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s AEFE R AR FARK R AvEE FF R EL A
R = R,(R1Rg) = (RzR1)R,

u = (0.67,0.67,0.28),0 = 62.8°
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R = R,(R1Rg) = (RzR1)R,
* FREE V] 15 0
R—l — RT

0.995 -0.094 -0.026

0.094 0.995 0.012
R =
0.025 0.015 0.999

\ T e e
0.094 0.995 0.025
RT =10.995 —0.094 0.015

0.012 -0.026 0.999
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* GeAE AT LAY
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R{Ry # RyR;
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Wk piff (Euler Angle)
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Wk piff (Euler Angle)

(a,B,7) € R
x, = Rix{ = R;R,xf = R;R,R3x;

R=7Z(a)X()Z(y) ,

cos(ad) —sin(a) O
Z(a) = (sin(a) cos(a) O)
0 0 1
1 0 0
X(B)=[0 cos(B) —sin(B)
0 sin(f) cos(p)
cos(y) -—sin(y) 0
Z(y) = (sin(y) cos(y) 0)
0 0 1




X+ fg (Euler Angle)

ERZA: R & & )
18 % T ) #4005 45 2 5 A8 ) :

Proper Euler angles

X124, X5 = _
X1Y2X; =

Y1 XoY; = [
Y12,Y; = [

C1C3 — C25153

5253

—C38] — C1C283

C1C2C3 — 8183
C3 59

—C183 — C2C351

CiCaC3 — 8183
Z1YaZ3 = | 185 + cacysy

VAP CYARS lcssl +cica83

—C352

C1C3 — C28153

5283

Ca —C382 5283
C183 C1C2C3 — 8183 —C381 — C1C283
| 182 €183 +C2c381 C1C3 — 28183
[ e 8383 C3 82
8182 C€1C3 —C28183 —C183 — CaC38]
| —C182 €381 +C1C283  C1C2C3 — 8183

8182 C183 —+ CaC381
Co —C389

€183 C1CaC3 — 8183

—C182 C381 + C1C283
C2 §253
51589 C1C3 — Ca8183

—C381 — C1C2383
C1C3 — C25183
5253
—C183 — C2C381
CiCaC3 — 85183
C389

€182
5182
C2
8182
—C1 82
Ca

X125Y3 =

X1YaZy =

Y1 Xp 73 =

Y12:X5 =

1Y, X3 =

Z1X2Y; =

. XZX, XYX, XYZ, ZYX:

73&:%%3;75 /%/E #ﬁ'

Proper Euler angles

Tait-Bryan angles

CaC3
8183 + c1C382

| C35152 — C183

CoC3

C183 + €381 92

L §183 — C1€382

C1C3 1+ 518283

€283

| C18283 — €381

—89 C2 83
Ci1Cy (C18983 — €381
C281 C1C3 + 818283
—C283 52
C1C3 — 818283 —C981
Cc381 + C18283 c¢1Cy
C38152 — €183 (€281
CaCs — 89
CiC382 + 8183 C1C2

C1C2 8183 — C1C382
52 CaC3
| —Cas1 €183 + C35182
_C]_Cz C18283 — C381
C281 C€1C3 + 515283
L —82 C283
_8103 — 818283 —C281
C381 +c18283 c1eg
—C253 8

C3 81 + 8283

—C283

C1C3 — 515253

8183 + €1C3 82
C38182 — €153
CaC3

€183 + €381 82
§183 — C1C352

CaC3

X1Z, X5

X1Y2X;

Y1XpYs

Y12:Y;

Z1Yy Z3

Z1 Xy Zy

a= mctml(Ral )
Ry

B = arccos(Ryy)

= amctan( it )
—Riz

a= a.rctan( i )
—Rg;

B = arccos(Ri1)

o= amctan( fay )
Ry
B = arccos(Raz)

= aIctan( o )

! —Ras

a= a.rctan( o )
—Ryp

B = arccos(Ry2)

a= mctan(

B = arccos(Rg3)

