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Abstract—Many applications of wireless sensor networks in-
volve monitoring a time-variant event (e.g., radiation pollution in
the air). In such applications, fast boundary detection is a crucial
function, as it allows us to track the event variation in a timely
fashion. However, the problem becomes very challenging as it
demands a highly efficient algorithm to cope with the dynamics
introduced by the evolving event. Moreover, as many physical
events occupy volumes rather than surfaces (e.g., pollution again),
the algorithm has to work for 3-D cases. Finally, as boundaries
of a 3-D network can be complicated 2-manifolds, many net-
work functionalities (e.g., routing) may fail in the face of such
boundaries. To this end, we propose Localized Boundary Detection
and Parametrization (LBDP) to tackle these challenges. The first
component of LBDP is UNiform Fast On-Line boundary Detec-
tion (UNFOLD). It applies an inversion to node coordinates such
that a “notched” surface is “unfolded” into a convex one, which
in turn reduces boundary detection to a localized convexity test.
We prove the correctness and efficiency of UNFOLD; we also use
simulations and implementations to evaluate its performance,
which demonstrates that UNFOLD is two orders of magnitude
more time- and energy-efficient than the most up-to-date proposal.
Another component of LBDP is Localized Boundary Spherical-
ization (LBS). Through purely localized operations, LBS maps
an arbitrary genus-0 boundary to a unit sphere, which in turn
supports functionalities such as distinguishing interboundaries
from external ones and distributed coordinations on a boundary.
We implement LBS in TOSSIM and use simulations to show its
effectiveness.

Index Terms—3-D wireless sensor networks, boundary de-
tection, convexity test, inversion, localized algorithm, surface
parametrization.

I. INTRODUCTION

O NE OF the main applications of wireless sensor net-
works (WSNs) is to constantly monitor physical events

(or phenomena) either too widely spread or too remote to be
accessed through conventional techniques. Boundary detection,
as an enabling technique to such applications, becomes very
crucial to the functionality of WSNs. It allows the network
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users to be aware of the geometry of the network, which infers
either the sensing coverage (if the network only partially covers
the targeted event [17]) or the boundary of the targeted event (if
the network fully covers it [23]). Moreover, boundary detection
is also an important component to support geographic data
routing in WSNs [10], [26], [31].
While most of the existing boundary detection approaches

are designed just for a “one-time shot,” the detection actually
has to be constantly conducted, given the time-varying nature
of the events under surveillance. Such events, for example, can
be bio-geo-chemical processes, streams/currents, or pollution in
atmosphere or waterbodies (e.g., ocean). Depending on different
deployments, a WSN can be either static (e.g., in smart build-
ings) to observe the event passing through or stuck to an event
to keep monitoring it (e.g., for water monitoring). In both cases,
boundary detection has to be performed online to keep tracking
either the event or the network boundary. Unfortunately, the ex-
isting approaches have too high message or time complexity to
be performed in an online manner.
Another feature of the events under consideration is that they

often span a 3-D volume rather than a 2-D surface. Given the
fact that very few existing proposals deal with 3-D boundary
detection and that extending the approaches designed for 2-D
surfaces to 3-D volumes is highly nontrivial in geometry,1 a
clean-slate boundary detection algorithm needs to be designed
for 3-D WSNs. Note that, should a 2-D boundary detection be
ever needed, it would be really trivial to reduce a 3-D detection
approach to 2-D.
Furthermore, 3-D WSNs may have arbitrarily compli-

cated but orientable 2-manifolds as their boundaries. This,
on one hand, makes it difficult to tell internal boundaries
from the external one from a local point of view. On the
other hand, routing protocols may fail when facing or on
such boundaries [8]. Therefore, if we do not regularize the
boundary geometry, the boundary detection may be performed
in vain without delivering necessary supports to networking
functionalities.
In this paper, we tackle the aforementioned challenges by

proposing Localized Boundary Detection and Parametriza-
tion (LBDP). LBDP comes with two components: UNiform
Fast On-Line boundary Detection (UNFOLD) for boundary
detection and Localized Boundary Sphericalization (LBS) for
boundary regularization. The underlying principle of UNFOLD
is to apply a spherical inversion to the local coordinates of
every node, such that a (locally) concave surface can be “un-
folded” into a convex one. As a result, the painful procedure of

1For example, the well-known edge flip algorithm for Delaunay triangulation
in 2-D does not converge in 3-D [19].
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identifying a boundary node on a “notched” surface is reduced
to convexity test (which can be tackled with simple geometric
tools). Though the idea of inversion is borrowed from [20],
UNFOLD has substantially improved on it by implementing
it in a distributed networking scenario. As UNFOLD entails
only simple and uniform computation for every node, it can
be performed super fast and hence enable online boundary
detection. Building upon UNFOLD, LBS employs a diffusion
process to regularize an arbitrary boundary into a unit sphere.
The algorithm is purely localized and involves only arithmetic
operations, and the resulting virtual coordinates on the sphere
may be exploited by many networking functionalities, such as
distinguishing internal boundaries from the external one. Our
main contributions in LBDP are the following:
• the idea of 3-D WSN boundary detection in a transformed
domain;

• the online algorithm, UNFOLD, that entails only localized
communications and computations;

• a real implementation of UNFOLD in MICAz Motes for
time and energy efficiency evaluations;

• the parametrization algorithm, LBS, that efficiently regu-
larizes an arbitrary genus-0 boundary into a unit sphere;

• distinguishing internal boundaries from the external one
(from a local point of view) based on the virtual coordi-
nates delivered by LBS;

• a full implementation of LBS in TOSSIM for realistic
simulations.

In the following, we first discuss backgrounds and related
literature in Section II. We focus on UNFOLD in Section III:
We first discuss boundary definitions and properties, then we
present UNFOLD in detail along with the corresponding anal-
ysis. We then present LBS in Section IV, along with the de-
scriptions of two crucial applications of LBS. We finally report
the simulation and experiment results in Section V, before con-
cluding our paper in Section VI. To maintain fluency, we post-
pone the proof details or sketches to the Appendix.

