methods

Graph-of-words:
« Undirected edges
« Forward edges

— Natural flow of the text

— An edge term1 — term2 meaning that term1 precedes term2 in
a sliding window

« Backward edges

Keyword extractors:

« PageRank L Top 33% or top 15% keywords
« HITS (authority scores only) |
« Kk-core ] |
. _ Main core
« Weighted k-core
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Evaluation Metrics

« Each document has a set of golden keywords assigned
by humans

— precision, recall and F1-score per document

— macro-average each metric at the collection level

66



Performance Evaluation

Precision
Recall

F1-score

Precision/recall

100 - : i

A ..
%
N,
80 - ty .
.. ™
g .AA .‘
c %
] %
-4 -
@ o,
[ '-‘.A °
: 3
N

40 -

A

PageRank
HITS
K-core

* Weighted K-core

.
60 - ! a \
e
%

50
Recall (%)

|
100

40-

E3 PageRank
Ed Human annotators
E3 Weighted K—core

30—

20 -

Number of keywords

[6,|23] (23:35]

(35,46]

(46,841

Document length (binned by quartile)

Graph | Dataset Macro-averaged precision (%) Macro-averaged recall (%) Macro-averaged F1-score (%)

P PageRank| HITS |K-core|WK—core PageRank| HITS |K-core |WK-c0re PageRank| HITS |K-core|WK—core
undirected |Hulth2003| 58.94 57.86 | 46.52 | 61.24* 42.19 41.80 |62.51*| 50.32* 47.32 46.62 |49.06* | 51.92*
edges |Krapi2009| 50.23 49.47 | 40.46 | 53.47* 48.78 47.85 |78.36*| 50.21 49.59 47.96 | 46.61 | 50.77*
forward |[Hulth2003| 55.80 54.75 | 42.45 | 56.99%* 41.98 40.43 |72.87*| 46.93* 45.70 45.03 [51.65%| 50.59*
edges |Krapi2009| 47.78 47.03 | 39.82 | 52.19* 44.91 44.19 |79.06*| 45.67 45.72 44.95 | 46.03 | 47.01*
backward |Hulth2003|| 59.27 56.41 | 40.89 | 60.24* 42.67 40.66 |70.57*| 49.91* 47.57 45.37 | 45.20 | 50.03*

edges |Krapi2009| 51.43 49.11 | 39.17 | 52.14* 49.96 47.00 |77.60*| 50.16 50.51 | 47.38 | 46.93 | 50.42
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Example - ECIR’15 Paper

Stemmed unigrams of the main core of the graph- of-words of
the paper document: {keyword, extract, graph, represent,
text, weight, graph-of-word, k-core, degeneraci, edg, vertic,
number, document}

Using PageRank, “work™ appears in the top 5, “term” and
‘pagerank” in the top 10, and “case” and “"order™ in the top
15. Central words but not in cohesion with the rest and
probably not relevant
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A Different Point of View

Graph degeneracy:

* |In social networks, nodes part of the
highest levels of the hierarchy are 5 "
better spreaders than nodes high on somputer-id =

PageRank O

statist trade

« Nodes with high truss numbers are | Q
. ‘ . hare
even more influential than nodes with e o
high core numbers 7 probabilis
® @

« Spreading influence may be a better [, i
‘keywordness” metric than prestige ®
(captured by PageRank) &

sodel
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Drawbacks of Graph Degeneracy (1/4)

Retaining the top level like in may be an appealing initial idea

aspect
O Edge weights Core numbers
_ ] P| R |FI
computer—aid 2 MAIN|0.86| 0.55 |0.67
3 INF
O problem p 0. 0.91 |0.87
O 5
statist trade
O O Core numbers
: O 8
(a)nalym 6hme 09
= 10
mathemat m 1
J probabilist
T1CC
6 . Mathematical aspects of
characterist computer-aided share
) . trading. We consider
Il problems of statistical
‘ analysis of share prices
and propose probabilistic
ethod characteristics fo describe problem 9
3 the price series. We statist 9
discuss three methods of .
del mathematical modelling of illilyil __ _INF| 2 ]
ode . .
price series  with
s given  probabilistic aspect 8
characteristics. computer-aid 8 70




Drawbacks of Graph Degeneracy (2/4)

But many keywords live below the top level -> good precision, poor recall

computer—aid

O

analysi

‘eri

statist

O

mathemat

gthod

aspect

6rice

6hare

problem

O

characterist

sodel

Edge weights

AP ON-=

trade
Core numbers

O 8
o9
@= 10
m 1

probabilist

. Mathematica§aspects of
computer-aide
trading. We c
problems of statNtical
analysis of share pridgs
and propose probabilisyc
characteristics fo desc
the price series. We
discuss three methods of
mathematical modelling of
price series  Wwith
given  probabilistic
characteristics.

Core numbers

P R Fl

MAIN (0.86| 0.55 [0.67

INF |0.83| 0.91 |0.87

DENS |(0.88] 0.64 |0.74
mathemat 11
price 11
probabilist 11
characterist |11
seri 11
method 11
model  »an| 11

share

DENS
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Drawbacks of Graph Degeneracy (3/4)

How to automatically select the best leve
hierarchy?

analysi

mathemat

‘eri
gthod

aspect

O

6rice

share

characterist

sodel

Edge weights
1

[
EEoO0O
_‘L_\(om'
- O

probabilist
. Mathematical aspects of

computer-aided share
trading. We consider
problems of statistical
analysis of share prices
and propose probabilistic
characteristics fo describe
the price series. We
discuss three methods of
mathematical modelling of
price series  with
given  probabilistic
characteristics.

Core numbers

P R | Fl

lll. AN

probabilist
characterist
seri

method

problem
statist

computer-aid

11
11
11
11
11
pens| 10 |
9
9
9
9
8
8

N the
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Drawbacks of Graph Degeneracy (4/4)

aspect
O Edge weights Core numbers

] P| R |FI

How to automatically select the best level in the
hierarchy?

