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Abstract Climate and land management changes are altering carbon inputs to soil. The consequence of such
input changes on long‐term soil organic carbon (SOC) balance depends on the transit behavior of carbon inputs.
Using observational carbon input and radiocarbon data in global soil profiles, we reveal that on average nearly
25% of new entering carbon leave soil in 1 year irrespective of entering depth, and the remained fraction after
30 years is only∼13%. Nevertheless, the majority of SOC is older than 30 years in all soil depths. Together, these
results demonstrate low transfer efficiency of carbon inputs to aged SOC which is the meaningful carbon
component for long‐term SOC sequestration. Additionally, we reveal that SOC aging and carbon input transiting
are two distinct processes, which should be simultaneously, but mechanistical‐separately, considered to predict
and manage SOC dynamics in response to carbon input changes under climate and land management changes.

Plain Language Summary Soil contains a lot of carbon, and its levels can change based on climate
and how wemanage the land. Our global soil research shows that when new carbon goes into the soil, about 25%
of it leaves within a year, regardless of depth. After 30 years, only about 13% remains. Interestingly, most of the
carbon in the soil is older than 30 years, showing that it can store carbon for a long time. We found that
transferring carbon inputs to aged soil organic carbon (SOC) is not very efficient. This aged SOC is crucial for
long‐term carbon storage, which can help combat climate change. We also discovered that SOC aging and
carbon input transit are separate processes. To manage soil carbon well in response to climate and land changes,
we need to consider these processes separately but at the same time. In conclusion, our research reveals how
carbon behaves in soil and stresses the importance of aged SOC for long‐term carbon storage. Understanding
these processes better can lead to more effective strategies for managing and protecting our soils, contributing to
the fight against climate change.

1. Introduction
The balance between carbon inputs from plant photosynthesis and carbon outputs mainly from soil microbial
respiration determines the dynamics of soil organic carbon (SOC). Climate and land use/management changes
can affect both carbon inputs and outputs (Song et al., 2019; Terrer et al., 2021). This may lead to soil carbon
accumulation or loss, which has significant implications for climate through regulating atmospheric CO2 levels
and for global production of food, feed and fiber through influencing soil fertility (Lal, 2004). However, it is
challenging to experimentally monitor carbon inputs and outputs down the soil profile and across large spatial
scales (Jobbágy & Jackson, 2000), as they are transient, subtle, and strongly influenced by environmental con-
ditions (Crowther et al., 2016; Jackson et al., 2017; Terrer et al., 2019). Moreover, soil carbon consists of various
organic compounds with different ages (i.e., the time a carbon atom has spent in soil since entering it) (Lehmann
&Kleber, 2015).Without detailed information about how carbon inputs transit to different age groups of SOC, we
cannot reliably predict the persistence of carbon inputs and develop management practices for effective long‐term
carbon sequestration and sustainable ecosystem services provisioned by soils.

When carbon atoms enter soil in plant‐derived organic materials, some of them may leave soil in a short time due
to physical transport or preferential microbial utilization (i.e., fast transit time), and some may stay for a longer
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period due to microbial recycling, stabilization or protection offered by soil matrixes (i.e., slow transit time)
(Sierra et al., 2017). The transit time of new carbon atoms entering soil varies in space and time, and determines
how much and to what extent carbon input contributes to old carbon and thus to long‐term SOC stabilization. If
most carbon inputs transit fast, for example, changes in SOC stock induced by carbon input would be negligible in
the short term, and only detectable at long time scales when significant amounts have accumulated for enough
time (usually centuries or millennia in most soils (Luo et al., 2019)). However, it is difficult to quantify the subtle
transit process of carbon inputs. The main challenge is that carbon fluxes derived from the decomposition of
carbon inputs are mixed with autotrophic respiration of plant roots and heterotrophic respiration of microbial
decomposition derived from native SOC. For the transit of carbon inputs in different soil depths, we face a more
difficult challenge of separating carbon fluxes from different soil depths. Carbon isotope observations can be used
to estimate mean ages of SOC (Balesdent et al., 2018; Shi et al., 2020) or trace short‐term dynamics of labeled
carbon substrates entering soil. Nevertheless, carbon isotope measurements alone do not allow tracking the
continuous long‐term transit of carbon inputs.