II. BACKGROUND AND MOTIVATIONS

In this section, we briefly discuss the existing proposals for
boundary detection, which in turn serves as the motivations for
our proposal. To the best of our knowledge, boundary regular-
ization through distributed parametrization has never been done
in the literature. Note that, in the computational geometry com-
munity, surface reconstruction from sample points has been ex-
tensively studied. Representative proposals include CRUST [2]
and Cocones [3], which are based on Voronoi diagrams gen-
erated by the sample points. These approaches assume that the
input points are densely sampled from some surface, so they are
not suitable for boundary detection, whose objective is to iden-
tify boundary points from a set of points that form a 3-D volume.

A. Geometric or Topological

The existing boundary detection approaches can be roughly
classified into two categories, namely geometric (e.g., [11],
[29], [34], and [35]) and topological (e.g., [7], [10], [12]–[14],
[21], and [32]). While the former always requires the knowl-
edge of nodes location or distance, the latter is often claimed
as a location/range-free approach. For example, Ghrist and

Fig. 1. A node (white) and all its one-hop neighbors (black) are shown.
Whether the white one is identified as on the boundary or not depends on
the specific geometric interpretation. Precisely, the triangulation on the left
indicates the node as on the boundary, but the answer is negative for the case
on the right. The shaded ball is used to illustrate the idea of -shape [9].

Muhammad [14] compute homology groups, algebraic topo-
logical invariants, to recognize “holes” within WSN coverage.
Kröller et al. [21] define boundary based on chordless cycles
and propose a series of fairly sophisticated algorithms to
identify subgraphs that satisfy the boundary criterions. Ref-
erences [7], [10], and [32] are similar in the sense that they
rely on global connectivity information (e.g., shortest path
tree or primary boundary circle) to “guide” further boundary
refinements.
Generally, the price a topological approach pays to avoid

relying on location/range information is a highly complicated
procedure that often requires a large scale coordination among
a WSN (in particular, the algorithm proposed in [14] is actu-
ally centralized). Therefore, while the topological approaches
do offer a one-time boundary detection for staticWSNs, they are
not adequate to online detection. Moreover, whether these topo-
logical approaches can be extended to distributed 3-D boundary
detection is still open.

B. “Pain” of Geometric Approaches

Equipped with location or range information (precisely, each
node knows either its own location that may come with a certain
error or the distances between itself and close-by nodes), geo-
metric approaches often involve fairly localized computations
and hence have the potential to be performed online. However,
the discrete nature of aWSN “volume” may lead to complicated
local detections. On one hand, there is no commonly agreed def-
inition for the boundary of a point cloud (the geometric repre-
sentation of a WSN). For example, Fig. 1 shows that whether a
node is on the boundary or not heavily depends on the specific
geometric interpretation. On the other hand, the algorithms for
boundary detection, albeit localized, can still incur a high time
and/or message complexity.
Zhang et al. [34] propose to use two local geometric

structures, namely localized Voronoi polygon and neighbor
embracing polygon, for boundary characterization only in 2-D.
It is shown in the paper that the detection procedure involves
several rounds of interactions between (at least) all one-hop
neighbors. Both [11] and [35] use a concept called -shape [9]
for boundary detection. In a nutshell, -shape results from
“erasing” the convex hull of a point cloud using a spherical
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“eraser” with a certain radius : While 0-shape is the original
point cloud, -shape is the convex hull. In Fig. 1, the left tri-
angulation is actually an -shape with (roughly) equal to half
of the transmission range. Although the -shape construction
leads to localized boundary detection, its computation cost is
still nonnegligible.
Remark: Although we are concerned with boundary detec-

tion in 3-DWSNs, we have to provide examples in 2-D to facil-
itate visual illustration. However, our simulations will be per-
formed for real 3-D WSNs.

C. Event Boundary Versus Network Boundary

Some existing proposals tend to distinguish between event
boundary and network boundary [35]. As we discussed in
Section I, we are concerned with both boundaries for the WSN
applications under consideration. In fact, network boundary can
be considered as a particular event boundary, with the “event”
being the WSN itself. It is true that, whereas the network
boundary is a clear-cut concept, other event boundaries can be
rather fuzzy due to sensing errors or smooth changes (in terms
of certain physical quantities indicating the event) around the
boundary. Fortunately, relying on statistic approaches such
as [6], each node can arrive at an (binary) indicator on whether
it covers a certain event or not [36]. Moreover, using an event
indicator may suggest a simple way to detect event boundaries:
A boundary node has at least one of its neighbors carrying an
indicator value different from its own value. However, this
method often leads to rather “thick” boundaries if the transmis-
sion range of nodes is relatively large. Therefore, we do not
make a distinction between these two types of boundaries in
our paper.

D. Our Approach

In summary, a geometric approach that relies on the loca-
tion or range information appears to be the right way toward
a fast online boundary detection algorithm. The demand of lo-
cation/range information is not too much a constraint, given re-
cent proposals for node localization in 3-D WSNs (e.g., [27]
and [31]), as well as the fact that many events to be monitored
are in open spaces and thus amenable to GPS localization.
To cope with the notched boundaries of a 3-D WSN, our

approach is inspired by the principle that a transformed do-
main may offer features absent in the original domain. For ex-
ample, a 3-D (implicit) surface is concave, but a loga-
rithmic transformation makes it convex in the transformed do-
main: with . Therefore, the essence
of our proposal is to find a simple transformation that “unfolds”
the notched boundaries into convex ones, such that we can avoid
the troublesome -shape construction and rely on a simple con-
vexity test to locally detect boundary instead.