— Tt T T | bt e

analysi . o probabilist | 11

O 6 @ 10 characterist | 11
mathemat m 11 .

seri 11

In order to iImprove recall while not losing too
much in precision”

6“‘"“ the price series. We statist 9
discuss three methods of .
del mathematical modelling of illilyil __ _INF| 2 ]
ode . . .
price series  with
8 given  probabilistic aspect 8
characteristics. computer—aid 8 73




Graph Degeneracy for Keyword Extraction

inf
®
| . o N7 / \
N
w
> (3_ 3 °
= (=} o \
w
§ B £ Y4 0
S o 3
o \ 5 rlt_
| O | £ /
© o] ¢ lo
g_"r _____________ |~ T T [ . | | |
11 10 9 8 (10-11) (9-10) (8-9)

Heuristics:

« dens: go down the hierarchy until a drop in k-core (or truss) density is
observed, i.e., as long as the desirable cohesiveness properties are
kept

* inf: go down the hierarchy as long as the shells increase in size (starting
at the main — 1 level)

Problem: both methods work at the subgraph level -> lack flexibility for
large graphs (adding an entire group of nodes or not)

[Tixier et al., EMNLP “16] 74



Graph Degeneracy for Keyword Extraction

dens inf
8o
) "
o
N
© »
> 57 2 ° \
2 | w
g £ Y= 0
Q- o g
e \ o T
| 8 /
© \o T oo

How to work at the node level while still retaining
the valuable cohesiveness information captured
by degeneracy?

inf: go down the hierarchy as long as the shells increase in size (starting
at the main — 1 level)

Problem: both methods work at the subgraph level -> lack flexibility for
large graphs (adding an entire group of nodes or not)

[Tixier et al., EMNLP “16] 75



CoreRank

3 CR TR
- m elbow ~ ® elbow
A top 33% - \ A top 33%
o - o
0 — e *
5 \ S 7 .
3 o ©0-0.q § © °-0 e
X & N\ e Q o
(@) h O\ = © \
O _ O\°~o_o
o \, "0-.5
O-o < 0.
I I l | I l | S ™ | | | | | ?
2 4 6 8 10 12 14 2 4 6 8 10 12 14
nodes nodes
CoreRank (CR):

» Assign to each node the sum of the core (or truss) numbers of its neighbors

« Granularity is much finer and allows for much flexible selection

« Comparable to applying PageRank to the graph-of-words (aka TextRank) but
taking into account cohesiveness concerns rather than individual prestige
only

Heuristics: nodes can be selected based on the elbow or top p% method
[Tixier et al., EMNLP “16] 76



CoreRank - Experimental Evaluation (1/2)

number of manually

document size (in words) assigned keywords

o
- = | -
o ) ]
= ) | [
o] ] (]
N ) ]
S '
— b [
— :
3 .41 8
Al —_— ' 8_ —
— ] |
: o Qi . e
. =
© Q— "
o = N el
[ [ | | | |
Hulth2003 Marujo2012 Semeval Hulth2003 Marujo2012 Semeval
Datasets
« Hulth2003: 500 abstracts from the Inspec physics & engineering
database

« Marujo2012: 450 web news stories covering 10 different topics
« Semeval: 100 scientific papers from the ACM
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CoreRank - Experimental Evaluation (2/2)

precision recall F1-score precision recall F1-score precision recall F1-score
dens 48.79 72.78 56.09" dens 47.62 71.46 52.94" dens 8.44 79.45 15.06
inf 48.96 72.19 55.98" inf 53.88 57.54 49.10* inf 17.70 65.53 26.68

CRP 6153 38.73 45.75 CRP 5488 36.01 40.75 CRP 49.67 32.88 38.98"
CRE 65.33 37.90 44.11 CRE 63.17 2577 34.41 CRE 2582 58.80 34.86
maint 51.95 5499 50.49 maint 64.05 34.02 36.44 maint 2573 49.61 32.83
TRPT 65.43 41.37 48.79 TRPT 5596 36.48 41.44 TRPT 4793 31.74 37.64
TRET 71.34 36.44 4577 TRET 6550 21.32 30.68 TRE'T 33.87 46.08 37.55

Hulth2003, K-truss, W = 11. *stat. sign. Marujo2012, k-cory W = 13. *stat. sign. Semeval, K-truss, W = 20. *stat. sign.
(p < 0.001) w.r.t. all baselines’ (p < 0.001) w.r.t. all baselines® (p < 0.001) w.r.t. main

« For small documents (i.e., small graphs), the subgraph-level heuristics
significantly outperform main core retention (main) and TextRank (TRP,

TRE)
« Recall is drastically improved, precision is maintained (especially with inf)
« Forlong documents (Semeval), the node-level heuristics are better

« CoreRank with top p% retention (CRP) reaches best performance
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Extractive summarization



Extension to Extractive Document Summarization

Same as before

1. Text
preprocessing

2. Graph
representation

3. Keyword
extraction

4. Summarization
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Extension to Extractive Document Summarization

Same as before

1. Text
preprocessing

2. Graph
representation

How to use keywords (and their scores) to select the
best sentences in a document?

3. Keyword
extraction

4. Summarization
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Extractive Document Summarization (1/4)

« Generating a summary in an extractive way is akin to
selecting the best sentences in the document under a budget
constraint (max number of words allowed)

« (Combinatorial optimization task:

arg max F'(.5) | E cy < B
SCV
veS
— Sis agiven summary (a subset of the set of sentences V)
— F is the objective function to maximize (measuring summary
quality)
— C, is the cost of sentence v (number of words it contains)

— B is the budget (in words)

[Lin and Bilmes, NAACL ‘10] 82



Extractive Document Summarization (2/4)

arg max F'(S) | ;Cv <B

« Solving this task is NP-complete

* |t has been shown that if F is non-decreasing and submodular, a
greedy
algorithm can approach the best solution with factor (e — 1)/e

« At each step, the algorithm selects the sentence v that maximizes:

objective function gain
TS pG U - FG)

C’I"
SGaLed GDSt M U

* risatuning parameter
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Extractive Document Summarization (3/4)

F( , <B
arg max )I;c <

» The choice of F, the summary quality objective function, is what matters
« A good summary should cover all the important topics in the document,

while not repeating itself
« Maximize coverage
« Penalize redundancy (reward diversity to ensure monotonicity)

F(S)=L(S)+ AR(S
(5) z( ) \(\ )
L(S) z n;W; R(S) = NkeywordsES/Nkeywords

€S
weighted sum of the keywords proportion of unique keywords
contained in the summary contained