= a.rcta.n(&)
Rs;

p 4

Tait-Bryan angles

X12:Y3

X1Y22Z;3

Y1X3Z5

Y172 X5

Z1Ya X3

Z1 X, Y3

o= aICtaD(

B = arcsin(—R;

)
7 arctan (7 )
)

= arcta:
[e3 D( R

B = arcsin(Ru3)

7= mctan(ﬁ)
Ry

a= a.rctan(ﬁ
Rss

_ ( Ra
7 = arctan

')

o = arctan
(=

)
8 = arcsin(—Ry3)
)
1

B = arcsin(Ry;)

7 = arctan ﬁ)
R

R )
Ryy
B = arcsin(—Rg; )
£

7 = arctan i
Ras

(
R
(7

o= MCtan(ﬁ)
Ra

B = arcsin(Rg)

7 = arctan —fa )
Ras

30



Wk piff (Euler Angle)

P 72 (intrinsic rotations)

X

e Mg HIMa o)k AT A?

z

41 7 (extrinsic rotations)
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Wk pifa (Euler Angle)

Pitch Axis

Roll Axis

R

Yaw Axis

AL
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X+ fg (Euler Angle)
@ Blender
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B3 . i (Gimbal Lock)

% {6 (yaw) b 5 0007 (pitch) B FATIY, BRI A (row) 89 MR 55 B I A 1 /4 A8
BB S L, AR A R E bR, AIAE B ARSET

AT A T /22— AN 8 (ingularity)
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AR (Axis Angle)

it ue R |lull =1, =44 4&:
wiEE: 0 =0ueER3

0 eR
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AN

R (Axis Angle)

( _ _
Vyot = V) + Viror = V- WU+ Vot

Virot =C0SOV, +sinfuXv,
v, =v—vy =v— W -uu

\ uXuxv)=wW-v)u—v

Vegt =V + (1 —cos@)u X (uXv)+sinfuXxv

Voot =C0SOV+ (1 —cosB)(v-u)u+sinbuxv

PR S Y NEN
Rodrigues' rotation formula

R(u,0) =1+ (1 — cos 8)[u]? + sin 0 [u]

[u]=<




#hA R (Axis Angle) M:(,i 0 i‘;)

—Uy Uy 0

R(u,0) =1+ (1 — cos 8)[u]? + sin 0 [u]

\&‘}iu R(u, 9)
v \ /

tr(R) = tr() + (1 — cos@)tr([u]?>) =3 —2(1 —cosf) =1+ 2cos b
[u?v =ux (uxv)=@w-v)u—(u- - wv=(uul -1
[u]? = uut —1
R —RT = 2sin 8 [u]

1 [Ra1 = Koo tr(R) — 1
u= D Ry — R,o |, 0 = arccos >
R10 — Roq
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THEOE X

R(u, 8) = exp(8|u]) = exp([6])

0 -u,
¢ [ul? = uu” — 1 [ul? = —[ul, [ul* = —[ul?, [ul® = [u], .. [ul=<uz :

[
+ exp(B[u]) = 1+ O[u] + =62 [u]? + — 03[u]® + -

2!

=1+ (9 —%93 +%95 —---)[u] + (1192 ——94+--->[u]2

=1+sin8[u] + (1 — cos 0)[u]? —_ B 1 H ik AN K

X BARRRIGE, B0 R NFR I (Lie Algebra) 5| F=8F 69 45 2w 4f (Exponential Map)
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AR = RR}
(A6, Au) « AR
Ht — tAH ARt (Ht AU,)
R, = ARR, Rq
|
z°°@ {w‘,‘m S g % (’)7
t =0. t =0.2 t =0. = 0.8 t =1.