We used a data‐model integration approach to estimate quantitatively how carbon inputs transit and contribute to
different age groups of SOC across soil depths. This estimation builds on previous approaches for inferring mean
ages of SOC (a) and mean transit time of carbon inputs (τ, which describes the age of a carbon atom at the time it
leaves soil) in each soil depth for each soil profile (Carvalhais et al., 2014; Luo et al., 2019; Shi et al., 2020; Xiao
et al., 2022). We first estimated a and τ using global radiocarbon measurements in 910 soil profiles from the
International Soil Radiocarbon Databased (ISRaD) (Lawrence et al., 2020) (Figure 1) and observational carbon
inputs (Xiao et al., 2023). Then we derived decay rates and transfer coefficients for a two‐pool carbon model—
Inventory Carbon Balance Model (ICBM) (Andrén & Kätterer, 1997) using the estimated a and τ. Finally, the
distribution of transit times (τ) of carbon inputs and the age structure of SOC (a) are constructed using the derived
decay rates and transfer coefficients (Metzler & Sierra, 2018).

2. Materials and Methods
We used a two‐step approach for obtaining ages and transit times. In a first step, we obtained empirical estimates
of mean age and mean transit time using the set of observations as described in Sections 2.2 and 2.3. These
estimates of mean age and mean transit time are based on the assumption of a one‐pool model. Because these
obtained estimates differ considerably among each other despite the fact that for a one‐pool model both should be
equal, then we proceeded to fit parameters of a two‐pool model to the empirical estimates of mean age and mean
transit time. The two pool model reconciles these differences and allowed us to obtain complete age and transit
time distributions. In the following, we describe the main equations and theory, and how the data was used in the
data‐assimilation procedure.

Writing – review & editing:
Mingming Wang, Liujun Xiao, Carlos
A. Sierra, Jinfeng Chang, Zhou Shi

Figure 1. Location of measurements of net primary productivity (NPP) and soil radiocarbon content (Δ14C). Values in
parentheses show the number of profiles for each of the two data sets. Sample size of radiocarbon measurements for each
biome is shown in the parentheses following the biome legend.
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2.1. Distributions of Soil Carbon Age (a) and Carbon Input Transit Time (τ)

Carbon models are needed to characterize the distribution of a and τ. Amongst them, pool‐based models are
widely used. In general, these models can be expressed in matrix form as:

dC
dt
= I + A ·C, (1)

where C and I are vectors of carbon pools and corresponding carbon inputs to them, respectively; A is a matrix
defining the cycling and transfer among the pools. At steady state, Metzler and Sierra (2018) have proved that the
probability density function (PDF) of soil carbon age (a, which is defined as the time a carbon atom has expe-
rienced since the carbon atom entered soil) can be computed as:

f (a) = − (1,…,1)T ·A · ea ·A ·
C∗

∑C∗ ,a≥ 0, (2)

and mean soil carbon age (a) can be calculated as:

a = − (1,…,1)T ·A− 1 ·
C∗

∑C∗ , (3)

where (1, …, 1)T is the transpose of a vector containing ones with the vector length being equal to the number of
carbon pools; C* = –A− 1 · I represent the steady‐state solution of the model (i.e., the sizes of carbon pools at
steady state). The PDF of carbon input transit time (τ, which is defined as the time elapsed since carbon atom
entered soil until it exists via any efflux pathways) can be calculated as:

f (τ) = − (1,…,1)T ·A · eτ ·A ·
I

∑I
,τ≥ 0, (4)

and mean soil carbon transit time (τ) can be calculated as:

τ = − (1,…,1)T ·A− 1 ·
I

∑I
. (5)

In this study, a widely used two‐pool carbon model ICBM (Andrén & Kätterer, 1997) which divides total soil
carbon into a fast (Cf) and slow (Cs) pool was used. Explicitly, the matrix and vector form of the model can be
written as:

⎛

⎜
⎜
⎜
⎜
⎝

dCf
dt
dCs
dt

⎞

⎟
⎟
⎟
⎟
⎠
= (

I f
0
) +

⎛

⎜
⎝
− k f 0

α · kf − ks

⎞

⎟
⎠ ·(

Cf
Cs
), (6)

where If is the amount of carbon input allocated to Cf; kf and ks are the decay rates of the two pools, respectively; α
is the transfer coefficient. At steady state, according to Equations 3 and 5, mean soil carbon age (a) and transit
time (τ) estimated by this model can be computed, respectively, as:

a =
1
kf
+

1
ks
−

1
kf · α + ks

, (7)

and

τ =
1
kf
+
α
ks
, (8)
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Based on Equations 7 and 8, if a and τ can be determined, we can constrain kf, ks and α thereby the PDF of a and τ
using Equations 2 and 4, respectively. However, the two equations (i.e., Equations 7 and 8) do not allow us to
obtain a unique solution for the three parameters. Rather, numerous parameter ensembles exist to match a and τ
(i.e., parameter equifinality). We explicitly quantify the effects of such equifinality on the estimation of PDF of a
and τ (see Section 2.4).