[Lin and Bilmes, NAACL ‘10], [Meladianos et al., EACL ‘17] 84



Extractive Document Summarization (4/4)

Tested for multiparty virtual meetings summarization:

020
-
"D

1. Text
preprocessing

Full meeting transcriptions

4. Summarization 3. Keyword 2. Graph
extraction representation
A E—p———
g;. - A A A Py o /.o ————— (o X <
o : D - a7 a A
a OO = =0 | © Pr 2
o o
O R
A Z: s P
- I - - TR
8 | AR e Sl 2 Y,
o i Y + - w 7 [ﬂ, = P
7 > . o - -
® 7 AL e (n o o o o ~#
S A 0 7 - = ==X
3 a g7 e o & e -
1 X ’ - ]
I.‘: 1 - - ! - o X
Th gk g S
8 O //’. (= 8 — 7 4 Pl £
(4 A I:f = 6/ C.I. _X/
/.,,/ --&-  our model 1+ // --&- our model
< /- longest greedy : P longest greedy
o & —&— random / X —&— random
£ --©- oracle 2] + 4 -~ oracle
—» textRank =} —» textRank
i =+~ clusterRank / -—+- clusterRank
T T T T T T T T T T T T T T T T T T
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

summary size (words)

summary size (words)
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GoWovis visualization tool



GoWovis Visualization Tool

A method for solution of systems of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic et
matrices is considered. The proposed method of searching for the solution of this system lies in reducing it to a numerical system ¢

Parameters Select by core_no ~

Text Graph
building
mining

Window size

28 16

Build on processed

text? algebra
Yes v
nuﬁir‘ !
Overspan sentences? \ / \\
Yes v 2 ‘
special~_4
kind
Color

https://safetyapp.shinyapps.io/GoWvis/

[Tixier et al., ACL '16] 87



Builds a graph-of-words and displays an interactive
representation of any text pasted by the user

Allows the user to tune many parameters:

— Text pre-processing (stopword removal, ...)
— Graph building (window size, ...)

— Graph mining (node ranking and community detection
algorithms, ...)

Extracts keyphrases and generates a summary of the input
text

Built in R Shiny with the visNetwork library

https://safetyapp.shinyapps.io/GoWvis/
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Multi-sentence compression
in word graphs



Multi Sentence Compression/Fusion

e Setting: we are given a group of similar sentences (e.g., first
sentence of each article on a Google News cluster). Each
sentence contains important bits of information. Collectively, the
sentences cover everything, but none single sentence 'gets it all’

« (Goal: fuse the sentences into a single, compact one, that
contains as much information as possible while being fluent and
grammatical

 Method: many approaches can be used. However, it is possible
to produce excellent results in a fully unsupervised way, with only
a list of stopwords and a part-of-speech tagger

[Filippova et al., ACL ‘10] 90



Word-graph Sentence Compression

1) Lonesome George, the world’s last Pinta Island giant tortoise, has passed away
2) The giant tortoise known as Lonesome George died Sunday at the Galapagos

National Park in Ecuador
3) He was only about a hundred years old, but the last known giant Pinta tortoise,

Lonesome George, has passed away
4) Lonesome George, a giant tortoise believed to be the last of his kind, has died
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Word-graph Construction

« Build a directed graph from the first sentence, with 'start’ and 'end' nodes.
Then, consider each word in the remaining sentences.

I, if the word is not a stopword, and if there is already a node in the graph for
it (with same lowercased spelling and POS tag), and assuming that no word
from the same sentence has already been mapped onto the node => map
word to the node

* QOtherwise:

ii. if the word is not a stopword, but there are more than one candidate in the
graph or multiple occurrences of the word in the sentence

ii.  if the word is a stopword

=> select the candidate which has larger overlap in context (preceding and
following words in sentence and neighbors in the graph), or the node which has
more words mapped onto it
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Word-graph Construction

Edge weights (the smaller the better):

/
. w (€i,j)
i,j) = (1)
w (i) freq(?) X freq(y)

Where:
freq(i) + freq(y)

ZSGS diff(s,,7) !

« freq(i) is the number of words that have been mapped to node |
« diff(s,i,j) is the distance between word i and word j in sentence s

(2)

w'(ei,5) =

 Intuition for (2):
« edges between strongly associated words are given more importance, taking into

account the overall freq. of the nodes (edge freq. of 3 should count more if the edge connects 2
nodes with freq. 3 rather than with freq. >>3)

» (Connections between nodes between which there are multiple paths are also given
more importance, proportionally to the lengths of the paths
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Word-graph Construction

Edge weights (the smaller the better):

/
. w (€i,j)
i,j) = (1)
w (i) freq(?) X freq(y)
Where:
f ' f '
W (ei ;) = req(¢) + freq(j)

ZSES diff(s,,7) !

« freq(i) is the number of words that have been mapped to node |
« diff(s,i,j) is the distance between word i and word j in sentence s

 Intuition for (1):
 Eq. (2) is a measure of cohesion between 2 words, but disregards the individual
importance of the words => we need to take saliency into account. Edges
connecting two important words are thus favored.
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Path Ranking and Selection

« A K-shortest paths algorithm is applied on the graph to find the 50
paths with smallest edge weights

« All the paths which are shorter than eight words and do not contain a
verb are filtered out

« The survivors are re-ranked by normalizing the total path weight over
its length

« The path which has the lightest average edge weight is finally
considered as the best compression
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1) Lonesome George, the world’s last Pinta Island giant tortoise, has passed away
2) The giant tortoise known as Lonesome George died Sunday at the Galapagos

National Park in Ecuador
3) He was only about a hundred years old, but the last known giant Pinta tortoise,

Lonesome George, has passed away
4) Lonesome George, a giant tortoise believed to be the last of his kind, has died

96



1) The wife of a former U.S. president Bill Clinton Hillary Clinton visited China last Monday
2) Hillary Clinton wanted to visit China last month but postponed her plans till Monday last

week
3) Hillary Clinton paid a visit to the People Republic of China on Monday

4) Last week the Secretary of State Ms. Clinton visited Chinese officials

/->

N
paid] visit
-\/f: @3) "\ _\‘ /\

N
”

