Atlas Local Graph Exploration in a Global Context IUI 2019

Fred Hohman @fredhohman

Georgia Tech

James Abello Rutgers

Varun Bezzam Georgia Tech

Polo Club of _____ DATA SCIENCE

THE STATE UNIVERSITY OF NEW JERSEY

Graph Sensemaking

Graph Sensemaking

Free Exploration

Graph Sensemaking

largeted Exploration

Important Nodes

Important Structure

Graph Sensemaking

Graph Sensemaking

Important Structure

Important Nodes

Important Structure

Graph Sensemaking

Important Nodes

Automatic

Summarization, clustering, classification

Millions of nodes

Human-computer Interaction

User-driven, iterative

Interactive, visualization

Thousands of nodes

Automatic

Summarization, clustering, classification

Millions of nodes

The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing. Sahu, et al. VLDB, 2017.

Human-computer Interaction
User-driven, iterative
Interactive, visualization
Thousands of nodes

Automatic

Summarization, clustering, classification

Millions of nodes

Sahu, et al. VLDB, 2017.

The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing.

bit.ly/atlas-iui interactive graph exploration via scalable edge decomposition

-7

bit.ly/atlas-iui interactive graph exploration via scalable edge decomposition

• separate graph into graph layers

Dit.ly/atlas-iui interactive graph exploration via scalable edge decomposition

• separate graph into graph layers • reveal peculiar subgraph

Dit.ly/atlas-iui interactive graph exploration via scalable edge decomposition • separate graph into graph layers • reveal peculiar subgraph • visualize local + global structure

Graph

Ve

Google+

arXiv astro-ph

Amazon

US Patents

Wikipedia (German)

Orkut

Laye	Time (s)	Edges	rtices
	~0	39K	24K
2	~0	198K	19K
	~0	925K	335K
2	11	17M	3.8M
32	225	82M	3.2M
	92	117M	3.1M

Graph

Ve

Google+

arXiv astro-ph

Amazon

US Patents

Wikipedia (German)

Orkut

Time complexity: O(#edges x #layers) layers << edges

Laye	Time (s)	Edges	rtices
	~0	39K	24K
2	~0	198K	19K
	~0	925K	335K
2	11	17M	3.8M
32	225	82M	3.2M
Ç	92	117M	3.1M

Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph Data Structure

Alok Tripathy, Fred Hohman, Duen Horng Chau, and Oded Green

Georgia Institute of Technology

Abstract—The k-core of a graph is a metric used in a wide range of applications, including social network analytics, visualization, and graph coloring. We present two new parallel and scalable algorithms for finding the maximal k-core in a graph. Unlike past approaches, our new algorithms do not rebuild the graph in every iteration – rather, they use a dynamic graph data structure and avoid one of the largest performance penalties of k-core – pruning vertices and edges. We also show how to extend our algorithms to support k-core edge decomposition for different size k-cores found in the graph. While our new algorithms are architecture independent, our implementations target NVIDIA GPUs. When comparing our algorithms against several highly optimized algorithms, including the sequential igraph implementation and the multi-thread ParK implementation, our new algorithms are significantly faster. For finding the maximal k-core in the graph, our new algorithm can be up-to $58 \times$ faster the igraph and up-to $4 \times$ faster than ParK executed on a 36 core (72 thread) system. For the k-core decomposition algorithm, we saw even greater and more consistent speedups for our algorithm where it was up-to $130 \times$ faster than igraph and up-to $8 \times$ faster than ParK. Our algorithms were executed on an NVIDIA P100 GPU.

I. INTRODUCTION

Network graphs are now a ubiquitous data type and model many natural and synthetic phenomena in our modern world. However, analyzing graph data to gain insight into a network remains challenging. In a recent online survey conducted to gather information about how graphs are used in practice, researchers discovered that graph analysts rated scalability and visualization as the most pressing issues to address [1]. Modern day graphs can easily grow to billions of vertices and edges; therefore, as graphs grow in size and become more complex, the need for scalable sense-making algorithms graphs.

Modern day graph algorithms, for example *edge decomposi*tion algorithms based on fixed points of degree peeling, show data [2]. This decomposition, based on the well-studied kcore decomposition, has been shown to be useful for graph exploration, navigation, and visualization [3]. The heart of • Scalable k-core decomposition. We introduce two difmaximal k-core for a graph. From graph theory, the k-core of a the graph into smaller subgraphs for different k-core sizes. graph is a maximal subgraph in which all vertices have degree These algorithms also use a dynamic graph data structure. and systems with applications in large-scale visualization [4], edge updates. As a GPU supports thousands of lightweight

[5], graph clustering [6], hierarchical structure analysis [5], and graph mining [7]. It has been shown that k-core can be computed in linear time by iteratively removing minimum degree vertices from a graph using a separate list of vertices per degree [8]. This process of removing minimum degree vertices is commonly called *pruning*, and it is the primary computation by which k-core and edge decompositions rely on.