III. UNFOLD: DETECTING BOUNDARY IN A “MIRROR” IMAGE

In this section, we first introduce our network model and give
a brief overview of UNFOLD. Then we describe the transfor-
mation used by UNFOLD to transform a point cloud (geometri-
cally representing a WSN), as well as our formal definitions of
the boundaries for the point cloud. Finally, we present in detail

Fig. 2. Transformation that “blows up” a boundary. The length of a certain
arrow in the left figure shows the “force” applied to that part of the boundary.
The darker nodes in the right figure are those being blown up to the new convex
boundary.

the localized algorithm for boundary detection, along with its
performance analysis.

A. UNFOLD in a Nutshell

We model a 3-D WSN as a point cloud
, with each point representing a sensor node. We

are not concerned with network topology, so the boundaries that
we aim at detecting are purely geometric and only concern local
network connectivity. We assume that each node has a convex
transmission volume, such that a bidirectional communication
link exists between this node and any other node within this
volume. We denote by the set of nodes within the trans-
mission volume of node , or ’s one-hop neighbor set. We
also assume that node is either aware of its geographic lo-
cation or can measure the distance between itself and another
node in . In this paper, we follow the definition of orienting a
boundary surface in [18, pp. 611–615] and draw a distinction be-
tween external and internal boundaries. Intuitively, the (unique)
external boundary encloses the wholeWSN, whereas an internal
boundary encloses a “hole” inside the WSN (so it is also termed
hole boundary [32]). Similar to the existing work [31], [32],
[35], we assume that these boundaries are all of genus-0.
As explained in Section II-B, the difficulty of determining

whether a node is on the boundary stems from the existence
of notches and, more importantly, from the absence of convex
boundary due to consecutive notches; one would need to rely
on the fairly complicated -shape construction to identify
boundary nodes. Our UNFOLD applies a special transforma-
tion to “blow up” a boundary such that it becomes almost
convex, and we define a boundary node based on its local
convexity. We illustrate the idea by Fig. 2.
Given such a transformation, the localized algorithm for UN-

FOLD to perform boundary detection becomes straightforward.
Each node periodically exchanges location or range informa-
tion with its one-hop neighbors to construct a local coordinate
system. Then, the transformation is applied to the coordinates of
all nodes in , possibly from different directions. In the
transformed domain, node performs a convexity test to check
if it is on or out of the convex hull of , and it indicates itself
as a boundary node if this test succeeds. Relevant questions we
need to address are the following.
Q1) What are the properties of the boundaries resulting from

UNFOLD?
Q2) How many transformations need to be applied?
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Fig. 3. Illustrating the effect of (defined by the viewpoint and the
“mirror” with radius ) on point clouds. For of an arbitrary point , the
transformation effectively “bends” the locally concave boundary to a convex
one in the transform domain (a). Given a point cloud (representing a WSN)
in (b) and let , we show the image in the transform domain, along
with part of the detectable boundary. As demonstrated by the two amplified
one-hop neighborhoods, points on nonconvex surfaces (of the original 2-D
area) are also detected as boundary points. (a) Local effect. (b) Global effect.

Q3) What if the location/range information for individual
nodes comes with errors?

In the following, we present detailed principles and algorithms
for UNFOLD while addressing these questions.

B. Transformation and Boundary Definition

As we mentioned in Section II-B, there is no commonly
agreed definition for the boundary of a point cloud. Our def-
inition is based on the assumption that a point cloud results
from sampling a certain hypothetical 3-D volume. Therefore,
a point is on the boundary of the point cloud if it lies on
the hypothetical surface of that volume. As such a surface is
unknown, we borrow the idea of direct visibility from [20]:
A surface (hence the points lying on it) is what we can see
from a certain viewpoint. We first present a transformation that
enables the recognition of points on such a surface, then we
define boundary and its properties.
1) Definitions: Given any subset , we associate with
a local coordinate system, and we place a viewpoint that

does not belong to the convex hull of at the origin and set
a spherical “mirror” centered at with radius (where

, ). The transformation for a point is
given by

(1)

where can be any norm, but we take Euclidean norm in
this paper. We illustrate the effect of this “spherical reflection”
in Fig. 3.
Our definition of point cloud boundary is based on the trans-

formation .
Definition 1: For any point , is said to be

on the boundary of with respect to a common transformation
(defined by and ) if and lies on the convex

hull of .
We refer to Fig. 3 for the two extreme cases of and

. Note that as the definition concerns the image of

in the transform domain, it focuses only on the local property of
a point cloud. Actually, we have another definition of boundary
for which even the transformation is made local:
Definition 2: For any point , is said to be on

the boundary of with respect to a particular transformation
(defined by and that depend on ) if

and lies on the convex hull of .
While the latter definition allows the transformation to be

adapted to local geometry (hence requires only local range infor-
mation), the former definition (which requires location informa-
tion) may have certain practical significance.2 In general, these
two definitions, on one hand, are both amenable to the design
of localized algorithm. On the other hand, the local properties
stated in both definitions do have a global implication to some
extent, according to the following result.
Proposition 1: If is a boundary point of according to

either definition, there exists a nontrivial , i.e., ,
and a transformation , such that lies on the convex
hull of . In particular, is an external boundary
point of , iff lies on the convex hull of .
The transformation shown in (1) is inspired by an inver-

sion applied in a quite different context [20]. Katz et al. [20]
applies this inversion to identify visible points on part of the
external boundary of a point cloud. Our extension involving
only local convexity test, however, allows boundary detection
for both internal and external boundaries of a point cloud from
all directions.
2) Properties: First, it is straightforward to show that the

boundary definitions preserve convexity, a safety property.
Proposition 2: If is on the convex hull of and

, then is on the boundary of with respect to a
certain transformation .
In other words, if a point is on a (internal or external) surface

of the hypothetical volume represented by and is definitely
“visible” (due to locally convexity) from some viewpoint, it will
be recognized as a boundary node.
Second, our definition assures that a node that is hidden be-

hind a boundary node from the viewpoint will not be recog-
nized as a boundary node, i.e., the following proposition.
Proposition 3: If is recognized as a boundary node for

with respect to a certain transformation ,
will not be recognized as a boundary node if , , are

collinear. This is another safety property.
The third property quantifies the impact of the transformation

on a notched surface to “blow it up.” We first define quantities
to measure to what extent a point is notched locally.
Definition 3: Given and , if lies within the

convex hull, , of , we define the Depth of Notch
(DoN) of as the distance from to the nearest plane on

