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I. INTRODUCTION

When you learn undergraduate quantum mechanics, it
starts out being all about wavefunctions and Hamiltoni-
ans, finding energy eigenvalues and eigenstates, calculat-
ing measurement probabilities, and so on.

If your physics education was anything like mine, at
some point a mysterious jump occurs. People teach-
ing more advanced subjects, like quantum field theory,
condensed matter physics, or quantum optics, start “im-
posing canonical commutation relations” on various field
operators.

Any student quickly realizes that “imposing canoni-
cal commutation relations” is extremely important, but,
speaking personally, at the time I found it quite mysteri-
ous exactly what people meant by this phrase. It’s only
in the past few years that I’ve obtained a satisfactory
understanding of how this works, and understood why I
had such trouble in the first place.

These notes contain two parts. The first part is a short
tutorial explaining the Fermionic canonical commutation
relations (CCRs) from an elementary point of view: the
different meanings they can have, both mathematical
and physical, and what mathematical consequences they
have. I concentrate more on the mathematical conse-
quences than the physical in these notes, since having a
good grasp of the former seems to make it relatively easy
to appreciate the latter, but not so much vice versa. I
may come back to the physical aspect in some later notes.

The second part of the notes describes a beautiful ap-
plication of the Fermionic CCRs known as the Jordan-
Wigner transform. This powerful tool allows us to map
a system of interacting qubits onto an equivalent system
of interacting Fermions, or, vice versa, to map a system
of Fermions onto a system of qubits.

Why is this kind of mapping interesting? It’s interest-
ing because it means that anything we understand about
one type of system (e.g., Fermions) can be immediately
applied to learn something about the other type of sys-
tem (e.g., qubits).

I’ll describe an application of this idea, taking what ap-
pears to be a very complicated one-dimensional model of
interacting spin- 1

2 particles, and showing that it is equiva-
lent to a simple model of non-interacting Fermions. This
enables us to solve for the energy spectrum and eigen-
states of the original Hamiltonian. This has, of course,
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intrinsic importance, since we’d like to understand such
spin models — they’re important for a whole bundle of
reasons, not the least of which is that they’re perhaps
the simplest systems in which quantum phase transi-
tions occur. But this example is only the tip of a much
larger iceberg: the idea that the best way of understand-
ing some physical systems may be to map those systems
onto mathematically equivalent but physically quite dif-
ferent systems, whose properties we already understand.
Physically, we say that we introduce a quasiparticle de-
scription of the original system, in order to simplify its
understanding. This idea has been of critical importance
in much of modern physics, including the understanding
of superconductivity and the quantum Hall effect.

Another application of the Jordan-Wigner transform,
which I won’t describe in detail here, but which might be
of interest to quantum computing people, is to the quan-
tum simulation of a system of Fermions. In particular,
the Jordan-Wigner transform allows us to take a system
of interacting Fermions, and map it onto an equivalent
model of interacting spins, which can then, in principle,
be simulated using standard techniques on a quantum
computer. This enables us to use quantum computers to
efficiently simulate systems of interacting Fermions. This
is not a trivial problem, as can be seen from the follow-
ing quote from Feynman, in his famous 1982 paper on
quantum computing:

“[with Feynman’s proposed quantum com-
puting device] could we imitate every quan-
tum mechanical system which is discrete and
has a finite number of degrees of freedom? I
know, almost certainly, that we could do that
for any quantum mechanical system which in-
volves Bose particles. I’m not sure whether
Fermi particles could be described by such a
system. So I leave that open.”

It wasn’t until 20 years later, and the work by Somma,
Ortiz, Gubernatis, Knill and Laflamme (Physical Review
A, 2002) that this problem was resolved, by making use
of the Jordan-Wigner transform.

II. FERMIONS

A. The canonical commutation relations for
Fermions

Suppose we have a set of operators a1, . . . , an acting on
some Hilbert space V . Then we say that these operations
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satisfy the canonical commutation relations (CCRs) for
Fermions if they satisfy the equations

{aj , a
†
k} = δjkI; {aj , ak} = 0, (1)

where {A,B} ≡ AB + BA is the anticommutator. Note
that when we take the conjugate of the second of these
relations we obtain {a†j , a

†
k} = 0, which is sometimes also

referred to as one of the CCRs. It is also frequently useful
to set j = k, giving a2

j = (a†j)
2 = 0.