/i
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Lessons Learned

« Syntactic parsers, language models, and/or handcrafted rules are
not the only way of controlling the grammaticality of the output

« Redundancy provides a reliable way of generating grammatical
sentences
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Event detection in text streams



Sub-event Detection in Twitter Streams

1. Large volume of documents in social media
2. Events are not covered by traditional media
3. News appear fast in Twitter

. ) 5 |
4. 1s Tweet rate suited for sub-event Detection” True Events  Falsely estimated events
2200 T / \
2000 |

:

2

Contribution:

A novel real-time detection
mechanism that accurately
detects sub-events in an
unsupervised and out-of-
the-box manner

Number of tweets
- -
g 8

—

[=]

]
T

o
&

600

400 ' ‘
1557:00 16:27.00 16:57:00 17:27:00 17:57:00
Time

Tweet Rate histogram of a football match

[Meladianos et al., ICWSM ‘15] 100



Sub-event Detection in Twitter Streams

Real time event summarization

1. Feature extraction: extracts the
terms that best describe the
current state of the event

2. Sub-event detection: decides
whether a sub-event has occurred

3. Tweet selection: ranks all the
tweets and selects the first one

Feature Sub-Event Tweet

Extraction Detection Selection

5

Twitter Event
Stream Summary

System Architecture

Steps are repeated every 60 seconds
The summary of the whole event is
constructed by aggregating the individual
sub-event descriptions
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Graph-based Representation of Tweets

« Represents all the input tweets

« Nodes: unique terms

« Edges: #co-occurrences within a
tweet

Example graph

1.  Good goal by Neymar

2.  Goal! Neymar scores for brazil
3. Goall! Neymar scores again
4. Watching the game tonight

Dataset: tweets from the 2014 FIFA
World Cup in Brazil

O
1/3 ame ‘
* am
Q 1/3 1/3 tonight

the 13
watc!ing

SOOd 1/3

‘ I VE S UE O 7
by 11/12 T — ‘
s

1/3

1/3 , goaly;,

T\ again

—7 1/3
O - 7/12 . d
neymar ‘

1/4 scores

1/4 |
1/4

for y/a Y4y

Q@

brazil

The graph that was built from 4 tweets
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k-core Decomposition for Feature Extraction

-~
== \\\
g ™

1/3 ~

| | s .1/3 game t‘ght‘\\
« Eachtermis given a score the 5 am
corresponding to its core s ‘w watching
/ g0 T S \
number Qo . o -
« Extract the k-core subgraph | A . > ‘;
« Detect sub-events by ': | i :'

5
3
o
-
~
N
=
~
-~ -

considering how the sum of e | wores
the core numbers extracted w5
from the graph at time t has NI

changed from a previous time N N

point t-1 b.azl srore

k-core decomposition of the Graph-of-Words
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Sub-event Detection

1 M7

d 1
Zc§>9x— >
i=1 P, i=1

cg Core number of term at time slot

d Number of terms selected
g Decision Threshold
P Number of previous time slots

Sub-event Detection steps:
(every 60 seconds)

1. Extractthe top terms with highest
weights

2. Sum the term weights

3. If it exceeds the threshold a sub-
event is detected
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Germany’s Goal - 2014 World Cup

core

5.8
1321 44 27-core
1.78 o
33 O 38.57-core
mario win
1.44
2.1 40.24 7.91
poist goal 1211
12.05
3.33 1603 o
\ 2.93
’ | 18.77 397
1.3 .
8.48
23.99 ol
798 | argentina
germani [
22.05
21.83 1.53
2.25
final

Snapshot of the four highest cores of the graph generated after
Germany’s goal in the 2014 FIFA World Cup final

105



Tweet Selection as Sub-event Summarization

« Activated only if a sub-event has been detected

« Tweets are scored based on the sum of their term weights

» Selects the most informative tweet of the sub-event
— The tweet with the highest score is chosen
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Expreimental Setup

Sub-Event Detection Sub-Event Summarization
Tweet Rate  Term Weights Frequency of terms Core number of terms

Baselines-Approaches
(Detection -Term Weight)

> Rate-Freq: the common baseline
> Rate—-Core

> Weight—-Core: Our approach
> Weight-Freq
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Dataset

Match #sub-events #tweets

Germany - Argentina 8 1,907,999
Argentina - Belgium 7 1,355,472
France - Germany 6 1,321,781
Honduras-Switzerland 7 168,519
Greece - lvory Coast 10 251,420
Croatia - Mexico 11 000,776
Cameroon - Brazil 11 532,756
Netherlands - Chile 7 301,067
Australia - Spain 9 252,086
Germany - Ghana 8 /718,709
Australia - Netherlands 11 126,971
All Matches 95 7,537,556

FIFA 2014 World Cup Dataset
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Evaluation (1/2)

100 : : —

Rate—Core
- —*— - Weight—Core ||
-- -} -- Rate—Freq
— © — Weight—Freq K

-
(@]

Missed Detection probability (%)
(Lower is Better)

Average DET curves over 11 matches
for the 4 considered approaches 1

P L L L |

1 10 50 100

False Alarm probability (%)
(Lower is Better)

109



Evaluation (2/2)

Wiginee M (—:srgore Ma—(s:crsoore
Weight-Core 0.68 0.72
Rate-Core 0.61 0.63
Weight-Freq 0.61 0.64
Rate-Freq 0.54 0.60

Average micro and macro F1-score
over 11 matches for the 4
considered approaches

Event type Eactual #detected
vents Events

Goal 32 30
Penalty 2 o

Red Card 1 0

Yellow Card 27 14

Match Start 11 8

Match End 11 11

Half Time 11 10

Number of sub-events detected
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Tweet Summarization Performance

Time Summary ESPN FC
Goal!!llArgentinal!! After eight Goal! Argentina 1, Belgium 0. Gonzalo Higuain
8’ minutes Argentina lead Belgium by  (Argentina) right footed shot from the centre of
1-0 scored by Higuain the box to the bottom left corner.

HT: Argentina 1-0 Belgium. Fantastic
45'+2’ goal by Higuain gives Argentina the  First Half ends, Argentina 1, Belgium O.
slight lead over the red devils.

52m - Belgium's Eden Hazard with Eden Hazard (Belgium) is shown the yellow

o2 the first yellow card of the game card for a bad foul.