, and the inner radius of as the distance from
to the nearest vertex of .
We illustrate the definition of DoN in Fig. 4(a), and we show

that, given (with certain and ), a node can be “blown” to

2Taking the recent BP oil spill as an example, should a WSN be deployed to
monitor the spill coverage, a question some Miami tourism authority might ask
would be: How far is the spill frontline toward Key West? As the concerned
boundary is only the section facing Key West, it makes more sense to perform
a boundary detection based on a common viewpoint at Key West.
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Fig. 4. (a) Definition of DoN is shown in 3-D. However, to simplify the inter-
pretation, we analyze the 2-D case in (b), which can be considered as a projec-
tion of the 3-D case on a certain plane.

the convex hull only if its DoN is below a certain threshold. The
proposition, illustrated by Fig. 4(b), is stated in 2-D for brevity,
but it can be readily extended to 3-D, where the 2-D conditions
need to be satisfied for three nonidentical planes containing
and , and we sketch the idea in the Appendix.
Proposition 4: For a given , is recognized as a

boundary node for iff its DoN satisfies

where . If
in particular, .

Given a common viewpoint transformation (Definition 1),
and are fixed to each point, but can be

tuned for different requirements on compensating . If a trans-
formation is chosen for individual points (Definition 2), all the
parameters of the transformation can be tuned.
Finally, we answer Q2 raised in Section III-A by showing that

no matter which direction a boundary surface is facing, only
a constant number of transformations are needed to recognize
points on this surface.
Proposition 5: If is on a boundary (internal or external)

surface of and it satisfies , at most four transforma-
tions (hence four viewpoints) are needed to recognize as a
boundary point. Here, is the inner radius of defined in Def-
inition 3.
Intuitively, these four viewpoints are the vertices of a tetra-

hedron that encloses .
Summarizing Propositions 2–5, our boundary definitions

based on have the following three properties:
1) Safety I: Points that are surely on the boundary defined by
the convex hull of will be identified as boundary points.

2) Safety II: Points that are surely not on any boundary de-
fined by the already identified boundary points and visible
from will not be identified as boundary points.

3) Tunable liveness: Points on a nonconvex surface but with
reasonable DoN can be identified with a small number of
viewpoints (hence transformations).

Remark: It is important to note that for a hypothetic surface
passing through , the ratio is actually a discrete indicator of

its curvature at . As we set an upper bound for , the identified
boundary points form a boundary surface that is low-curvature
filtered from the real boundary surface. Moreover, it is possible
that many nodes are identified as boundary nodes in extremely
sparse 3-D WSNs because the condition may often be
satisfied. Therefore, our approach performs well in relatively
dense WSNs. This is actually a common feature for localized
detection mechanisms, as they are all not concerned with global
topology.

C. Online Boundary Detection Algorithm

Given the definitions of transformation and boundary, we are
ready to present our UNFOLD for online boundary detection.
UNFOLD involves mainly three steps for each node in a WSN.
1) Local Interactions: Each node exchanges location or

range information with its neighbors in to construct a local
coordinate system. This step is trivial if the location information
is available (through, for example, [27] and [31]); otherwise, a
certain 3-D embedding algorithm (e.g., [30]) is used to create
the coordinate system using mutual distances. The origin of the
coordinate system is the viewpoint .
1) If the location information is available, we could afford to
have a common viewpoint (Definition 1), which can be
required by certain applications (such as the BP oil spill
example we gave in Footnote 2).

2) Viewpoint (Definition 2) specific to every can al-
ways be applied. This is preferred if only range informa-
tion is available, as otherwise we have to perform a costly
procedure for constructing a global coordinate system with
local range information (e.g., [15]).

2) Transformation: Having the coordinates for all nodes in
with respect to a origin (or ), node applies

the transformation given in (1) to these coordinates and obtains
their images. This step involves only simple computations.
3) Convexity Test: Each node performs a convexity test

to decide whether or not its image is on the convex hull of
(or ). A basic algorithm is shown in

Algorithm 1. We use to represent the vector form of a point .
The idea is to try all possible planes determined by and an-
other two points in (lines 1–3), and to check whether one
of them is a supporting plane for (lines 4–5), i.e.,
if lies on one side of that plane.
To improve the efficiency, we apply the divide-and-conquer

strategy. Observe that, after each inner loop (lines 4–5), points
in can be totally ordered under , according to their dot
products with the normal . Therefore, instead of arbitrarily
choosing a pair, we replace only one of the current
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two points with what is ordered first in (ties broken arbi-
trarily), such that the replaced point lies on the same side as
with respect to the new plane. In fact, no sorting is needed; the
maximum point is naturally obtained at the end of each inner
loop (lines 4–5). The algorithm terminates if neither points can
be replaced: either because replacing either of them separates
another from , or because the node ordered first in lies
on the current plane (i.e., the plane is a supporting plane). The
algorithm returns if the current plane is a
supporting plane, and returns otherwise.
We call this enhanced algorithm CVX-TEST-DC. Note that the
algorithm is conducted by individual nodes without the need for
time synchronization. Therefore, UNFOLD is a localized algo-
rithm requires only asynchronous operations; this makes UN-
FOLD extremely efficient.