How should one understand the CCRs? One way of
thinking about the CCRS is in an axiomatic mathemat-
ical sense. In this way of thinking they are purely math-
ematical conditions that can be imposed on a set of ma-
trices: for a given set of matrices, we can simply check
and verify whether those matrices satisfy or do not sat-
isfy the CCRs. For example, when the state space V is
that of a single qubit, we can easily verify that the oper-
ator a = |0〉〈1| satisfies the Fermionic CCRs. From this
axiomatic point of view the question to ask is what con-
sequences about the structure of V and the operators aj

can be deduced from the fact that the CCRs hold.
There’s also a more sophisticated (but still entirely

mathematical) way of understanding the CCRs, as an
instance of the relationship between abstract algebraic
objects (such as groups, Lie algebras, or Hopf algebras),
and their representations as linear maps on vector spaces.
My own knowledge of representation theory is limited to
a little representation theory of finite groups and of Lie
algberas, and I certainly do not see the full context in the
way an expert on representation theory would. However,
even with that limited background, one can see that there
are common themes and techniques: what may appear
to be an isolated technique or trick is often really an in-
stance of a much deeper idea or set of ideas that become
obvious once once one has enough broad familiarity with
representation theory. I’m not going to pursue this point
of view in these notes, but thought it worth mentioning
for the sake of giving context and motivation to the study
of other topics.

Finally, there’s a physical way in which we can un-
derstand the CCRs. When we want to describe a sys-
tem containing Fermions, one way to begin is to start
by writing down a set of operators satisfying the CCRs,
and then to try to guess what sort of Hamiltonian in-
volving those operators could describe the interactions
observed in the system, often motivated by classical con-
siderations, or other rules of thumb. This is, for example,
the sort of point of view pursued in the BCS theory of
superconductivity, and which people are trying to pursue
in understanding high temperature superconductors.

Of course, one can ask why physicists want to use oper-
ators satisfying the Fermionic CCRs to describe a system
of Fermions, or why anyone, mathematician or physicist,
would ever write down the CCRs in the first place. These
are good questions, which I’m not going to try to answer
here, although one or both questions might make a good
subject for some future notes. (It is, of course, a lot eas-

ier to answer these questions once you understand the
material I present here.)

Instead, I’m going to approach the Fermionic CCRs
from a purely mathematical point of view, asking the
question “What can we deduce from the fact that a set
of operators satisfying the CCRs exists?” The surprising
answer is that we can deduce quite a lot about the struc-
ture of V and the operators aj simply from the fact that
the aj satisfy the canonical commutation relations!

B. Consequences of the fermionic CCRs

We will assume that the vector space V is finite dimen-
sional, and that there are n operators a1, . . . , an acting
on V and satisfying the Fermionic CCRs. At the end of
this paragraph we’re going to give a broad outline of the
steps we go through. Upon a first read, some of these
steps may appear a little mysterious to the reader not
familiar with representation theory. In particular, please
don’t worry if you get a little stuck in your understanding
of the outline at some points, as the exposition is very
much at the bird’s-eye level, and not all detail is visi-
ble at that level. Nonetheless, the reason for including
this broad outline is the belief that repeated study will
pay substantial dividends, if it is read in conjunction with
the more detailed exposition to follow, or similar material
on, e.g., representations of the Lie algebra su(2). Indeed,
the advantage of operating at the bird’s-eye level is that
it makes it easier to see the connections between these
ideas, and the use of similar ideas in other branches of
representation theory.

• We’ll start by showing that the operators a†jaj

are positive Hermitian operators with eigenvalues
0 and 1.

• We’ll show that aj acts as a lowering operator for
a†jaj , in the sense that if |ψ〉 is a normalized eigen-
state of a†jaj with eigenvalue 1, then aj |ψ〉 is a nor-
malized eigenstate of a†jaj with eigenvalue 0. If |ψ〉
is a normalized eigenstate of a†jaj with eigenvalue
0, then aj |ψ〉 vanishes.

• Similarly, a†j acts as a raising operator for a†jaj , in
the sense that if |ψ〉 is a normalized eigenstate of
a†jaj with eigenvalue 0, then a†j |ψ〉 is a normalized
eigenstate of a†jaj with eigenvalue 1. If |ψ〉 is a nor-
malized eigenstate of a†jaj with eigenvalue 1, then
a†j |ψ〉 vanishes.

• We prove that the operators a†jaj form a mutu-
ally commuting set of Hermitian matrices, and thus
there exists a state |ψ〉 which is a simultaneous
eigenstate of a†jaj for all values j = 1, . . . , n.
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• By raising and lowering the state |ψ〉 in all possible
combinations, we’ll construct a set of 2n orthonor-
mal states which are simultaneous eigenstates of
the a†jaj . The corresponding vector of eigenvalues
uniquely labels each state in this orthonormal basis.

• Suppose the vector space spanned by these 2n si-
multaneous eigenstates is W . At this point, we
know that aj and a†j map W into W , and, indeed,
we know everything about the action aj and a†j have
on W .