2.2. Estimation of Mean Soil Carbon Age (a)

We used a radiocarbon modeling approach to estimate a using the updated ISRaD database (Lawrence
et al., 2020). In the new version of the database, there are a total of 910 soil profiles with 5,160 Δ14C mea-
surements of SOC in different soil layer depths. A one‐pool radiocarbon model can be used to estimate a as the
inverse of the fitted decay rate (i.e., 1/k) of SOC (Cherkinsky & Brovkin, 1993; Xiao et al., 2022):

Fsoil,t · Ct = FI,t · It − Fsoil,t− 1 · Ct− 1 · (1 − k − γ), (9)

where Fsoil,t and FI,t are the
14C/12C ratio of the modern reference (i.e., fraction modern) in SOC and carbon input

to soil at time t, respectively; Ct and It are the amounts of SOC stock and carbon input to soil at time t,
respectively; k is the decay rate of SOC; and γ is the β‐decay rate of 14C and equals to 1/8,267 per year. At steady
state, both It and Ct are constant. That is, Ct = Ct− 1 = It /k, and Equation 9 can be reduced to:

Fsoil,t = FI,t · k − Fsoil,t− 1 · (1 − k − γ). (10)

Using the Δ14C data, which is reported as the per mille deviation from a standard of fixed isotopic composition, F
for either SOC or carbon input can be calculated as:

F =
Δ14C
1,000

+ 1. (11)

The one‐pool model treats SOC in each layer as a homogeneous cohort and was fitted to observed Δ14C values. A
steady state of radiocarbon at the beginning of the modeling (i.e., 50,000 BP) was assumed and the model was ran
at half‐year time step to the year of soil Δ14C measurement using atmospheric Δ14C as inputs, and k was iter-
atively solved to match observed F values of SOC. Historical northern and southern hemisphere atmospheric
Δ14C records (50,000 to 0 BP) were obtained from IntCal20 (Reimer et al., 2020) and SHCal20 (Hogg
et al., 2020), respectively. Modern atmospheric Δ14C from 1950 to 2019 for both northern and southern hemi-
sphere were obtained from Hua et al. (2021). Depending on the measurement year of SOC, the model generated
two a values for some positive large Δ14C values (i.e., fast turnover of SOC) due to the ascending and then
descending of Δ14C during and after the bomb‐test. The longer one was used in the estimation. awas estimated for
recorded depth intervals in the ISRaD database. To provide more details about the depth distribution of a, we also
calculated a for each 10 cm depth interval in the 0–200 cm profile. To do so, Δ14C was interpolated to the 10 cm
depth intervals using mass‐preserving splines (Bishop et al., 1999). Depending on the depth of observed profiles,
depth was truncated to the deepest depth which the recorded depth interval can cover. To further ease comparison
among soil profiles and with other studies, based on the depth distribution of a, we also calculated a for three
common soil depth intervals (i.e., 0–30 cm, 30–100 cm and 100–200 cm) which are widely used in the literature
(Balesdent et al., 2018; Luo et al., 2019; Shi et al., 2020). For τ (see Section 2.3), it has been also calculated for
these depth intervals using the same depth interpolation approach.

2.3. Estimation of Mean Transit Time of Carbon Input (τ)

Assuming steady state, mean transit time of carbon inputs (τ) in any layer depths can be calculated as the ratio of
soil carbon stock to carbon input to that layer (Sierra et al., 2017, 2018):

τi =
SOCs,i
Inputi

, (12)

where SOCs,i is the SOC stock in the ith soil layer, and Inputi is the amount of carbon input to that layer.
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We estimated τ for each recorded depth interval at the locations of the Δ14C profiles corresponding to the 5,160
Δ14C measurements. The recorded SOC stock, if available and can be estimated, was used for SOCs. For 541 out
of the 5,160 Δ14C measurements, SOCs is not reported or cannot be estimated using reported data, we used the
WISE30sec database (Batjes, 2016), which is a mapping product of global SOC stocks in different soil depths at
0.0083° (i.e., ∼1 km at the equator) resolution, to fill this data gap.