D. Performance Analysis

We analyze the performance of UNFOLD on two aspects:
namely time complexity of UNFOLD that also represents the
energy efficiency of the algorithm and the robustness of UN-
FOLD against location or range errors.
1) Complexity Analysis: Our analysis on UNFOLD focuses

on the transformation and convexity test steps, as the first step
either has a negligible complexity if location information is
available or otherwise involves well-known procedures that are
commonly applied in other proposals (e.g., [35]).
Assuming , the complexity of the transformation is

obviously , as we basically apply the transformation (1) to
all nodes in . The complexity of the basic convexity
test, CVX-TEST, is also obvious: As the outer iteration has

loops and the inner iteration has loops, the com-
plexity is . Consequently, the complexity (both average
and worst-case) [5] of UNFOLD with CVX-TEST is .
Although this is same as that of the -shape based boundary
detection [35], the actual CPU time (hence energy consump-
tion) of UNFOLD is much less (as shown in Section V-B). This
is because the convexity test involves only vector operations
(which are basically arithmetics), whereas -shape construc-
tion entails complicated operations/procedures such as square
root and solving equation systems. Moreover, we may further
reduce the complexity of UNFOLD by applying the enhanced
convexity test: CVX-TEST-DC.
Proposition 6: The average-case complexity of CVX-

TEST-DC is .
This complexity holds under the condition that the input is

introduced in a random order, and it effectively reduces the
average-case complexity of UNFOLD to . Though
the worst-case complexity is , those cases rarely happen
based on our experience.
2) Error Analysis: Given the fact that the geometric

boundary of a point cloud is not well defined, it is impossible
to perform error analysis rigorously, as there is no ground truth
to which to be compared. One may be able to create a set of
artificial “ground truth” boundary points in simulations by
deliberately sampling on the surface of the volume from which
a point cloud is derived (which is the method that we will
apply in Section V-A to evaluate the robustness of UNFOLD).

However, unless those points are sampled extremely dense,
there are still chances that certain “under the surface” points
are detected as boundary points, regardless of which boundary
detection mechanism is used. It is definitely unreasonable to
categorize these points as detection errors, as they may well
be on the surface of another volume that results in the same
point cloud. Consequently, the error analysis we discuss here
is rather qualitative.
If location information is available to every node, the error

can be characterized by a small ball with radius around the
expected location of the node, where can be the mean square
error resulting from certain localization mechanism (e.g., GPS).
If only range information between neighboring nodes is avail-
able, the initial errors come from the given ranging technique.
However, this error will eventually be translated into location
errors through a 3-D embedding algorithm (e.g., [30]). In either
case, cannot be too large compared to the radius of ,
as otherwise it could be corrected (thus reduced) using local
connectivity relations. Therefore, we may safely assume that
is bounded by the radius of .
For a boundary node (based on our definitions), the location

errors may either decrease or increase DoN, if we consider a
node on or out of its local convex hull as having a
nonpositive DoN. Apparently, a decreased DoN has no impact
on boundary detection, whereas an increased DoN is somewhat
compensated by our transformation, according to Proposition 4.
For a nonboundary node, there are two cases: either it is very
close to a boundary node, or it indeed lies in the very interior
of the point cloud. The former case, compared to a boundary
node, is inversely affected by location errors. As the node is
anyway close to a boundary node, a false positive does not re-
ally compromise boundary detection. The latter case can hardly
be affected by location errors, given the boundedness of these
errors. In summary, UNFOLD is very robust against location
errors; we will demonstrate this in Section V-A.

IV. LBS AND ITS APPLICATIONS

The outcome of our boundary detection algorithm is that
every node may tell whether it is on some boundary or not.
However, such individual boundary awareness is not sufficient
in supporting some WSN functionalities. In this section, we
propose LBS as a localized boundary parametrization technique
that maps each boundary surface to a sphere. This allows three
immediate applications: distinguishing internal boundaries
from the external one, enabling 3-D greedy geographic routing,
and supporting surface routing (hence distributed coordina-
tions) on a certain boundary.
One major limitation of LBS is that it only works for

boundary surfaces of genus-0. As a surface of higher genus
always has negative Gaussian curvature for part of it, it is not
topologically equivalent to a sphere. Coping with boundaries
of arbitrary topology is still an open problem that remains to be
tackled in our future work.

A. Boundary Sphericalization

Let be a boundary of . By our assumption, it is of genus-0,
i.e., topologically equivalent to a unit sphere . Our goal is to
parameterize to , for which we need to construct a bijective
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map between and . This can be done by solving a harmonic
function

(2)

where is the tangent
component of , is the normal vector of vertex and
is the dot product. Intuitively speaking, the Laplace
is a 3-D vector that, in general, is not on the tangent plane of the
sphere, is the projection of to the tangent plane. Thus,
the image of vertex is only allowed to diffuse along the
tangential direction of the sphere. The function is harmonic
if and only if its tangential component is zero, i.e., .
In differential geometry, it is known that the above harmonic
function is a conformal mapping, i.e., bijective,

smooth and angle preserving [16].
In our case, the boundary is sampled by a set of points (the

boundary nodes being detected). Therefore, we first reconstruct
the surface by a localized triangulation [35]; it leads to an edge
set . Then, we propose a localized algorithm to perform a dif-
fusion process that solves (2), as shown by Algorithm 2. Line 1
in Algorithm 2 initializes the map by the Gauss
Map [4], which provides a mapping from every vertex on to
a corresponding point on a unit sphere . Note that this initial
map is not bijective in general since may be concave. Line 4
is to compute the Laplacian of , where is the discrete
Laplace–Beltrami operator and is the weight defined for
edge . A commonly used scheme is the uniform
weight, i.e., , where is the degree of .
Then, line 5 is to compute the tangential component of
followed by the diffusion along the tangential direction in line 6.
Next, line 7 normalizes to ensure that the image is on the
unit sphere. The above diffusion process is repeated until the
tangential component of is less than the user-specified
threshold .

B. Applications

1) Distinguishing Internal From External: Telling internal
boundaries from external one usually requires global infor-
mation on a 3-D mesh. As localization in WSNs often needs
a boundary detection mechanism that can distinguish the two
types of boundaries [31], it benefits from having a localized
algorithm that achieves this goal. Our makes
it fairly easy to distinguish internal and external boundaries on
the parametric domain by using only local information.