• Suppose we define W⊥ to be the orthocomplement
of W in V . Then we’ll show that the aj and a†j
map W⊥ into itself, and their restrictions to W⊥
satisfy the Fermionic CCRs. We can then repeat
the above procedure, and identify a 2n-dimensional
subspace of W⊥ on which we know the action of the
aj and a†j exactly.

• We iterate this procedure until W⊥ is the trivial
vector space, at which point it is no longer possible
to continue. At this point we have established an
orthonormal basis for the whole of V with respect
to which we can explicilty write down the action of
both aj and a†j .

Let’s go through each of these steps in more detail.
The a†jaj are positive Hermitian with eigenval-

ues 0 and 1: Observe that the a†jaj are positive (and
thus Hermitian) matrices. We will show that (a†jaj)2 =
a†jaj , and thus the eigenvalues of a†jaj are all 0 or 1.

To see this, observe that (a†jaj)2 = a†jaja
†
jaj =

−(a†j)
2a2

j + a†jaj , where we used the CCR {aj , a
†
j} = I.

Note also that a2
j = 0 by the CCR {aj , aj} = 0. It follows

that (a†jaj)2 = a†jaj , as claimed.
The aj are lowering operators: Suppose |ψ〉 is a

normalized eigenstate of a†jaj with eigenvalue 1. Then we
claim that aj |ψ〉 is a normalized eigenstate of a†jaj with
eigenvalue 0. To see that aj |ψ〉 is normalized, note that
〈ψ|a†jaj |ψ〉 = 〈ψ|ψ〉 = 1, where we used the fact that |ψ〉
is an eigenstate of a†jaj with eigenvalue 1 to establish the
first equality. To see that it has eigenvalue 0, note that
a†jajaj |ψ〉 = 0, since {aj , aj} = 0.

Exercise: Suppose |ψ〉 is a normalized eigenstate of
a†jaj with eigenvalue 0. Show that aj |ψ〉 = 0.

The aj are raising operators: Suppose |ψ〉 is a nor-
malized eigenstate of a†jaj with eigenvalue 0. Then we
claimed that a†j |ψ〉 is a normalized eigenstate of a†jaj with
eigenvalue 1.

To see the normalization, we use the CCR {aj , a
†
j} = I

to deduce 〈ψ|aja
†
j |ψ〉 = −〈ψ|a†jaj |ψ〉 + 〈ψ|ψ〉. But

a†jaj |ψ〉 = 0, by the eigenvalue assumption, and 〈ψ|ψ〉 =

1, whence 〈ψ|aja
†
j |ψ〉 = 1, which is the desired normal-

ization condition.
To see that a†j |ψ〉 is an eigenstate with eigenvalue 1,

use the CCR {aj , a
†
j} = I to deduce that a†jaja

†
j |ψ〉 =

−a†ja
†
jaj |ψ〉+a†j |ψ〉 = a†j |ψ〉, where the final equality can

be deduced either from the assumption that a†jaj |ψ〉 =
0, or from the CCR {a†j , a

†
j} = 0. This is the desired

eigenvalue equation for a†j |ψ〉.
Exercise: Suppose |ψ〉 is a normalized eigenstate of

a†jaj with eigenvalue 1. Show that a†j |ψ〉 = 0.
The a†jaj form a mutually commuting set of ob-

servables: To see this, let j 6= k, and apply the CCRs
repeatedly to obtain a†jaja

†
kak = a†kaka

†
jaj , which is the

desired commutativity.
Existence of a common eigenstate: It is well

known that a mutually commuting set of Hermitian oper-
ators possesses a common eigenbasis. This fact is usually
taught in undergraduate quantum mechanics courses; for
completeness, I’ve included a simple proof in an appendix
to these notes. We won’t make use of the full power
of this result here, but instead simply use the fact that
there exists a normalized state |ψ〉 which is a simultane-
ous eigenstate of all the a†jaj operators. In particular, for
all j we have:

a†jaj |ψ〉 = αj |ψ〉, (2)

where for each j either αj = 0 or αj = 1. It will be
convenient to assume that αj = 0 for all j. This assump-
tion can be made without loss of generality, by apply-
ing lowering operators to the |ψ〉 for each j such that
αj = 1, resulting in a normalized state |vac〉 such that
a†jaj |vac〉 = 0 for all j.

Defining an orthonormal basis: For any vector
α = (α1, . . . , αn), where each αj = 0 or 1, define a corre-
sponding state:

|α〉 ≡ (a†1)
α1 . . . (a†n)αn |vac〉. (3)

It is clear that there are 2n such states |α〉, and that they
form an orthonormal set spanning a subspace of V that
we shall call W .