Argentina 1 - 0 Belgium | Biglia
75 booked a yellow card. Meanwhile,
Chadli on for Eden Hazard.

Lucas Biglia (Argentina) is shown the yellow
card for a bad foul.

Well at least that goal makes them
advance to the semi finals. Argentina
gets the ticket to advance and
Belgium goes home.

90+5' Match ends, Argentina 1, Belgium O.

Summary of the Argentina vs. Belgium match generated automatically
using Weight-Core and manually by ESPN 111



Summary

« Sub-event detection approach based on the k-core decomposition on
graph-of-words

« The algorithm exploits the fact that the vocabulary of tweets gets more
specific when a sub-event occurs

* The detection mechanism is able to accurately detect important moments
as they occur

« The tweets selected by our system give an overview of the event
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Tutorial Outline

« Partl. Graph-theoretic concepts and graph-based text
representation

« Partll. Information retrieval
« Part lll. Keyword extraction and text summarization
« Part |V. Text categorization

« PartV. Final remarks and future research directions
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Text Categorization (TC) Pipeline

Textual Feature Extraction Model s Text s Evaluation
Data Term Weighting Learning Categorization

main focus
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Applications of TC

« Applications of text classification are numerous:
— News filtering
— Document organization
— Spam detection
— Opinion mining

« Text documents classification compared to other domains:
— High number of features
— Sparse feature vectors
— Multi-class scenario
— Skewed class distribution
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TC as a graph classification problem



TC as a Graph Classification Problem

« Single-label multi-class text categorization
« Graph-of-words representation of textual documents

« Mining of frequent subgraphs as features for
classification

« Main core retention to reduce the graph’s sizes

« Long-distance n-grams more discriminative than
standard n-grams

[Rousseau et al., ACL ‘15]
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Background (1/2)

« Text categorization

— Standard baseline: unsupervised n-gram feature mining +
supervised linear SVM learning

— Common approach for spam detection: same with Naive Bayes

* n-grams to take into account some word order and some
word dependence as opposed to unigrams

« Word inversion? Subset matching?

[Sebastiani, CSUR ‘02], [Aggarwal and Zhai, Mining Text Data ‘12]
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Background (2/2)

Graph classification

— Subgraphs as features

— Graph kernels [Vishwanathan et al., JMLR ‘10] [covered wext]
« Frequent subgraph feature mining

— gSpan [Yan and Han, ICDM ‘02]

— FFSM [Huan et al., ICDM '03]

— Gaston [Nijssen and Kok, Elect. Notes TCS ‘04]

« Expensive to mine all subgraphs, especially for “large”
collections of “large” graphs

« Unsupervised discriminative feature selection?
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Subgraph-of-words

« A subgraph of size n corresponds to a long-distance n-gram
— Takes into account word inversion and subset matching

« For instance, on the R8 dataset, {bank, base, rate} was a
discriminative (top 5% SVM features) long-distance 3-gram for
the category “interest”

— “barclays bank cut its base lending rate”
— “midland bank matches its base rate”
— “base rate of natwest bank dropped”

Patterns hard to capture with traditional n-gram bag-of-words

120



Graph of Words Classification

Unsupervised feature mining and support selection

gSpan mines the most frequent “subgraph-of-words” in the
collection of graph-of-words

Subgraph frequency == long-distance n-gram document frequency
Minimum document frequency controlled via a support parameter

The lower the support, the more features but the longer the mining,
the feature vector generation and the learning

— Unsupervised support selection using the elbow method (inspired from
selecting the number of clusters in k-means)

[Rousseau et al., ACL ‘15]
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Multiclass Scenario

« Text categorization ==

multiple classes + skewed class distribution + single overall
support value (local frequency)

« 100k features for majority classes vs. 100 features for minority
ones

« Mining per class with same relative support value
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Main Core Mining and n-gram Feature Selection

« Complexity to extract all features!
— Reduce the size of the graphs

« Maintain word dependence and subset matching = keep the
densest subgraphs

« Retain the main core of each graph-of-words use gSpan to
mine frequent subgraphs in main cores

« Extract n-gram features on remaining text (terms in main
cores)
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Experimental Evaluation

« WebKB: 4 most frequent categories among labeled webpages from
various CS departments — split into 2,803 for training and 1,396 for
test [Cardoso-Cachopo, ‘07]

« R8: 8 most frequent categories of Reuters-21578, a set of labeled
news articles from the 1987 Reuters newswire — split into 5,485 for
training and 2,189 for test [Debole and Sebastiani, ‘05]

« LingSpam: 2,893 emails classified as spam or legitimate messages

— split into 10 sets for 10-fold cross validation [Androutsopoulos et al.,
'00]

« Amazon: 8,000 product reviews over four different sub-collections
(books, DVDs, electronics and kitchen appliances) classified as
posi- tive or negative — split into 1,600 for training and 400 for test
each [Blitzer et al., ‘07]
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« 3 baseline models (n-gram features)
— kNN (k=5)
— Multinomial Naive Bayes (similar results with Bernoulli)
— Linear SVM

« 3 proposed approaches
— gSpan + SVM (long-distance n-gram features)
— MC + gSpan + SVM (long-distance n-gram features)
— MC + SVM (n-gram features)
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Evaluation Metrics

« Micro-averaged F1-score (accuracy, overall effectiveness)
 Macro-averaged F1-score (weight each class uniformly)

« Statistical significance of improvement in accuracy over the
n-gram SVM baseline assessed using the micro sign test (p <
0.05)

« For the Amazon dataset, we report the average of each
metric over the four sub-collections
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Effectiveness Results (1/2)

Dataset WebKB RS
Method Accuracy | Fl-score || Accuracy | Fl-score
kNN (k=5) 0.679 0.617 0.894 0.705
NB (Multinomial) 0.866 0.861 0.934 0.839
linear SVM 0.889 0.871 0.947 0.858
gSpan + SVM 0.912* 0.882 0.955% 0.864
MC + gSpan + SVM 0.901* 0.871 0.940* 0.858
MC 4+ SVM 0.872 0.863 0.937 0.849

Table: Test accuracy and macro-average F1l-score. Bold font marks the best

*

performance in a column. * indicates statistical significance at p < 0.05 using

micro sign test with regards to the SVM baseline of the same column. gSpan
mining support values are 1.6% (WebKB) and 7% (R8).