Fig. 5. Rationale of distinguishing internal boundaries from the external one
for 3-D WSNs. Though both boundaries should be unit spheres under , we
abuse the size a bit to differentiate them. (a) Original boundaries. (b) Parame-
terized boundaries.

Let be an arbitrary boundary node with spherical
coordinates . Find a boundary triangle such that

. Without loss of generality, is determined by the tuple
that terminates Algorithm 1. Let be the unique

tetrahedron3 with as the boundary face. We denote ,
the opposite vertex of face , as shown by Fig. 5(a). Let

be the geometric center of and be the normal of . The
direction of the normal is defined according to the order of
the three vertices of : points to the outward of the tetrahe-
dron , i.e., .
Note that each vertex of has been mapped to the unit

sphere by resulting from LBS (see Algorithm 2). Let
be the normal of the , where the order of

the three vertices of is the same as . Then, the node is
on the external boundary if and only if , as
shown in Fig. 5(b); otherwise, is on the internal boundary.
Intuitively speaking, this means that a boundary is external
(resp. internal) if there exists a node inside (resp. outside) of
it. Given an arbitrary boundary, this inside or outside relation
cannot be recognized in a localized manner. It is our LBS that
makes such an intuitive recognition procedure possible.
2) Supporting Geographic Routing: LBS may serve as a

building block for performing greedy geographic routing with
a guaranteed delivery. In a nutshell, greedy routing may fail
when facing an internal boundary (the boundary of a hole) due
to the so-called “local minimum phenomena” [10]. Our solu-
tion relies on LBS to regularize the internal boundary and hence
to eliminate the local minimum phenomena. As this aspect is
presented in a companion work, we refrain from providing de-
tails here. Instead, we briefly discuss a geographic routing on
the boundary surface. As boundaries (especially event bound-
aries) are important from data collection point of view (because
those are where information is produced), data routing as well
as distributed coordinations (e.g., constructing quorum systems
for data sharing [25], [33]) among nodes that share the same
boundary are crucial to WSN functionalities.
Given the virtual coordinates of the boundary nodes on a

sphere, the shortest path routing between any two nodes follows
the great circle that is uniquely determined by the locations of
these nodes and the sphere center. Assuming the coordinate of
the sphere center is and those of the two nodes are

and , such a great circle

3It stems from the uniqueness of Delaunay triangulation for general point set
.
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has a very simple representation by the following parametric
equations:

where and is the cross product
between two vectors. The routing path can be specified by the
source node, and a trajectory-based forwarding [28] is then
applied to follow the parametric curve (the great circle) until
reaching the destination.

V. SIMULATIONS AND EXPERIMENTS

We first evaluate UNFOLD through both simulations and ex-
periments. With simulations, we demonstrate the efficacy of
UNFOLD in large-scale WSNs. Through experiments based on
an implementation in MICAz Motes, we confirm UNFOLD’s
superiority in efficiency over the most up-to-date proposal [35].
We have also implemented LBS in TinyOS [1], and we illus-
trate the convergence of LBS and also evaluate the performance
of LBS in terms of convergence time through simulations with
TOSSIM [22].

A. Simulations for UNFOLD

We first construct several 3-D volumes to represent the
physical events to be monitored. Then, we randomly deploy
sensor nodes in each volume and on the volume surface. As
explained in Section II-C, we may treat network and event
boundary equivalently without loss of generality. Therefore,
the goal of our simulations is to verify if UNFOLD can cor-
rectly identify those points that we have deliberately put on the
volume boundaries (which, according to Section III-D.3, is an
inevitable but artificial setting). Although UNFOLD applies to
arbitrary convex transmission volumes, we assume a regular
volume, a ball with radius , for every node in order to simplify
our presentation. We choose the value of such that the average
size of is about 40.
The implementation of UNFOLD in our simulator follows

the protocol description in Section III-C. Specifically, each node
first exchanges location information with its neighbors. As our
high-level simulator neglects the MAC effect, this information
exchange is considered to be reliable. In practice, the reliability
can be achieved through, for example, ARQ. After collecting
the neighbor information, all the computations left for a node
are strictly localized: transformation and convexity test.
In Fig. 6, four examples of the simulated WSNs are shown.

The WSNs, shown in the left column, are designed to exhibit
various 3-D shapes we may face in atmospheric or ocean mon-
itoring. We apply UNFOLD with either a common viewpoint
or local viewpoints to perform boundary detection, and the re-
sults are shown in the central and right columns, respectively.
It is clearly shown that, while a single common viewpoint only
detects the boundaries that face the viewpoint, a few local view-
points detect the whole boundary. Note that, though the inver-
sion used in [20] only detects an external boundary, our exten-
sion also detects the internal boundary, as shown by the second
and third WSNs.

We also evaluate the robustness of UNFOLD under location
errors. We assume each node has an error radius , such that
the location information available to a node may be uniformly
distributed within a ball with radius and centered at the real
location. We then vary to different fractions of and apply
UNFOLD to detect the boundary. In general, a node that is either
a real boundary node or detected as a boundary node may have
four states:
• Found: detected as a boundary node;
• Correct: a boundary node and also detected as one;
• Mistaken: not a boundary node but detected as one;
• Missing: a boundary node but not detected as one.

In Fig. 7(a), we report the statistics in terms of these four states
based on all the WSNs that we have simulated. We also report
the statistics on the distance (in hop) from a mistaken/missing
node to the closest correct boundary node in Fig. 7(b) and (c).
The same metrics are used in [35]; we reuse them to facilitate
comparisons.
As shown in Fig. 7(a), both found and correct nodes de-

crease with an increasing error radius. However, even with
the worst-case error , correct nodes still account from
around 50% the total boundary nodes. Also, the distributions
in Fig. 7(b) and (c) show that both mistaken and missing nodes
are not far from the real boundary (at most two hops, but
mostly within one hop). We finally provide one example, corre-
sponding the first WSN in Fig. 6, in Fig. 7(d)–(f). The message
conveyed by all these figures is clear: Although increasing
location errors may marginally affect the detected boundaries
(which is characterized by the found nodes), these boundaries
still well characterize the geometry of the network volume.
Compared to the statistics reported in [35], UNFOLD appears
to be more robust against the location errors: higher correct
nodes percentage and shorter distances (from the mistaken and
missing nodes) toward the real boundary.