The action of the aj and a†j on W : How do aj and
a†j act on W? Stated another way, how do they act on
the orthonormal basis we have constructed for W , the
states |α〉? Applying the CCRs and the definition of the
states |α〉 it is easy to verify that the action of aj is as
follows:

• Suppose αj = 0. Then aj |α〉 = 0.

• Suppose αj = 1. Let α′ be that vector which results
when the jth entry of α is changed to 0. Then
aj |α〉 = −(−1)sj

α |α′〉, where sj
α ≡

∑j−1
k=1 αk.

The action of a†j on W is similar:
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• Suppose αj = 0. Let α′ be that vector which results
when the jth entry of α is changed to 1. Then
a†j |α〉 = −(−1)sj

α |α′〉, where sj
α ≡

∑j−1
k=1 αk.

• Suppose αj = 1. Then a†j |α〉 = 0.

Action of aj and a†j on W⊥: We have described the
action of the aj and the a†j on the subspace W . What of
the action of these operators on the remainder of V ? To
answer that question, we first show that aj and a†j map
the orthocomplement W⊥ into itself.

To see this, let |ψ〉 ∈W⊥, and consider aj |ψ〉. We wish
to show that aj |ψ〉 ∈W⊥ also, i.e., that for any |φ〉 ∈W
we have 〈φ|aj |ψ〉 = 0. This follows easily by considering
the complex conjugate quantity 〈ψ|a†j |φ〉, and observing
that a†j |φ〉 ∈ W , since |φ〉 ∈ W , and thus 〈ψ|a†j |φ〉 = 0.
A similar argument shows that a†j maps W⊥ into itself.

Consider now the operators ãj obtained by restrict-
ing aj to W⊥. Provided W⊥ is nontrivial it is clear
that these operators satisfy the CCRs on W⊥. Repeat-
ing the above argument, we can therefore identify a 2n-
dimensional subspace of W⊥ on which we can compute
the action of ãj and ã†j , and thus of aj and a†j .

We may iterate this procedure many times, but the
fact that V is finite dimensional means that the process
must eventually terminate. At the point of termination
we will have broken up V as a direct sum of some finite
number d of orthonormal 2n-dimensional vector spaces,
W1,W2, . . . ,Wd, and on each vector space we will have
an orthonormal basis with respect to which the action of
aj and a†j is known precisely.

Stated another way, we can introduce an orthonormal
basis |α, k〉 for V , where α runs over all n-bit vectors,
and k = 1, . . . , d, and such that the action of the aj and
a†j is to leave k invariant, and to act on |α〉 as described
above. In this representation it is clear that V can be
regarded as a tensor product C2n ⊗ Cd, with the action
of aj and a†j trivial on the Cd component. We will call
this the occupation number representation for the Fermi
algebra aj .

It’s worth pausing to appreciate what has been
achieved here: starting only from the CCRs for a1, . . . , an

we have proved that V can be broken down into a ten-
sor product of a 2n-dimensional vector space and a d-
dimensional vector space, with the ajs acting nontrivially
only on the 2n-dimensional component. Furthermore, the
action of the ajs is completely known. I think it’s quite
remarkable that we can say so much: at the outset it
wasn’t even obvious that the dimension of V should be
a multiple of 2n!

When d = 1 we will call this the fundamental represen-
tation for the Fermionic CCRs. (This is the terminology
I use, but I don’t know if it is standard or not.) Up
to a change of basis it is clear that all other representa-
tions can be obtained by taking a tensor product of the
fundamental representation with the trivial action on a
d-dimensional vector space.

C. Diagonalizing a Fermi quadratic Hamiltonian

Suppose a1, . . . , an satisfy the Fermionic CCRs, and
we have a system with Hamiltonian

Hfree =
∑

j

αja
†
jaj , (4)

where αj ≥ 0 for each value of j. In physical terms, this
is the Hamiltonian used to describe a system of free, i.e.,
non-interacting, Fermions.

Such Hamiltonians are used, for example, in the sim-
plest possible quantum mechanical model of a metal, the
Drude-Sommerfeld model, which treats the conduction
electrons as free Fermions. Such a model may appear
pretty simplistic (especially after we solve it, below),
but actually there’s an amazing amount of physics one
can get out of such simple models. I won’t dwell on
these physical consequences here, but if you’re unfamiliar
with the Drude-Sommerfeld theory, you could profitably
spend a couple of hours looking at the first couple of chap-
ters in a good book on condensed matter physics, like
Ashcroft and Mermin’s “Solid State Physics”, which ex-
plains the Drude-Sommerfeld model and its consequences
in detail. (Why such a simplistic model does such a great
job of describing metals is another long story, which I
may come back to in a future post.)