We estimated carbon inputs (Input) to each soil layer using a machine learning model validated by Xiao
et al. (2023). This model assumes that Input is mainly determined by the depth allocation of belowground net
primary production (BNPP), which follows the depth distribution of root biomass and turnover. It also accounts
for vertical carbon transport (V) along the soil profile due to leaching and/or bioturbation, using a partial dif-
ferential equation (Koven et al., 2013; Xiao et al., 2022). In the top layer, we added 10% of aboveground NPP
(ANPP) to Input (i.e., Input=BNPP+ V+ 0.1 ×ANPP) (Xiao et al., 2022). We developed a predictive model for
BNPP depth allocation using in situ measurements at 725 global locations (Figure 1). We applied this model to
predict Input at the locations of ∆14C measurements. A detailed description of the BNPP data sets and the
modeling for the depth allocation of BNPP can be found in Xiao et al. (2023).

2.4. Estimation of the PDF of a and τ

Using the estimated a and τ, we fitted Equations 7 and 8 to derive three parameters: kf—the decay rate of fast pool,
ks—the decay rate of slow pool, and α—the transfer coefficient of fast pool to the slow pool. For both kf and ks, a
prior range of from 0 (which is equivalent to a turnover time of ∞) to 1 (which is equivalent to a turnover time of
1 year) was assigned. For α, it ranges from 0.2 to 0.8. From these priors, a total of 1,000 ensembles of the three
parameters were obtained by optimizing the two equations using a differential evolution optimization approach
(Vrugt & Ter Braak, 2011). These ensembles represent uncertainties in the three parameters due to insufficient
data to get unique solutions for them. This uncertainty was brought into the calculation of the PDF of a and τ using
Equations 2 and 4. Specifically, for each soil depth interval in each soil profile, we calculated PDF of soil carbon
age and carbon input transit time. Then, the PDF was used to calculate the probability density of a (i.e., a< 1 year,
1 year < a < 10 years, 10 years < a < 30 years, 30 years < a < 100 years, 100 years < a < 200 years,
200 years < a < 500 years, 500 years < a < 1,000 years, and a > 1,000 years) and τ of interests (i.e., τ < 1 year,
τ > 1 year, 1 year < τ < 10 years, 10 years < τ < 30 years, τ > 30 years, 30 years < τ < 100 years,
100 years < τ < 200 years, 200 years < τ < 500 years, 500 years < τ < 1,000 years, and τ > 1,000 years). These
probability densities represent the integrals (areas under the PDF curve) for specific intervals of a and τ,
respectively. We also calculated the ratio of a>1,000 years:a<10 years and τ>30 years:τ>1 year to indicate the age
structure of soil carbon and transit behavior of carbon inputs.

2.5. Controls on Age Structures of Soil Carbon and Transit Times of Carbon Inputs

To identify the potential factors influencing soil carbon age and transit times, we selected a range of climatic,
edaphic and topographic variables (Table S1 in Supporting Information S1). We obtained 20 soil properties from
ISRIC‐WISE (International Soil Reference and Information Centre‐World Inventory of Soil Emission Potentials)
soil profile database (Batjes, 2016) and 19 climatic attributes (including mean annual temperature and precipi-
tation) fromWorldClim database (Fick & Hijmans, 2017), both at a spatial resolution of ∼1 km. We also used 13
topographic attributes from Amatulli et al. (2018). Moreover, we derived biome type following Luo et al. (2019)
and extracted soil order data from Global Soil Regions Map database. We matched these environmental cova-
riates with the ∆14C data from ISRaD database at their locations.

In the present study, we calculated a>1,000 years:a<10 years to illustrate the age structure of soil carbon, focusing on
the comparison between older groups (aged over 1,000 years) and younger groups (under 10 years). Regarding τ,
we determined τ>30 years:τ>1 year to reveal its structure by quantifying the groups of soil carbon inputs that are
notably significant for soil carbon sequestration (e.g., longer than 30 years) within the categories with consid-
erably long transit times (e.g., longer than 1 year). Focusing on τ>30 years:τ>1 year and a>1,000 years:a<10 years in the
0–30, 30–100, and 100–200 cm soil depths, variation partitioning analysis (VPA) was used to explore the relative
importance of climate, soil and topography in influencing these two ratios. VPA identifies the individual con-
tributions of independent variables to a dependent variable (Peres‐Neto et al., 2006). We controlled multi-
collinearity of the environmental covariates by calculating variance inflation factor (VIF) (Zuur et al., 2010) and
removing the variable with the highest VIF until all VIFs were less than 10. We selected environmental variables
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that best explain the dependent variable (i.e., the two ratios) using redundancy analyses and analyses of variance.
We used a stepwise permutational ordination method (the ordistep function in vegan package) with 1,000 per-
mutations to evaluate the environmental variables and create a model. We performed VPA using these selected
environmental variables and the varpart function in the R package vegan. We conducted all these statistical
assessments in R 4.2.5 (R Development Core Team, 2023).