B. Implementation and Experiments for UNFOLD

We implement UNFOLD in MICAz Motes and compare
UNFOLD to the Unit Ball Fitting (UBF) algorithm proposed
in [35] in terms of CPU time for boundary detection. Our
experiments focus only on local computation steps, as the local
communications to exchange location/range information are
common to both approaches. Therefore, we use the location
information sampled from our simulated WSNs and inject these
data to a MICAz Mote, so that we can directly start the actual
boundary identification steps: transformation/convexity tests
for UNFOLD, and ball tests for UBF. As the microcontroller
of our MICAz (ATMEL ATMega 128L) is fully occupied (i.e.,
never in idle mode or being interrupted) during both compu-
tations, we may roughly use the CPU time to also represent
the energy consumption spent for computations. Consequently,
our experiments also compare UNFOLD to UBF in terms of
energy efficiency.
We show two sets of results, internal and boundary nodes, in

Figs. 8 and 9, respectively. The comparisons are made between
UBF and two versions of UNFOLD that differ in the convexity
test algorithms. As an internal node is often the worst case for all
the three schemes, Fig. 8 serves as a confirmation of the com-
plexity analysis (Section III-D.1). Because the complexity of
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Fig. 6. Boundary detection through UNFOLD. (a) As the “shapes” of the WSNs may not be easily recognizable from their point clouds, we attach their original
3-D volumes to respective point clouds. (b) For boundary detection with a common viewpoint, boundary nodes are marked on top of the original clouds. (c) We,
however, remove the internal nodes when local viewpoints are applied to detecting the whole boundary. (a) Original networks. (b) Boundary from a common
viewpoint. (c) Boundary with local viewpoints.

both UBF and CVX-TEST are , the more-than-10-times
difference between them stems from the simple computations
incurred by CVX-TEST. Another more-than-10-times improve-
ment brought by CVX-TEST-DC follows from its
complexity.
For boundary nodes (Fig. 9), all the three schemes may face

cases varying from the best to the worst. Therefore, the CPU
times are rather dispersed, but the roughly 100-time advantage
of CVX-TEST-DC over UBF still holds. Note that the fairly
constant (and almost always the smallest) CPU times for CVX-
TEST-DC mostly indicate the cost of the transformation .
In summary, UNFOLD with CVX-TEST-DC is far more time-
and energy-efficient than UBF. In fact, with a CPU time of
tens of seconds, UBF may not even be eligible for an online
boundary detection.

C. Simulations for LBS

We have also implemented LBS in TinyOS. However, as the
effect of LBS can only be observed collectively for relatively
large-scale WSNs and our current MICAz-based testbed only
has tens of nodes, we use simulations in TOSSIM (rather than
experiments with our testbed) to evaluate the performance of
LBS. Let denote the period specified in Algorithm 2. We will
evaluate the convergence time of LBS against different values
of .
We first illustrate the evolution of the diffusion process in

Fig. 10. Given the original boundary (obtained by performing
triangulation on the outcome of UNFOLD) shown in Fig. 10(a),
the initial map on a unit sphere, Fig. 10(b), is rather messy due
to the many nontriangular edges (those induced by the nonbi-
jectivity, i.e., foldover, of the Gauss map). The number of such
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Fig. 7. Boundary detection under location errors. We vary the error radius as different fractions of the transmission range , and we use both (a)–(c) statistics and
(d)–(f) an example. (a) Algorithm efficiency. (b) Mistaken distribution. (c) Missing distribution. (d) : 2554 boundary nodes. (e) : 2189 boundary
nodes. (f) : 1902 boundary nodes.

Fig. 8. CPU times for internal nodes.

edges decreases with the number of execution rounds until no
such edges exist, which is shown by Fig. 10(c)–(f).
We also show the impact of on the convergence time in

Fig. 11 for an 800-node WSN boundary. It is clear that the time
to convergence increases monotonically in (22, 3, and 2 s for

, 10, and 5 ms, respectively), whereas the total number
of rounds decreases with (410, 300, 220 for , 10, and
5 ms, respectively). As the number of messages sent is propor-
tional to the number of rounds, the algorithm becomes more en-
ergy-efficient but less time-efficient with large values of . The
intuitive explanation is the following. When gets small, the
potential (broadcast) packet collisions become intensive. Con-
sequently, the information each node collects about its neigh-
bors decreases, which in turn requires more rounds to terminate
the diffusion process. Therefore, we have a clear tradeoff be-
tween the time complexity and the energy efficiency of LBS,

Fig. 9. CPU times for boundary nodes.

and we may tune the value of to obtain a required (by a cer-
tain application) balance between reducing latency and saving
energy.

VI. CONCLUSION

We have investigated the challenging problems of online
boundary detection and boundary regularization in 3-D WSNs,
and we have proposed LBDP as a concrete solution to these
problems. As one component of LBDP, UNFOLD significantly
speeds up the boundary detection by performing it in a trans-
formed domain. This makes it perfectly suitable for online
boundary detection in 3-D WSNs that are deployed for moni-
toring time-variant physical events. We have demonstrated the
efficiency and efficacy of UNFOLD through both simulations
and experiments (using a MICAz-based testbed). Compared to
an up-to-date proposal, UNFOLD is, on one hand, more robust
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Fig. 10. Illustration of the diffusion process of LBS with about 800 nodes and
s. (a) Original surface. (b) Gauss map. (c) 10th round. (d) 82nd round.