[Rousseau et al., ACL ‘15]
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Effectiveness Results (2/2)

Dataset LingSpam Amazon
Method Accuracy | Fl-score || Accuracy | Fl-score
kNN (k=5) 0.910 0.774 0.512 0.644
NB (Multinomial) 0.990 0.971 0.768 0.767
linear SVM 0.991 0.973 0.792 0.790
gSpan + SVM 0.991 0.972 0.798* 0.795
MC + gSpan + SVM 0.990 0.973 0.800* 0.798
MC + SVM 0.990 0.972 0.786 0.774

Table: Test accuracy and macro-average Fl-score. Bold font marks the best
performance in a column. * indicates statistical significance at p < 0.05 using
micro sign test with regards to the SVM baseline of the same column. gSpan
mining support values are 4% (LingSpam) and 0.5% (Amazon).

[Rousseau et al., ACL ‘15]
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Dimension Reduction - Main Core

Dataset | # subgraphs before | # subgraphs after | reduction
WebKB 30,868 10,113 67 %
R8 39,428 11,373 71 %
LingSpam 54,779 15,514 72 %
Amazon 16,415 8,745 47 %

Table: Total number of subgraph features vs. number of subgraph features
present only in main cores along with the reduction of the dimension of the
feature space on all four datasets.
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Unsupervised Support Selection
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Figure: Number of subgraph features per support (%) on WebKB (left) and R8
(right) datasets. In black, the selected support chosen via the elbow method.
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Distribution of Mined n-grams
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Figure: Distribution of n-grams
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among all
the features on WebKB dataset

Figure: Distribution of n-grams (standard
and long-distance ones) among the
top 5% most discriminative features for
SVM on WebKB dataset
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Summary

« Explored a graph-based approach, to challenge the
traditional bag-of-words for text classification

 First trained a classifier using frequent subgraphs as features
for increased effectiveness

« Reduced each graph-of-words to its main core before mining
the features for increased efficiency

« Reduced the total number of n-gram features considered in
the baselines for little to no loss in prediction performances
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Regularization for Text Categorization



Regularization for Text Categorization

Why regularization?
« Address overfitting: high training score, low test score
« Better accuracy

We want our model to generalize in new unseen test instances

Harvest the full potential hidden in the rich textual data

Feed meaningful group of words to group lasso for
regularization
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Objective Function + Loss

Text categorization as a loss minimization problem:

N
0™ = argmin Z L(x',0,y")
[ ;

=1

>4

empiri‘cralrisk
* Logistic regression with binary predictions (y={-1,1}), hg ,(x) = 6'x+b and
L(x,8,y) = e¥"X (log loss)
« Only minimizing the empirical risk can lead to overfitting.

N
0% = argmin » _ L(a",0,5") + AQ(6)
N ~~ o S——
empirical risk penalty term

N

-~
expected risk

« L1, L2 reqgularization aka lasso [Tibshirani, '96] and ridge [Hoerl, Kennard, ‘70]
N p
6* = argminZE(mi, 0,y") + )\Z 05|
o i1 j=1

N P
0* = argmin z L(x",0,y") + A z 6;°
o iz

=1 135



Learning

« A constrained optimization problem is formed that can be solved as
an augmented Lagrangian problem:

Quas(0) + Qgias(v) + L(8) +u' (v — M6)
+£ v — Mo|3

« The problem becomes the iterative update of 6, v and u:

moin Qas(0)+L(0) +UTM0+§“V_M0”§

mvinﬂglas(v) +u'lv+ gllv — M0||%

u=u+ p(v— M0)

« [Yogatama and Smith '14] proved that ADMM for sparse overlapping
group lasso converges. A good approximate solution is reached in
a few tens of iterations
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Structured Regularization

« In L1 and L2 regularization, features are considered as independent

« Group lasso: [Bakin, '99], [Yuan and Lin, ‘06] introduced group sparsity
in the model:

Q0) = 1> Agll6yll2
g

Algorithm 1 ADMM for overlapping group-lasso
Require: augmented Lagrangian variable p, regulariza-
tion strengths Agjqs and Ajqs
1: while update in weights not small do

\%
0 = argmin ;,,(0)+L(0) + 5 > N;(6; — ;)2
6 i=1

forg=1to G do
Vg = Prox,

2

3

4: 2 (29)
5: end for ’
6

7.

glas:

u=u+ p(v—M8)
end while
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Structured Regularization in NLP

Statistical regularizers:
« Sentence regularizer (state-of-the-art) (overlapping)
« Large numebr of groups but small group sizes.

Semantic regularizers:
« LDA and LSl regularizers
e groups are considered the LDA/LSI results — keep top10
words in each group

Graph-of-words regularizers
« Graph-of-words regularizer: community detection on collection

graph
« Word2vec regularizer: k-means clustering in word2vec space

(overlapping)

Trying to extract groups of words that talk about similar topics.

[Skianis et al., EMNLP ‘16] 138



Results (1/2)

dataset noreg. | lasso ridge elastic LDA LSI Sgeigzgclzsso GoW  word2vec
science | 0.946 | 0916 0954 0.954 | 0.968 0.968° 0.942 0.967°  0.968° |
% sports 0.908 | 0.907 0.925 0.920 | 0.959 0.964° 0.966 0.959*  0.946"
S| religion | 0.894 | 0.876 0.895 0.890 | 0.918 0.907° 0.934 0911 0.916"
computer | 0.846 | 0.843 0.869 0.856 | 0.891 0.885" 0.904 0.885"  0.911
vote 0.606 | 0.643 0.616 0.622 | 0.658 0.653 0.656 0.640 0.651
= | movie 0.865 | 0.860 0.870 0.875 | 0.900 0.895 0.895 0.895 0.890
& | books 0.750 | 0.770 0.760 0.780 | 0.790 0.795 0.785 0.790 0.800
g dvd 0.765 | 0.735 0.770 0.760 | 0.800 0.805" 0.785 0.795*  0.795"
A | electr. 0.790 | 0.800 0.800 0.825 | 0.800 0.815 0.805 0.820 0.815
kitch. 0.760 | 0.800 0.775 0.800 | 0.845 0.860* 0.855 0.840 0.855"