39



Jig %% n] 5 i EL

p o
W\
/ & 1
UJ !
31T . o . 31T
0, =—(1,0,0) R E L] (ERSEZ & i 0, =—(0,1,0)
2 0, =(1-1)80, +t0, (A8, Au) < AR 2
0, = tAd, AR, « (8, Au)

40



P02 (Quaternion)

he wall

@K @C& @@F 184‘3

William Rowan Hamilton
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(X') _ (COS 6 —sin 9) (x) i z' = (cos@ +isinf)z

y' sinf cos@ /\Y
c:(g)'z=(;) | c=a+ibz=x+1y
Ge=( D@ =@ el i o
AEEE T 0 -1 ey e B —
% KT []=((1)0012[]2 (011 0_01) R SENPPR
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=Ykt

FE M KT ) w9 LA TR

V. X 1 i ] k

“ 1 1 i j k

i i | -1 k| —j

BRI ENE

VLE‘ k k j —i -1

R(u,0) =1+ (1 —cos8)[u]? + sin 8 [u] gq=a+bi+cj+dk

R(u, 8) = exp(0[u]) = exp([0]) i?=j?=k?*=ijk=-1
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VUTCHORTE

q19, = (a+ bi+cj+dk)(e+ fi+ gj + hk)
= (ae — bf —cg—dh) + (be+af —dg + ch)i

+ (ce +df +ag — bh)j + (de —cg + bg + ah)k

a —b

| b a
d192 = c d
d —c

—C
—d
a
b

—d
C
—b
a

f

h

| Y~ . — X

|~ L |
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Grafmann fH

*q1 = (a,v),v=>bi+cj+dk

'q2=(e,u),u=fi+gj+hk Q1CI2¢CI2(/I1

q19, = (ae —v-u,au + ev + v X u)

cdn R qg=e =0, LFshw T4
4192 = (—v-uw,v X u)

a —b —-c —d . 0
b —d — e

1142 = (c Z a Cb)( ) - (16; al +v[v]> (u) [ul = (_uz
d —c b a Uy

> N o

45



VU TR 35 3L

2 2 SN . EERT 5B M R T
g =a-+bi+cj+dk ; q = (a,v) i q_<v a1+[v]>
FtHe(Conjugate)-------------mmm-o- o Y S —
: | !
q"=a—Dbi—cj—dk | ¢ =(a-v) i Q*=<—av aIE[V]>

—_—— e ——— — ———— - —— - - - - ———-—————. .- ——— - - - (M —— —————————— .- ————_———————————. - - - —————————.— ——— ———.— (————— . —————————— ——— —— =

% - #4519 7% 4% (Unit Quaternion) |lqll = 1, #q~ = ¢° 46



PUTCEL S e

4 2 V9 TLAK
3 < )
*vER’>v=(0,v) EH,qg=(s,t) EM
cqu=(—t-v,sv+1tXD)

Vyor = COSOV+

*q = (cos@,sinf u)
*quv = (—sinfu-v,cosfv+sinfuxwv)

N

AARREARETSR, 22V 7T —30

+sinfuXv

, I+ B JER K

v 4

£l
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PUTCEL S e

*q = (cosO,sinfu)# ¥4 td, q =q* = (cosh,—sinb u)

gvg~t = (¢, su)(0,v)(c, —su)
= (c,su)(sv-u,cv —sv Xu)

=(csv-u—su-(cv—svxXu),
cv—csvXu+s?(v-uwu+suxcv—siux (vxu))

= (0,(c* = s?)v + 2scu X v + 25*(u - v)u)
cos 26 sin20 1 — cos 260

V.ot =CosOv+sinfuxv+(1—cosf)(v-uwu
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PUTCEL S e

v=(0,v),q= (cosze,sin

. *
Vrot = qV(q

2

1
Ou)

Quaternions
. visualized

https://www.bilibili.com/video/BV1SW411y7W1

https://krasjet.github.io/quaternion
A4 E B4 W EY UK T REE?
A4 AR F AR R?
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VU SCRE e It i

° § IR IR 5% qd = 4dndn-1"""q1

* V1 = q1Vq1, V2 = qav1q; = (q291)v(q2q41)",
R(u, 6) = exp(0lu]) = exp([6])