2.6. Sensitivity Analyses and Uncertainty Assessment

We performed three additional analyses to evaluate the sensitivity of the estimated PDF of τ and a to aspects
of the analytical method. First, we tested how the PDF of τ and a responds to the uncertainty in a estimates.
In this study, we used a one‐pool radiocarbon model to infer a using the Δ14C measurement for each soil
depth in each soil profile. Using two‐pool mixing radiocarbon models, previous authors have demonstrated a
will become uncertain and a estimated by the one‐pool model is within the lower range of the mean ages
estimated by the two‐pool model (Shi et al., 2020). To explore the potential uncertainty induced by such
discrepancy, the estimation of the PDF was repeated using a ± 10%. Similarly, we also test how the PDFs of
τ and a respond to uncertainties in τ by repeating τ ± 10%. Second, we included an independent MODIS
(Moderate Resolution Imaging Spectroradiometer) NPP‐based carbon input data set (Zhao & Running, 2010)
to assess the uncertainty of carbon input and its consequences on model‐inferred structures of τ and a.
Finally, we repeated the analyses using other three carbon model variates to test whether the results depend
on model structure used to infer the PDF of τ and a.

3. Results
3.1. Mean Soil Carbon Age and Transit Time of Carbon Inputs

Radiocarbon‐inferred a increases with soil depth (Figure 2a). Integrating a into the 0–30 and 30–100 cm soil
layers, an average a of 1,707 and 3,161 years is estimated, respectively (Figure 2b). These estimates are in
general smaller than the global estimates of a (1,390 and 8,280 years in the two depths, respectively) by Shi
et al. (2020). This underestimation is reasonable as estimates of Shi et al. (2020) were based on global
mapping products of radiocarbon, including tundra and permafrost regions (where soil carbon is much older
than in other regions), which contributed more to their average than the 910 observed soil profiles (Figure 1).
In the 100–200 cm soil layer, a is increased to 7,118 years (Figure 2b). Mean transit time (τ) also is increased
with soil depth (Figure 2a), with an average τ of 315, 489, and 931 years estimated in the three depths,
respectively (Figure 2b).

Figure 2. Depth distribution of mean transit times of carbon input (τ) and mean soil carbon ages (a). (a) At each location of
Δ14C measurements, the middle depth of sampling depth interval (i.e., top and bottom depths) was used to represent soil
depth. (b) Δ14C observations were harmonized to three standard soil layer depths (0–30, 30–100, and 100–200 cm), and then the
harmonized Δ14C values were used to predict a using a one‐pool soil radiocarbon model. τ was calculated using soil carbon
stock divided by carbon input in each soil layer at each location (Methods). Error bars in (b) show one standard deviation.
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3.2. Transit Behavior of Carbon Inputs

Most new carbon inputs transit fast and leave soil rapidly regardless of entering soil depth (Figure 3a). In all
depths, on average ∼25% of carbon inputs leave soil within the first year after entering, and another ∼45% leave
within the next 9 years (Figure 3b). Specifically, in the 0–30, 30–100, and 100–200 cm soil layers, on average
30.2%± 4.7%, 28.9%± 6.0% and 24.7%± 7.6% of carbon inputs leave soil in 1 year, respectively. After 30 years,
the remaining fraction is further reduced to 13.0% ± 4.6%, 15.3% ± 8.6% and 17.5% ± 9.9% in the three soil
layers, respectively. At a significantly longer time scale, however, the transit of remaining carbon inputs does
present an apparent vertical gradient (Figure 3a). After 1,000 years, for example, only 1.5% ± 1.4%, 6.4% ± 5.0%
and 9.2% ± 5.9% of carbon inputs are remained in the three layers, respectively (Figure 3a).

Among biomes, the transit behavior of carbon inputs is significantly different (Figures 4a and 4b). In all soil
depths, carbon inputs in colder biomes such as tundra, boreal forests and temperate forests transit slower, and less

Figure 3. Depth distributions of transit time of carbon input (τ) and soil carbon age (a). A two‐pool soil carbon model was
used to estimate the distributions of τ and a in each 10 cm depth interval (Methods). Circles and error bars show the average
and one standard deviation of the estimation, respectively.