Table 2: Accuracy results on the test sets. Bold font marks the best performance for a dataset. * indicates statistical significance
of improvement over lasso at p < 0.05 using micro sign test for one of our models LSI, GoW and word2vec (underlined).

dataset noreg. | lasso ridge elastic group lasso
LDA LSI sentence GoW word2vec

science 100 1 100 63 19 20 86 19 21
(ZD sports 100 1 100 5 60 11 6.4 55 44
S| religion 100 1 100 3 94 31 99 10 85
computer 100 2 100 7 40 35 77 38 18
vote 100 1 100 8 15 16 13 97 13
< | movie 100 1 100 59 72 81 55 90 62
& books 100 3 100 14 41 74 72 90 99
":E)‘ dvd 100 2 100 28 64 8 8 58 64
wn electr. 100 4 100 6 10 8 43 8 9
kitch. 100 5 100 79 73 44 27 75 46

Table 3: Fraction (in %) of non-zero feature weights in each model for each dataset: the smaller, the more compact the model.
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Results (2/2)

. . group lasso
dataset | GoW word2vec dataset | lasso ridge elastic LDA LSI sentence GoW word2vec
science 79 691 science 10 1.6 1.6 15 11 76 12 19
(ZD sports 137 630 % sports 12 3 3 7 20 67 5 9
S| religion 35 639 S | religion 12 3 7 10 4 248 6 20
computer | 95 594 computer 7 1.4 0.8 8 6 43 5 10
Table 4: Number of groups. Table 5: Time (in seconds) for learning with best hyperparameters.
village town
. S -0 edc fashionable trendy trendy fashionable
plscata\.avay. combl.natwn _']11@donuts€).uucp = points guard guarding
-0 jamie reading/seeing chambliss crown title champion champions
- left-handedness abilities lubin numbness tingling dizziness fevers
acad sci obesity page erythromycin bottom laryngitis bronchitis undergo undergoing
#0 undergoes undergone healed
and space the launch health for use that : o
. mankind humanity civilization planet
medical you nasa kunin lang tao kay kong
Space cancer and nasa Table 7: Examples with word2vec regularizer.
hiv health shuttle for tobacco that i i i -
# 0 islands inta spain galapagos canary originated
cancer that research center space . . C
o -0 anodise advertises jewelry mercedes benzes
hiv aids are use theory = diamond trendy
keyboard data telescope available are from octave chanute lillienthal
system information space ftp vibrational broiled relieving succumb
Table 6: Examples with LSI regularizer. £0 spacewalks dna nf-psychiatry itself

commented usenet golded insects alternate
self-consistent retrospect

Table 8: Examples with graph-of-words regularizer. 140



Summary

* Find and extract semantic and syntactic structures that lead to
sparser feature spaces — faster learning times

« Linguistic prior knowledge in the data can be used to improve
categorization performance for baseline bag-of-words models, by
mining inherent structures

« No significant change in results with different loss functions as the
proposed regularizers are not log loss specific

nteresting guestions

« How can we create and cluster graphs, i.e., covering weighted and/or
signed cases?

« Find better clusters in word2vec? (+overlapping with GMM)

» Explore alternative regularization algorithms diverging from group-lasso?
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Graph representation learning
with applications in NLP

(text categorization and word analogy)



Feature Extraction From Graphs

« The first step of any ML algorithm for graphs is to extract
graph features

— Node features (e.g., degree)
— Pairs of nodes (e.g., number of common neighbors)
— @Groups of nodes (e.g., community assignments)

VI x|V]

Link prediction
Node classification
Clustering
Anomaly detection
Attribute prediction

Feature
engineering

—

el

Input graph Adjacency matrix ML tasks
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Graph Representation

« Create features by transforming the graph into a lower
dimensional latent representation

V[ x V] d <<V

) o
Ll -‘:‘f o |
H
a i
o .J :::
| i S

Ty

Input gr“aph Adjacency matrix Latent dimensions

* Link prediction

How to learn a latent Node classification

representation of a CISIEHG
P N Anomaly detection
graph’ - Attribute prediction
* .. ML tasks
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Example: Community Detection
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Input graph Learn latent representation

Other applications: classification, link prediction, ...

[Perozzi et al., KDD '14] 145



Problem Statement

« How to embed large networks into low-dimensional spaces?

* Requirements

— Globality/Locality: It is desirable to preserve both local and
global network structure when seeking for node representations

— Scalability: When considering network with millions of nodes
and billions of edges: traditional methods (nonlinear
dimensionality reduction) suffer from lack of scalability

[Tang et al. ‘15] 146



Intuition - Local and Global Structures

« Local structure: observed edges in the network
— First order proximity
— Most traditional embedding methods (e.g., Isomap) capture first order
proximity

« Global structure: nodes with shared neighbors are likely to be similar
(homophily)

* Nodes 6 and 7: first-order proximity
Should be represented closely in the
embedded space

* Nodes 5 and 6: second-order proximity
Same for those nodes

LINE algorithm: Form an objective function that
optimizes both local and global network structure

[Tang et al., WWW ‘15]
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LINE with First-order Proximity (1/2)

Model the probability of an edge (i, j) between v, and v, as

eEmbeddings space Original (graph) space
1 .
L7y — N 1]
pl (vll v]) _ o d (Z ) =
1+ exp(—ii; - P\l ] B
p( ! ]) edge Z(l,])EE wl]

Low dimensional vector

L_‘)i e R? representation of node v,
Empirical distribution over
Joint probability between v; and v; the space VxV
Logistic funcion Find vectors if; € RY to make those

I distributions to be as close as possible
Y 148




LINE with First-order Proximity (2/2)

How to preserve first-order proximity?