© q L —q AT H AR R 89 k4 u (0 o )
* (—v(—q)" = qvq” —y 0
1 i |k
o o . 6 6 e
* J5 I N q = (COSE,SlnEu) =exp(gu),u= Ou)

* Vyppr = €XP (g u) v exp (— gu)
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JUSCEHHIE : Nlerp

q; = Normalize((1 — t)qy + tq,)

t =0.75 t =0.50

vy, t=1

t =0.25

vg, t =0
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1 .1
*{do = (1; O);Ch — (COSEQ,SIHEHu)

<CI0;CI1>
laollllgll

1
*COSQ = =c0559
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PUSCEHHIE : Slerp

_sin((1 —1¢)0) sin(t0)

qt Qo +

sin 6 sin @

0 = arccos({qy, q1))




/NI

KN

%2 N

55



S &4
c BRALA: BEAWN, EZENL, AL, ~FIEA

c b RN, FERiEMBEHE, Mk IGA

s W LA HERERG, AL, HFEEGE, FTIERE, 22 W
(A N

X 1 i ] k
1 1 i ] k
] ] -1 k —|
] j -k | -1 ]
k k j —i -1

56



W5 24 W 24 W i 2

+ % 3Lk

e Rt ;}i f% . 7}:3 Z:E:_ 21T éﬁ }% })f{ ;ﬂ:&ﬁ—‘- éﬁ 7~E'E7I:EJ B Representation Space Original Space
~L
09 3% 5% | Mapping ¢ O
c A (v,0)RTNrE5(-v,T—0) 0 ot
7}:51 I";‘J Disconnected Set of Angular Connected Set
. Representations in [0, 27| of Rotations in $!
* W qhH—qE R
« ik 4 .
Mapping f

BHARMNAE A BEE A£[0,2m), A e Nan R “Space
L0 =0 WL MRS 2 T R e X
f BLE R 49 7 A3t . 3

57



6DJiekt ik

© R 4 A A3 Fay, a

* %faq, a, 3 ATGram-SchmidtiE 44

A

(

\

b; = N(a,)
b, = N(a;, — (by - a;)b;)
b3 — bl X b2

o Zﬁﬁ?%ﬁ]ﬁ R = (bll bZ) b3)

On the Continuity of Rotation Representations in Neural Networks

¥i Zhou”
University of Southern California
ThouBs9Ruse . adu

Jimei Yang
Adobe Research

{imyangladabe . oon

Abstract

In newral Retworks, it is often desirable to work with var-
ious represenlations of the same space. For example, 30D
roiaitons can be represented with guatermions or Euler an-
gles. I thix paper. we advance a definiion of @ confiraoes
representation, wiich can be helpfil for training deep new-
ral petworks. We relate this to tepelogical concepis such ax
homeomorphinm and embedding. We then imvestigale whal
are continmons and discorinuoes representalions for 200,
20, and n-dimensional rofations. We demonsirate that for
20 rotations, all represeniations are discontineous i the
reerl Enrclidean spaces of four or fewer dimensions. T,
widely wred represemiations such ar quaternions ond Eu-
ler angles are discontimuony and diffioudt for newral net-
wowks fo lemm. We show that the 30 rdations have con-
tintay represerfations in 50 and 60, wivich are more sui-
able for feaming.  We alio present confimnmony represen-
tatioms for the gpeneral case of the n dimensional rotation
gromg S0 n . While orr maein foces i on relations, we also
sivow tient our consiructions apply fo otier groups such o
the orthoponal group and sioilarty raongforms. We fnally
present empirical results, which show thal owr contirgoes
riaiion represeniaiions ouiperform discontinuons ones for
several practical pmblems in grophics ond vision, includ-
ing a simple micencoder sarity texl, o rofation exfimaor
Jor 2D point clowds, and an imverse kinematics solver for
200 furngn poses.