(e) 145th round. (f) 190th round.

Fig. 11. Convergence of LBS under different values of .

against the location errors, and on the other hand, UNFOLD
is far more efficient in terms of both computation time and
energy consumption. As another component of LBDP, LBS
serves as a distributed parametrization procedure to regularize
an arbitrary boundary surface. The resulting virtual coordinates
may enable many WSN functionalities, such as distinguishing
internal boundaries from the external one, as well as geometric
routing on a boundary.

APPENDIX
PROOFS FOR THE PROPOSITIONS STATED IN THE PAPER

Proof of Proposition 1: Let be on the boundary of ac-
cording to either Definition 1 or Definition 2, and let be the
concerned viewpoint. Without loss of generality, we may ex-
pand to a nontrivial such that , simply
by adding one more point, i.e., . There are two
possible cases: lies either on or not on the line segment be-
tween and . As (otherwise we would have

,given theconvexityof the transmissionvolume),wecan
avoid the former case by choosing very close to the boundary of

. For the latter case, we simply let . According
to the“blowing-up”featureof the transformation (whichwill
be quantified byProposition 4), there always exists an such
that lies on the convex hull of , as far as there
isnopoint in that liesonthelinesegmentbetween and .
In particular, if is on the external boundary of , it is “vis-

ible” from some viewpoint . Therefore, we can directly ex-
pand to and be sure that no is on the line segment
between and . Consequently, there exists an such that

lies on the convex hull of . Conversely, the
existence of an such that lies on the convex hull of

suggests that no is on the line segment
between and . Since , has to be on the
external boundary of .

Proofs of Propositions 2 and 3: It is straightforward to
verify that the transformation preserves surface convexity.
In other words, if part of the surface is described by a convex
function, this convexity is preserved in the image of . The
fact that is on the convex hull of suggests that the sur-
face through is locally convex. Therefore, simply choosing a
viewpoint that faces that surface and applying a proper
will lead to the claim made in Proposition 2.
It is also trivial to show that, if , , are collinear, then ,
, , , are also collinear. Therefore, at most one of
and can be recognized as a boundary node, hence the claim

made in Proposition 3 follows.
Proofs of Propositions 4 and 5: We only sketch the proof of

Proposition 4 by omitting the tedious trigonometric derivations.
To derive the upper bound for , we consider the worst case
where the images of the three points become collinear, as shown
in Fig. 12(a), because further increasing would compromise
the convexity of . Using basic trigonometry, we obtain the
relation between and as

Given , is increasing in . Therefore, we can
also bound from above by bounding . The key to subsequent
derivations is: in the worst
case shown in Fig. 12(a). Using to represent

, we have

The case where and follows trivially.
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Fig. 12. Illustrations for proofs. (a) DoN in 2-D—the extreme case. (b) is
“visible” from at least one of the three vertices of an equilateral triangle en-
closing .

According to differential geometry, at a point of a differen-
tiable surface , two principal curvatures and determine
the convexity of the surface at . However, as the principle di-
rections associated with these two curvatures are unknown in
our case (we do not have the boundary surface), we need to
sample three nonidentical sectional planes to determine three
sectional curvatures, by which we can uniquely determine the
principal curvatures/directions and hence the surface convexity.
Therefore, for boundary detection in 3-D WSNs, we choose
three nonidentical planes containing and , with one arbi-
trarily chosen but the other two perpendicular to each other, and
the aforementioned 2-D conditions need to be satisfied in each
of these three planes.
The statement that four transformations are sufficient to

recognize a boundary point follows from the sufficiency
of “seeing” from one of the four viewpoints. Let us still
use a 2-D scenario to illustrate the idea in Fig. 12(b). It is
straightforward to see that, as far as the line-of-sight from to
passes through the line segment , can be detected

as a boundary node with a properly chosen transformation.
However, for an arbitrary , as the orientation of
is unknown, the best choice is to put three viewpoints at the
vertices of an equilateral triangle enclosing . Con-
sequently, as far as the angle is larger than , at
least one viewpoint will have its line-of-sight toward passing
through . It can be shown that is a sufficient
condition of . Extending this idea to 3-D, the
viewpoints should be put on the vertices of a regular tetrahedron
enclosing , which leads to the same requirement on
claimed in Proposition 5.
Proof of Proposition 6: For the th outer iteration, let

and denote the plane used for the test, i.e., ,
, and let be the subset of that belongs to

the convex hull of , where refers to the
point chosen for the th iteration. We first show that is a
strictly increasing sequence.
Lemma 1: .
Proof: Given the construction, it is clear that .

Assume, by contradiction, that . This implies that
, and hence contradicts the fact that is the

largest among in terms of its dot product with .
As is a finite set, Lemma 1 shows that CVX-TEST-DC

terminates in finite time regardless of the status of . If is on
the convex hull of , the correctness of the algorithm

Fig. 13. Illustration for proof of Lemma 2.

is obvious. Otherwise, the correctness is confirmed by the fol-
lowing result.
Lemma 2: If neither nor can be replaced at the th

iteration and the current plane is not supporting, is not on the
convex hull of .

Proof: Let us consider the simplex induced by the set
in Fig. 13(b), where is a candi-

date to be added for the next iteration. The assumption that
cannot replace either or implies that a plane

determined by and any two points in
separates the third from . It is straightforward to show that this
is possible only if is inside the simplex, hence proving is
not on the convex hull of .
It is straightforward to see that CVX-TEST-DC is similar to

quicksort, as the new point chosen in each iteration acts in a sim-
ilar way as the pivot in quicksort. Moreover, CVX-TEST-DC
only needs to “conquer” points in after dividing. There-
fore, we have the following recurrence for the time complexity

, given totally points in :

According to master theorem [5], the average-case complexity
of CVX-TEST-DC is .
It can be shown that the average-case of complexity of

CVX-TEST-DC in 2-D is only , demonstrating again
the nontrivialness of extending from 2-D to 3-D.
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