Returning to the abstract Hamiltonian Hfree, the pos-
itivity of the operators a†jaj implies that 〈ψ|Hfree|ψ〉 ≥ 0
for any state |ψ〉, and thus the ground state energy of
Hfree is non-negative. However, our earlier construction
also shows that we can find at least one state |vac〉 such
that a†jaj |vac〉 = 0 for all j, and thus Hfree|vac〉 = 0. It
follows that the ground state energy of Hfree is exactly 0.

This result is easily generalized to the case where the
αj have any sign, with the result that the ground state
energy is

∑
j min(0, αj), and the ground state |ψ〉 is ob-

tained from |vac〉 by applying the raising operator aj for
all j with αj < 0. More generally, the allowed energies
of the excited states of this system correspond to sums
over subsets of the αj .

Exercise: Express the excited states of the system in
terms of |vac〉.

Just by the way, readers with an interest in computa-
tional complexity theory may find it interesting to note a
connection between the spectrum ofHfree and the Subset-
Sum problem from computer science. The Subset-Sum
problem is this: given a set of integers x1, . . . , xn, with
repetition allowed, is there a subset of those integers
which adds up to a desired target, t? Obviously, the prob-
lem of determining whether Hfree has a particular energy
is equivalent to the Subset-Sum problem, at least in the
case where the αj are integers. What is interesting is that
the Subset-Sum problem is known to be NP-Complete,
in the language of computational complexity theory, and
thus is regarded as computationally intractable. As a
consequence, we deduce that the problem of determining
whether a particular value for energy is in the spectrum
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of Hfree is in general NP-Hard, i.e., at least as difficult
as the NP-Complete problems. Similar results hold for
the more general Fermi Hamiltonians considered below.
Furthermore, this observation suggests the possibility of
an interesting link between the physical problem of esti-
mating the density of states, and classes of problems in
computational complexity theory, such as the counting
classes (e.g., #P), and also to approximation problems.

Let’s generalize our results about the spectrum of
Hfree. Suppose now that we have the Hamiltonian

H =
∑
jk

αjka
†
jak. (5)

Taking the adjoint of this equation we see that in order
for H to be hermitian, we must have α∗jk = αkj , i.e., the
matrix α whose entries are the αjk is itself hermitian.

Suppose we introduce new operators b1, . . . , bn defined
by

bj ≡
n∑

k=1

βjkak, (6)

where βjk are complex numbers. We are going to try to
choose the βjk so that (1) the operators bj satisfy the
Fermionic CCRs, and (2) when expressed in terms of the
bj , the Hamiltonian H takes on the same form as Hfree,
and thus can be diagonalized.

We begin by looking for conditions on the complex
numbers βjk such that the bj operators satisfy Fermionic
CCRs. Computing anticommutators we find

{bj , b†k} =
∑
lm

βjlβ
∗
km{al, a

†
m}. (7)

Substituting the CCR {al, a
†
m} = δlmI and writing

β∗km = β†mk gives

{bj , b†k} =
∑
lm

βjlδlmβ
†
mkI = (ββ†)jkI (8)

where ββ† denotes the matrix product of the matrix β
with entries βjl and its adjoint β†. To compute {bj , bk}
we use the linearity of the anticommutator bracket in
each term to express {bj , bk} as a sum over terms of the
form {al, am}, each of which is 0, by the CCRs. As a
result, we have:

{bj , bk} = 0. (9)

It follows that provided ββ† = I, i.e., provided β is uni-
tary, the operators bj satisfy the Fermionic CCRs.

Let’s assume that β is unitary, and change our nota-
tion, writing ujk ≡ βjk in order to emphasize the unitar-
ity of this matrix. We now have

bj =
∑

k

ujkak. (10)

Using the unitarity of u we can invert this equation to
obtain

aj =
∑

k

u†jkbk. (11)

Substituting this expression and its adjoint into H and
doing some simplification gives us

H =
∑
lm

(uαu†)lmb
†
l bm. (12)

Since α is hermitian, we can choose u so that uαu† is
diagonal, with entries λj , the eigenvalues of α, giving us

H =
∑

j

λjb
†
jbj . (13)

This is of the same form as Hfree, and thus the ground
state energy and excitation energies may be computed in
the same way as we described earlier.

What about the ground state of H? Assuming that
all the λj are non-negative, it turns out that a state |ψ〉
satisfies a†jaj |ψ〉 = 0 for all j if and only if b†jbj |ψ〉 = 0 for
all j, and so the ground state for the two sets of Fermi
operators is the same.