Connelly Bames®
Adobe Research

connallybarnes@yahoo. com

Jingwan Lu
Adobe Besearch

jludadoba. com

Hao Li

University of Southern California, Pinscreen
USC Institute for Creative Technologies

haoRhac—11.com

Joans i skeletons [31). Many of these works represent 30
rolatns wsing 30 or 40 epresentations such as quater-
mons, axis-angles, or Buler angles.

However, For 3D rotations, we lound that 30 amd 4D rep-
resenlations are ool ideal for network regression, when the
full rotatsn space is required. Empincally, the converged
metworks still produce large ermors al ceran rotalion an-
gles. We believe thal ths actually points 1o deeper topolog-
wal problens related 1o the comtinuity in the rolation rep-
resentations. Informally, all elke bemng equal, discontinuous
representations should in many cases be “hander™ 1o approx-
miale by nevral pelworks then contmuous ones.  Theorels-
cal resulls suggest that [unctions thal are smoother [34] ar
have stronger conlinuily properties such as in the modulus
ol comtinuity |33, 10] have lower approxinmison ermor for a
given number of neurons.

Based on this msightl, we firsl present m Section 3 our
defindtion of the continuily of repressntation i neural net-
works, We illustrate this definiton based on a simple exam-
ple of 21 rotakons. We then connect it o key wopological
concepls such as homeomorphesm and embedding.

Mexl, we present m Section 4 a thearetical analysis of the
contmuily of rotason representations. We lirst investigale in
Sectson 4.1 some discombinuous representations, such as Ea-
ler angle and qualernsom representations. We show thal lor
A0 reations, all representations are disconlinuous in four or
lewer dimensiomal real Euclidean space with the Euchidean
wpology. We then mvestigate 1n Section 4.2 some contina-
s rolalion ssenlalions. For the n dimensonal rolation
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3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL", Inria, Université Céte d'Azur, France

GEORGIOS KOPANAS’, Inr

, Université Cote d’Azur, France

THOMAS LEIMKUHLER, Max-Planck-Institut fiir Informatik, Germany

GEORGE DRETTAKIS, Inria, Université Cote d'Azur, France

Plenoxels

26min, PS

Ground Truth

Fig. 1. Our method achieves real-time rendering of radiance fields with quality that equals the previous method with the best quality [Barron et al. 2022],
while only requiring optimization times competitive with the fastest previous methods [Fridovich-Keil and Yu et al. 2022; Maller et al. 2022]. Key to this
performance is a novel 3D Gaussian scene representation coupled with a real-time differentiable renderer, which offers significant speedup to both scene
optimization and novel view synthesis. Note that for comparable training times to InstantNGP [Mller et al. 2022), we achieve similar quality to theirs; while
this is the maximum quality they reach, by training for SImin we achieve state-of-the-art quality. even slightly better than Mip-NeRF360 [Barron et al. 2022].

Radiance Field methods have recently revolutionized novel-view synthesis
of scenes captured with multiple photos or videos. However, achieving high
visual quality still requires neural networks that are costly to train and ren-
der, while recent faster methods inevitably trade off speed for quality. For
unbounded and complete scenes (rather than isolated objects) and 1080p
resolution rendering, no current method can achieve real-time display rates.
We introduce three key elements that allow us to achieve state-of-the-art
visual quality while maintaining competitive training times and importantly
allow high-quality real-time (= 30 fps) novel-view synthesis at 1080p resolu-
tion. First, starting from sparse points produced during camera calibration,
we represent the scene with 3D Gaussians that preserve desirable proper-
ties of continuous volumetric radiance fields for scene optimization while
avoiding unnecessary computation in empty space; Second, we perform
) density control of the 3D Gaussians, notably opti-
mizing anisotropic covariance to achieve an accurate representation of the
scene; Third, we develop a fast visibility-aware rendering algorithm that
supports anisotropic splatting and both accelerates training and allows real-
time rendering. We demonstrate state-of-the-art visual quality and real-time
rendering on several established datasets.
€CS Concepts: « C i - : Point-based
models; Rasterization; Machine learning approaches.