O = d(ﬁl (., .), 2] (., )) Minimize the distance between

two distributions

KL(PIQ) = ¥ P()log g KL-divergence
-0 01 = KL(p1( ), pa(- )

O = — Z wij 108P1(Uz‘, Uj)

(i,))€E

By finding those {ii}i=1.jv; that minimize O, we can
represent every node in the d-dimensional space
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LINE with Second-order Proximity (1/3)

* |t assumes that nodes sharing many connections to other nodes are
similar to each other

 Each node plays two roles:

— The node itself
— A specific “context” of other nodes

« For each node v,, we model the conditional distribution p,(e|v;) over
all the “contexts” (all the nodes in the network)

« Assumption of second-order proximity: Nodes with similar
distributions p,(®|v;) over the “contexts” are similar
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LINE with Second-order Proximity (2/3)

For directed edge (i, j), model the probability of context v; generated
by node v; (i.e., probability of an edge from v; to v;)

eEmbeddings space Original (graph) space

exp(i - i)
PZ(vjlvi) — V|
k=1

A 4
p2(vilv;) = A
exp(il! - i) 1

Out-degree of (4, = Z Wik

7 c R Low dimensional vector node | keN(i)
U representation of node v,

Empirical distribution over

Conditional distribution p,(®|v;) over the space VxV

the contexts

Make those distributions to be as
close as possible
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LINE with Second-order Proximity (3/3)

To preserve second-order proximity, minimize the distance between
true and empirical distributions

O, = Z Aid(;ﬁZ('lvi); Pz('|vi)) Minimize the distance between

. two distributions
eV

* A\ :represents the prestige
of node i in the graph KL-divergence
« SetA =d,

O = — Z w;jlog p2(v;lv;)

(i,))€E

By finding those {ii}i=1.;vj and {il’}i=1.v; that minimize O,,
we can represent every node i with d-dimensional space 1;
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Combining Both Models

« (Goal: Embed the networks by preserving both the first-order and
second-order proximity

1. Train the LINE model for first-order proximity Train separately
2. Train the LINE model for second-order proximity

« Then, concatenate the embeddings trained by the two methods for
each node
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Experiments - Datasets

Word co-occurrence

network
Language Network Social Network
Name WIKIPEDIA FLICKR YOUTUBE
Type undirected,weighted | undirected,binary | undirected,binary
V| 1,985,098 1,715,256 1,138,499
|E| 1,000,924,086 22,613,981 2,990,443
Avg. degree 504.22 26.37 5.25
#Labels 7 5) 47
F#train 70,000 75,958 31,703

[Tang et al.,, WWW ‘15]
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Experiments — Word Analogy

« Language network: word analogy
— Find solution to (“China”, “Beijing” = “France, “?”)

— Given word embeddings, find word d” whose embedding uy is
closest to vector Uggjing = Uchina + Urrance

“Paris”

Proximity in terms of
cosine similarity

Algorithm Semantic (%) | Syntactic (%) | Overall (%) | Running time
GF 61.38 44.08 51.93 2.96h
DeepWalk 50.79 37.70 43.65 16.64h
SkipGram 69.14 57.94 63.02 2.82h
LINE-SGD(st) 9.72 7.48 8.50 3.83h
LINE-SGD(2nd) 20.42 9.56 14.49 3.94h
LINE(1st) 58.08 49.42 53.35 2.44h
LINE(?nd) 73.79 59.72 66.10 2.55h

Line (2"9) outperforms other embedding

analogy task

methods in the word
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Experiments - Document Classification

Metric | Algorithm | 10% [ 20% [ 30% [ 40% [ 50% [ 60% | 70% [ 80% [ 90% |
GF 79.63 80.51 80.94 81.18 81.38 81.54 81.63 81.71 81.78

DeepWalk 78.89 79.92 80.41 80.69 80.92 81.08 81.21 81.35 81.42

Micro.F1 SkipGram 79.84 80.82 81.28 81.57 81.71 81.87 81.98 82.05 82.09
LINE-SGD(1st) | 76.03 77.05 77.57 77.85 78.08 78.25 78.39 78.44 78.49
LINE-SGD(2nd) | 74.68 76.53 77.54 78.18 78.63 78.96 79.19 79.40 79.57
LINE(1st) 79.67 80.55 80.94 81.24 81.40 81.52 81.61 81.69 81.67

LINE(2nd) 79.93 80.90 81.31 81.63 81.80 81.91 82.00 82.11 82.17
LINE(Ist+2nd) | 81.04** | 82.08%* | 82.58** | 82.93%* | 83.16** | 83.37** | 83.52** | 83.63** | 83.74**

GF 79.49 80.39 80.82 81.08 81.26 81.40 81.52 81.61 81.68

DeepWalk 78.78 79.78 80.30 80.56 80.82 80.97 81.11 81.24 81.32

Macro.F1 SkipGram 79.74 80.71 81.15 81.46 81.63 81.78 81.88 81.98 82.01
LINE-SGD(1st) | 75.85 76.90 77.40 77.71 77.94 78.12 78.24 78.29 78.36
LINE-SGD(2nd) | 74.70 76.45 77.43 78.09 78.53 78.83 79.08 79.29 79.46
LINE(1st) 79.54 80.44 80.82 81.13 81.29 81.43 81.51 81.60 81.59

LINE(2nd) 79.82 80.81 81.22 81.52 81.71 81.82 81.92 82.00 82.07
LINE(1st+2nd) | 80.94** | 81.99%* | 82.49** | 82.83%* | 83.07** | 83.20%* | 83.42** | 83.55** | 83.66**

« (Classification of Wikipedia articles
— Choose articles from 7 categories
 How to obtain the document vectors for classification?

— Average of the corresponding word vector representations
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Tutorial Outline

« Partl. Graph-theoretic concepts and graph-based text
representation

e Partll. Information retrieval

« Part lll. Keyword extraction and text summarization

« Part |V. Text categorization

« PartV. Final remarks and future research directions
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Summary

« @Graphs have been widely used as modeling tools in
— NLP
— Text Mining
— Information Retrieval

e (Goal of the tutorial

— Presentation of recent methods that rely on graph-based text
representations to deal with various tasks in NLP and IR

— Focus on the graph-of-words model
— Borrow ideas from the graph mining and network analysis field
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Thank You! - Questions?

« Fragkiskos D. Malliaros
University of California San Diego
frmalliaros@ucsd.edu
http://fragkiskos.me

« Michalis Vazirgiannis
Ecole Polytechnique, France

mvazirg@lix.polytechnique.fr

http://www.lix.polytechnigue.fr/~mvazirg

Tutorial material: http://fragkiskosm.github.io/projects/graph_text_tutorial
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