This follows from a more general observation, namely,
that a†jaj |ψ〉 = 0 if and only if aj |ψ〉 = 0. In one direc-
tion, this is trivial: just multiply aj |ψ〉 = 0 on the left by
a†j . In the other direction, we multiply a†jaj |ψ〉 = 0 on
the left by aj to obtain aja

†
jaj |ψ〉 = 0. Substituting the

CCR aja
†
j = −a†jaj + I, we obtain

(−a†ja
2
j + aj)|ψ〉 = 0. (14)

But a2
j = 0, so this simplifies to aj |ψ〉 = 0, as desired.

Returning to the question of determining the ground
state, supposing a†jaj |ψ〉 = 0 for all j, we immediately
have aj |ψ〉 = 0 for all j, and thus bj |ψ〉 = 0 for all j, since
the bj are linear functions of the aj , and thus b†jbj |ψ〉 = 0
for all j. This shows that the ground state for the two sets
of Fermi operators, aj and bj , is in fact the same. The
excitations for H may be obtained by applying raising
operators b†j to the ground state.

Exercise: Suppose some of the λj are negative. Ex-
press the ground state of H in terms of the simultaneous
eigenstates of the a†jaj .

The Hamiltonian H =
∑

jk αjka
†
jak we diagonalized

earlier can be generalized to any Hamiltonian which is
quadratic in Fermi operators, by which we mean it may
contain terms of the form a†jak, aja

†
k, ajak and a†jak. We

will not allow linear terms like aj +a†j . Additive constant
terms γI are easily incorporated, since they simply dis-
place all elements of the spectrum by an amount γ. There
are several ways one can write such a Hamiltonian, but
the following form turns out to be especially convenient
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for our purposes:

H =
∑
jk

(
αjka

†
jak − α∗jkaja

†
k + βjkajak − β∗jka

†
ja

†
k

)
.(15)

The reader should spend a little time convincing them-
selves that for the class of Hamiltonians we have de-
scribed, it is always possible to write the Hamiltonian
in this form, up to an additive constant γI, and with α
hermitian and β antisymmetric.

This class of Hamiltonian appears to have first been di-
agonalized in an appendix to a famous Annals of Physics
paper by Lieb, Schultz and Mattis, dating to 1961 (vol-
ume 16, pages 407-466), and the procedure we follow
is inspired by theirs. We begin by defining operators
b1, . . . , bn:

bj ≡
∑

k

(
γjkak + µjka

†
k

)
. (16)

We will try to choose the complex numbers γjk and µjk

to ensure that: (1) the operators bj satisfy Fermionic
CCRs; and (2) when expressed in terms of the bj , H has
the same form as Hfree, and so can be diagonalized.

A calculation shows that the condition {bj , b†k} = δjkI
is equivalent to the condition

γγ† + µµ† = I, (17)

while the condition {bj , bk} = 0 is equivalent to the con-
dition

γµT + µγT = 0. (18)

These are straightforward enough equations, but their
meaning is perhaps a little mysterious. More insight into
their structure is obtained by rewriting the connection
between the ajs and the bjs in an equivalent form using
vectors whose individual entries are not numbers, but
rather are operators such as aj and bj , and using a block
matrix with blocks γ, µ, µ∗ and γ∗:

b1
...
bn
b†1
...
b†n


=

[
γ µ
µ∗ γ∗

]


a1

...
an

a†1
...
a†n


. (19)

The conditions derived above for the bjs to satisfy the
CCRs are equivalent to the condition that the transfor-
mation matrix

T ≡
[
γ µ
µ∗ γ∗

]
(20)

is unitary, which is perhaps a somewhat less mysterious
condition than the earlier equations involving γ and µ.
One advantage of this representation is that it makes

it easy to find an expression for the aj in terms of the
bj , simply by inverting this unitary transformation, to
obtain: 

a1

...
an

a†1
...
a†n


= T †



b1
...
bn
b†1
...
b†n


. (21)

The next step is to rewrite the Hamiltonian in terms
of the bj operators. To do this, observe that:

H = [a†1 . . . a
†
na1 . . . an]

[
α −β∗
β −α∗

]


a1

...
an

a†1
...
a†n


. (22)

It is actually this expression for H which motivated the
original special form which we chose for H. The expres-
sion is convenient, for it allows us to easily transform
back and forth between H expressed in terms of the aj

and H in terms of the bj . We already have an expres-
sion in terms of the bj operators for the column vector
containing the a and a† terms. With a little algebra this
gives rise to a corresponding expression for the row vector
containing the a† and a terms:

[a†1 . . . a
†
na1 . . . an] = [b†1 . . . b

†
nb1 . . . bn]T. (23)

This allows us to rewrite the Hamiltonian as

H = [b†b]TMT †
[
b
b†

]
, (24)

where we have used the shorthand [b†b] to denote the
vector with entries b†1, . . . , b

†
n, b1, . . . , bn, and

M =
[
α −β∗
β −α∗

]
. (25)

Supposing we can choose T such that TMT † is diagonal,
we see that the Hamiltonian can be expressed in the form
of Hfree, and the energy spectrum found, following our
earlier methods.