In this paper, we present two fast and scalable algorithms for finding the maximal k-core of a graph, and extend these to two edge decomposition algorithms for breaking down a graph into smaller subgraphs based on the k-core sizes. Our new algorithms do not require rebuilding the graph after pruning in each iteration of edge composition. Rather, we use a dynamic graph data structure to avoid one of the largest performance penalties of k-core decomposition.

While our new algorithms are architecture independent, our implementations target NVIDIA GPUs. Furthermore, we run extensive experiments on a wide range of graphs, with different topological properties and scales, to evaluate our algorithms. We compare against the current state-of-the-art results found in literature, including the highly optimized sequential igraph implementation and a multi-thread ParK implementation [9].

Contributions

In summary, the contributions of this paper are as follows: • Scalable, maximal k-core algorithms. We introduce two fast and scalable algorithms for finding the maximal k-core of a graph. Both use a dynamic graph data structure to avoid the penalty of rebuilding the graph after each pruning phase of the becomes critical for gaining insight into modern day large algorithm. The first has parallel bottlenecks, but would likely perform well on a sequential processor. The latter performs much better in parallel and on a GPU. When compared with a sequential igraph implementation and a multi-threaded strong potential in helping people explore unfamiliar graph ParK[9] implementation with 72 threads, our second algorithm can be up to $58 \times$ faster than igraph and up to $4 \times$ faster than ParK (though it is sometimes slower than ParK).

this edge decomposition algorithm requires computing the ferent k-core decomposition algorithms for breaking down at least k. k-core is not only vital to edge decomposition algo- Our first algorithm uses a large number of small edge udpates, rithms, but also powers a diverse set of graph exploration tools whereas our second algorithm uses a small number of large

Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph **Data Structure**

Alok Tripathy, Fred Hohman, Duen Horng (Polo) Chau, Oded Green

IEEE International Conference on Big Data. Seattle, WA, USA, 2018.

Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph Data Structure

Alok Tripathy, Fred Hohman, Duen Horng Chau, and Oded Green

Georgia Institute of Technology

Abstract—The k-core of a graph is a metric used in a wide range of applications, including social network analytics, visualization, and graph coloring. We present two new parallel and scalable algorithms for finding the maximal k-core in a graph. Unlike past approaches, our new algorithms do not rebuild the graph in every iteration – rather, they use a dynamic graph data structure and avoid one of the largest performance penalties of k-core – pruning vertices and edges. We also show how to extend our algorithms to support k-core edge decomposition for different size k-cores found in the graph. While our new algorithms are architecture independent, our implementations target NVIDIA GPUs. When comparing our algorithms against several highly optimized algorithms, including the sequential igraph implementation and the multi-thread ParK implementation, our new algorithms are significantly faster. For finding the maximal k-core in the graph, our new algorithm can be up-to $58 \times$ faster the igraph and up-to $4 \times$ faster than ParK executed on a 36 core (72 thread) system. For the k-core decomposition algorithm, we saw even greater and more consistent speedups for our algorithm where it was up-to $130 \times$ faster than igraph and up-to $8 \times$ faster than ParK. Our algorithms were executed on an NVIDIA P100 GPU.

I. INTRODUCTION

Network graphs are now a ubiquitous data type and model many natural and synthetic phenomena in our modern world. However, analyzing graph data to gain insight into a network remains challenging. In a recent online survey conducted to gather information about how graphs are used in practice, researchers discovered that graph analysts rated scalability and visualization as the most pressing issues to address [1]. Modern day graphs can easily grow to billions of vertices and edges; therefore, as graphs grow in size and become more complex, the need for scalable sense-making algorithms graphs.

Modern day graph algorithms, for example *edge decomposition algorithms* based on fixed points of degree peeling, show strong potential in helping people explore unfamiliar graph data [2]. This decomposition, based on the well-studied kcore decomposition, has been shown to be useful for graph exploration, navigation, and visualization [3]. The heart of • Scalable k-core decomposition. We introduce two difmaximal k-core for a graph. From graph theory, the k-core of a the graph into smaller subgraphs for different k-core sizes. graph is a maximal subgraph in which all vertices have degree These algorithms also use a dynamic graph data structure. and systems with applications in large-scale visualization [4], edge updates. As a GPU supports thousands of lightweight

[5], graph clustering [6], hierarchical structure analysis [5], and graph mining [7]. It has been shown that k-core can be computed in linear time by iteratively removing minimum degree vertices from a graph using a separate list of vertices per degree [8]. This process of removing minimum degree vertices is commonly called *pruning*, and it is the primary computation by which k-core and edge decompositions rely on.

In this paper, we present two fast and scalable algorithms for finding the maximal k-core of a graph, and extend these to two edge decomposition algorithms for breaking down a graph into smaller subgraphs based on the k-core sizes. Our new algorithms do not require rebuilding the graph after pruning in each iteration of edge composition. Rather, we use a dynamic graph data structure to avoid one of the largest performance penalties of k-core decomposition.