*Both authors contributed equally to the pape.
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1 INTRODUCTION

Meshes and points are the most common 3D scene representations
because they are explicit and are a good fit for fast GPU/CUDA-based
rasterization. In contrast, recent Neural Radiance Field (NeRF) meth-
ods build on scenc rep typically op

a Multi-Layer Percep (MLP) using vol ray- for
novel-view synthesis of captured scenes. Similarly, the most efficient
radiance field solutions to date build on continuous representations
by interpolating values stored in, e.g., voxel [Fridovich-Keil and Yu
et al. 2022] or hash [Miiller et al. 2022] grids or points [Xu et al. 2022].
While the continuous nature of these methods helps optimization,
the stochastic sampling required for rendering is costly and can
result in noise. We duce a new approach that comb the best
of both worlds: our 3D Gaussian representation allows optimization
with state-of-the-art (SOTA) visual quality and competitive training
times, while our tile-based splatting solution ensures real-time ren-
dering at SOTA quality for 1080p resolution on several previously

h
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blished datasets [Barron et al. 2022; Hedman et al. 2018; Knapitsch
ct al. 2017] (see Fig. 1).

Our goal is to allow real-time rendering for scenes captured with
multiple photos, and create the representations with optimization
times as fast as the most efficient previous methods for typical
real scenes. Recent methods achieve fast training [Fridovich-Keil
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Abstract

Symmetric orthogonalization via SVD, and closely related procedures, are well-
known techniques for projecting matrices onto Q(n) or SO(n). These tools have
long been used for applications in computer vision, for example optimal 3D align-
ment problems solved by orthogonal Procrustes, rotation averaging, or Essential
matrix decomposition. Despite its utility in different settings, SVD orthogonaliza-
tion as a procedure for producing rotation matrices is typically overlooked in deep
learning models, where the prelsrences tend toward classic repreqenmuum like
unit quaternions, Euler angles, and le, or more Iy meth-
ods. De-;pue Lhe importance of 3D ro(auons in computer vision and robotics, a
single ly effective ion is still missing. Here, we explore the vi-
abllll} of SVD orthogonalization for 3D rotations in neural networks. We present
a theoretical analysis that shows SVD is the natural choice for projecting onto the
rotation group. Our extensive quantitative analysis shows simply replacing exist-
ing representations with the SVD orthogonalization procedure obtains state of the
art performance in many deep learning applications covering both supervised and
unsupervised training.

1 Introduction

There are many ways to represent a 3D rotation matrix. But what is the ideal representation to predict
3D rotations in a deep learning framework? The goal of this paper is to explore this seemingly low-
level but practically impactful question, as currently the answer appears to be ambiguous.

In this paper we present a systematic study on esumaung rotations in neural networks. We identify
that the classic tech of SVD orth li widely used in other contexts but rarely in the
estimation of 3D rotations in deep networks, is ideally suited for this task with strong empirical and
theoretical support.

3D rotations are important quantities appearing in countless applications across different fields of
study, and are now especially ubiguitous in learning problems in 3D computer vision and robotics.
The task of predicting 3D rotations is common to estimating object pose [47, 24, 29, 38, 43, 21. 39].
relative camera pose [27, 32. 5], ego-motion and depth from video [48, 26], and human pose [49, 19].

A design choice common to all of these models is selecting a representation for 3D rotations. The
muost frequent choices are classic representations including unit quaternion, Euler angles, and axis-
angle. Despite being such a well-studied problem, there is no universally effective representation or
regression architecture due to performance variations across different applications.

A natural alternative to these classic representations is symmetric orthogonalization, a long-known
technique which projects matrices onto the orthogonal group ((3) [23, 35]. Simple variations can
restrict the projections onto the special orthogonal (rotation) group SO(3) [13, 18, 44]. This proce-
dure, when executed by Singular Value Decomposition (SVD [9]), has found many applications in
computer vision, for example at the core of the Procrustes problem [2, 35] for point set alignment, as
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