Since α is hermitian and β antisymmetric it follows
that M also is hermitian, and so can be diagonalized for
some choice of unitary T . However, the fact that the bjs
must satisfy the CCRs constrains the class of T s available
to us. We need to show that such a T can be used to do
the diagonalization.

We will give a heuristic and somewhat incomplete
proof that this is possible, before making some brief re-
marks about what is required for a rigorous proof. I’ve
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omitted the rigorous proof, since the way I understand it
is uses a result from linear algebra that, while beautiful,
I don’t want to explain in full detail here.

Suppose T is any unitary such that

TMT † =
[
d 0
0 −d

]
, (26)

where d is diagonal, and we used the special form of M
to deduce that the eigenvalues are real and appear in
matched pairs ±λ. We’d like to show that T can be
chosen to be of the desired special form. To see that this
is plausible, consider the map X → SX∗S†, where S is
a block matrix:

S =
[

0 I
I 0

]
. (27)

Applying this map to both sides of the earlier equation
we obtain

ST ∗M∗TTS† =
[
−d 0
0 d

]
= −TMT †. (28)

But M∗ = −S†MS, and so we obtain:

−ST ∗S†MSTTS† = −TMT †. (29)

It is at least plausible that we can choose T such that
ST ∗S† = T , which would imply that T has the required
form. What this actually shows is, of course, somewhat
weaker, namely that T †ST ∗S† commutes with M .

One way of obtaining a rigorous proof is to find a T
satisfying

TMT † =
[
d 0
0 −d

]
, (30)

and then to apply the cosine-sine (or CS) decomposition
from linear algebra, which provides a beautiful way of
representing block unitary matrices, and which, in this
instance, allows us to obtain a T of the desired form with
just a little more work. The CS decomposition may be
found, for example, as Theorem VII.1.6 on page 196 of
Bhatia’s book “Matrix Analysis” (Springer-Verlag, New
York, 1997).

Problem: Can we extend these results to allow terms
in the Hamiltonian which are linear in the Fermi opera-
tors?

III. THE JORDAN-WIGNER TRANSFORM

In this section we describe the Jordan-Wigner trans-
form, explaining how it can be used to map a system of
qubits (i.e., spin- 1

2 systems) to a system of Fermions, and
vice versa. We also explain a nice applications of these
ideas, to solving one-dimensional quantum spin systems.

Suppose we have an n-qubit system, with the usual
state space C2n

, and Pauli operators Xj , Yj , Zj acting

on qubit j. We are going to use these operators to define
a set of aj operators acting on C2n

, and satisfying the
Fermionic CCRs.

To begin, suppose for the sake of argument that we
have found such a set of operators. Then from our earlier
discussion the action of the aj operators in the occupa-
tion number representation |α〉 = |α1, . . . , αn〉 must be
as follows:

• Suppose αj = 0. Then aj |α〉 = 0.

• Suppose αj = 1. Let α′ be that vector which results
when the jth entry of α is changed to 0. Then
aj |α〉 = −(−1)sj

α |α′〉, where sj
α ≡

∑j−1
k=1 αk.

If we identify the occupation number state |α〉 with the
corresponding computational basis state |α〉, then this
suggests taking as our definition

aj ≡ −
(
⊗j−1

k=1Zk

)
⊗ σj , (31)

where σj is used to denote the matrix σ ≡ |0〉〈1| acting
on the jth qubit. It is easily verified that these operators
satisfy the Fermionic CCRs. This definition of the aj

is known as the Jordan-Wigner transform. It allows us
to define a set of operators aj satisfying the Fermionic
CCRs in terms of the usual operators we use to describe
qubits, or spin- 1

2 systems.
The Jordan-Wigner transform can be inverted, allow-

ing us to express the Pauli operators in terms of the
Fermionic operators a1, . . . , an. In particular, we have

Zj = aja
†
j − a†jaj . (32)

This observation may also be used to obtain an expres-
sion for Xj by noting that Xj = σj + σ†j , and thus:

Xj = −(Z1 . . . Zj−1)(aj + a†j). (33)

Substituting in the expressions for Z1, . . . , Zj−1 in terms
of the Fermionic operators gives the desired expression
for Xj in terms of the Fermionic operators. Similarly, we
have

Yj = i(Z1 . . . Zj−1)(a
†
j − aj), (34)

which, together with the expression for the Zj operators,
enables us to express Yj solely in terms of the Fermionic
operators.