While our new algorithms are architecture independent, our implementations target NVIDIA GPUs. Furthermore, we run extensive experiments on a wide range of graphs, with different topological properties and scales, to evaluate our algorithms. We compare against the current state-of-the-art results found in literature, including the highly optimized sequential igraph implementation and a multi-thread ParK implementation [9].

Contributions

In summary, the contributions of this paper are as follows: • Scalable, maximal k-core algorithms. We introduce two fast and scalable algorithms for finding the maximal k-core of a graph. Both use a dynamic graph data structure to avoid the penalty of rebuilding the graph after each pruning phase of the becomes critical for gaining insight into modern day large algorithm. The first has parallel bottlenecks, but would likely perform well on a sequential processor. The latter performs much better in parallel and on a GPU. When compared with a sequential igraph implementation and a multi-threaded ParK[9] implementation with 72 threads, our second algorithm can be up to $58 \times$ faster than igraph and up to $4 \times$ faster than ParK (though it is sometimes slower than ParK).

this edge decomposition algorithm requires computing the ferent k-core decomposition algorithms for breaking down at least k. k-core is not only vital to edge decomposition algo- Our first algorithm uses a large number of small edge udpates, rithms, but also powers a diverse set of graph exploration tools whereas our second algorithm uses a small number of large

Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph Data Structure

Alok Tripathy, Fred Hohman, Duen Horng (Polo) Chau, Oded Green

IEEE International Conference on Big Data. Seattle, WA, USA, 2018.

GPU + dynamic graph data structure -> 4x - 8x speed up over ParK

Demo: Understanding Word Embedding Graph Nodes: 66K words from Wikipedia Edges: 214K (connect words with small distance)

using the 3D edge decomposition overview.

common graph measures.

User Study

Graph Analysts Researcher, Symantec Researcher, NASA Systems engineer, NASA All PhDs + use graphs daily or weekly

Goal: use Atlas to spot interesting patterns, mimicking their own work

Graphs

Yelp Reviews Network SEC Insider Trading Graph GloVe Word Embed. Graph

Intro questionnaire \rightarrow Atlas tutorial \rightarrow Study \rightarrow Exit questionnaire

User Study Findings 3D for overview, 2D for details

3D for overview, 2D for details

3D useful for intro to new data \rightarrow get a "feel" for the graph

3D for overview, 2D for details

- 3D useful for intro to new data \rightarrow get a "feel" for the graph
- Graph Ribbon + Layers view used more precisely

get a "feel" for the graph more precisely

3D for overview, 2D for details

- 3D useful for intro to new data \rightarrow get a "feel" for the graph
- Graph Ribbon + Layers view used more precisely
- Show nearest neighbors used frequently

get a "feel" for the graph more precisely quently

3D for overview, 2D for details

- 3D useful for intro to new data \rightarrow get a "feel" for the graph
- Graph Ribbon + Layers view used more precisely
- Show nearest neighbors used frequently

Identifying and linking meaningful graph substructures

get a "feel" for the graph more precisely quently

3D for overview, 2D for details

- 3D useful for intro to new data \rightarrow get a "feel" for the graph ightarrow
- Graph Ribbon + Layers view used more precisely
- Show nearest neighbors used frequently

Identifying and linking meaningful graph substructures Vertex clones as traversal mechanism between layers

3D for overview, 2D for details

- 3D useful for intro to new data \rightarrow get a "feel" for the graph
- Graph Ribbon + Layers view used more precisely
- Show nearest neighbors used frequently

Identifying and linking meaningful graph substructures Vertex clones as traversal mechanism between layers

Application to anomaly detection

get a "feel" for the graph more precisely quently

3D for overview, 2D for details

- 3D useful for intro to new data \rightarrow get a "feel" for the graph
- Graph Ribbon + Layers view used more precisely
- Show nearest neighbors used frequently

Identifying and linking meaningful graph substructures Vertex clones as traversal mechanism between layers

Application to anomaly detection

• "...analysis (using [both] vertex clones and layers) naturally reveals potentially anomalous substructures and vertices. This is highly useful from a cybersecurity perspective."

Automatically suggest interesting layers

- Automatically suggest interesting layers
- Dynamic graph decomposition visualization

g layers isualization

- Automatically suggest interesting layers
- Dynamic graph decomposition visualization
- Visual scalability (e.g., super-noding, edge bundling, graph motif)

g layers sualization ng, edge bundling, graph motif)

Atlas Local Graph Exploration in a Global Context

bit.ly/atlas-iui

caeciliidae

amphibians

mworm-like

Fred Hohman

@fredhohman fredhohman@gatech.edu

James Abello

abelloj@cs.rutgers.edu

Varun Bezzam varun.bezzam@gatech.edu

Polo Chau polo@gatech.edu

We thank the anonymous reviewers for their constructive feedback.