These expressions for Xj and Yj are rather inconve-
nient, involving as they do products of large numbers of
Fermi operators. Remarkably, however, for certain sim-
ple products of Pauli operators it is possible to obtain
quite simple expressions in terms of the Fermi operators.
In particular, with a little algebra we see that:

Zj = aja
†
j − a†jaj

XjXj+1 = (a†j − aj)(aj+1 + a†j+1)
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YjYj+1 = −(a†j + aj)(a
†
j+1 − aj+1)

XjYj+1 = i(a†j − aj)(a
†
j+1 − aj+1)

YjXj+1 = i(a†j + aj)(a
†
j+1 + aj+1).

Suppose now that we have an n-qubit Hamiltonian H
that can be expressed as a sum over operators from the
set Zj , XjXj+1, YjYj+1, XjYj+1 and YjXj+1. An exam-
ple of such a Hamiltonian is the transverse Ising model,

H = α
∑

j

Zj + β
∑

j

XjXj+1, (35)

which describes a system of magnetic spins with nearest
neighbour couplings of strength β along their x̂ axes, and
in an external magnetic field of strength α along the ẑ
axis.

For any such Hamiltonian, we see that it is possible to
re-express the Hamiltonian as a Fermi quadratic Hamil-
tonian. As we saw in an earlier section , determining
the energy levels is then a simple matter of finding the
eigenvalues of a 2n× 2n matrix, which can be done very
quickly. In particular, finding the ground state energy is
simply a matter of finding the smallest eigenvalue of that
matrix, which is often particularly easy. In the case of
models like the transverse Ising model, it is even possible
to do this diagonalization analytically, giving rise to ex-
act expressions for the energy spectrum. Details can be
found in the paper by Lieb, Schulz and Mattis mentioned
earlier, or books such as the well-known book by Sachdev
on quantum phase transitions.

Exercise: What other products of Pauli operators can
be expressed as quadratics in Fermi operators?

Problem: I’ve made some pretty vague statements
about finding the spectrum of a matrix being “easy”.
However, I must admit that I’m speaking empirically
here, in the sense that in practice I know this is easily
done on a computer, but I don’t know a whole lot about
the computational complexity of the problem. One obvi-
ous observation is that finding the spectrum is equivalent
to finding the roots of the characteristic equation, which
is easily computed, so the problem may be viewed as be-
ing about the computational complexity of root-finding.

IV. APPENDIX ON MUTUALLY COMMUTING
OBSERVABLES

Any undergraduate quantum mechanics course covers
the fact that a mutually commuting set of Hermitian op-

erators possesses a common eigenbasis. Unfortunately,
in my experience this fact is usually proved rather early
on, and suffers from being presented in a slightly too ele-
mentary fashion, with inductive constructions of explicit
basis sets and so on. The following proof is still elemen-
tary, but from a slightly more sophisticated perspective.
It is, I like to imagine, rather more like what would be
given in an advanced course in linear algebra, were linear
algebraists to actually cover this kind of material. (They
don’t, so far as I know, having other fish to fry.)

Suppose H1, . . . ,Hm are commuting Hermitian (in-
deed, normal suffices) operators with spectral decompo-
sitions:

Hj =
∑
jk

EjkPjk, (36)

where Ejk are the eigenvalues of Hj , and Pjk are the
corresponding projectors. Since the Hj commute, it is
not difficult to verify that for any quadruple j, k, j′, k′

the operators Pjk and Pj′k′ also commute. For a vector
~k = (k1, . . . , km) define the operator

P~k ≡ P1k1P2k2 . . . Pmkm . (37)

Note that the order of the operators on the right-hand
side does not matter, since they all commute with one
another. The following equations all follow easily by di-
rect computation, the mutual commutativity of the Pjk

operators, and standard properties of the spectral decom-
position:

P †
~k

= P~k;
∑
~k

P~k = I; P~kP~k′ = δ~k~k′P~k. (38)

Thus, the operators P~k form a complete set of or-
thonormal projectors. Furthermore, suppose we have
P~k|ψ〉 = |ψ〉. Then we will show that for any j we have
Pjkj

|ψ〉 = |ψ〉, so |ψ〉 is an eigenstate of Hj with eigen-
value kj . This shows that the operators P~k project onto
a complete orthonormal set of simultaneous eigenspaces
for the Hj , and will complete the proof.

Our goal is to show that if P~k|ψ〉 = |ψ〉 then for any j
we have Pjkj

|ψ〉 = |ψ〉. To see this, simply multiply both
sides of P~k|ψ〉 = |ψ〉 by Pjkj

, and observe that Pjkj
P~k =

P~k. This gives P~k|ψ〉 = Pjkj
|ψ〉. But P~k|ψ〉 = |ψ〉, so we

obtain |ψ〉 = Pjkj
|ψ〉, which completes the proof.