Figure 4. The proportion of selected groups of carbon input transit times (τ) and soil carbon age across depths and biomes. Error bars show one standard deviation.
Within each group of a and τ or soil layer, and biomes followed by the same letter do not differ significantly (p < 0.05).
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than 30% of carbon inputs leave soil in the first year after entering soil (Figure 4a). In other biomes, carbon inputs
transit faster, and in general more than 30% of carbon inputs leave soil in the first year (Figure 4a). After 30 years
of entering, the discrepancy of remaining fractions is substantially increased among the biomes (Figure 4b). The
percentage of carbon inputs retained in boreal forests and tundra is nearly two times of that in other biomes,
especially in the two deeper layers (Figure 4b). For example, in boreal forests,∼18%, ∼26%, and∼30% of carbon
inputs are retained after 30 years of entering in the 0–30, 30–100, and 100–200 cm soil layers, respectively
(Figure 4b). In temperate grasslands, however, only ∼10% of carbon inputs are retained after 30 years of entering
in the three soil layers (Figure 4b). Long‐period of low temperature in cold biomes such as boreal forests and
tundra would inhibit the decomposition of carbon inputs and thus favoring long‐term preservation of new carbon
inputs.

By comparing the distributions of τ and a, we obtain some critical insights into the transfer efficiency of carbon
inputs to aged carbon. It is apparent that SOC is mainly comprised of old carbon, especially in deeper depths
(Figure 3b). Carbon being older than 30 years (which is a meaningful timescale for land management and SOC
sequestration) account for more than three quarters (>75%) of SOC in all soil depths (Figure 3b). However, the
fraction of carbon inputs transferred to this age group are minor (Figure 3a). In the 0–30, 30–100, and 100–200 cm
layers, the average remaining fraction after 30 years is only 13.0% ± 4.6%, 15.3% ± 8.6%, and 17.5% ± 9.9%,
respectively (Figure 4b).

3.3. Controls Over Carbon Input Transiting and SOC Aging

Given the distinct depth distributions of SOC ages and carbon input transit times, and that SOC is mainly
comprised of aged carbon and most carbon inputs transit fast (Figures 3a vs. 3b), we propose that SOC aging and
carbon input transiting may be two processes controlled by different environmental factors. To indicate carbon
input transiting, we calculate the ratio of remaining carbon inputs after 30 years of entering to that after 1 year of
entering (τ>30 years:τ>1 year, Figure 4c). This ratio in general is comparable among soil depths (Figure 4c). In the 0–
30, 30–100, and 100–200 cm soil layers, the global average τ>30 years:τ>1 year is 0.19 ± 0.06, 0.21 ± 0.11, and
0.25 ± 0.15, respectively. Among biomes, τ>30 years:τ>1 year is relatively higher in tundra and boreal than those in
other biomes in all three soil layers (Figure 4c).

The ratio of a>1,000 years (the fraction of SOC being older than 1,000 years) to a<10 years (the fraction of SOC being
younger than 10 years), that is, a>1,000 years:a<10 years, is calculated to indicate SOC aging. A higher a>1,000 years:
a<10 years ratio indicates old carbon is more dominant in total SOC, and vice versa. Unlike τ>30 years:τ>1 year, the
global average a>1,000 years:a<10 years ratio is substantially increased with soil depth, and is estimated to be
2.2 ± 1.4, 14.3 ± 8.1, and 42.7 ± 23.2 in the three depths, respectively (Figure 4d). Among biomes, this ratio
shows much greater variability in deeper layers. In the 100–200 cm soil layer depth, tropical/subtropical
grasslands and savannas have the lowest a>1,000 years:a<10 years ratio of 26.2 ± 5.1, followed by temperate
grasslands (39.7 ± 4.6), while this ratio is increased to 102.4 ± 19.1 and 86.2 ± 18.7 in tundra and boreal forests,
respectively (Figure 4d).

A VPA is conducted to assess drivers of τ>30 years:τ>1 year and a>1,000 years:a<10 years (Figure 5). The VPA driven by
climatic, edaphic and topographic attributes (Methods) can explain 61%–77% variance of the two ratios in the
three soil depths. For τ>30 years:τ>1 year, climate is more important (explaining 18%–22% of the variance alone)
than soil (7%–15%) and topography (which has marginal effects of 1%–2%) in the three layers (Figures 5a, 5c, and
5e). However, the interactions between climate and soil plays the dominant role in the upper two layers
(Figures 5a and 5c). In the 100–200 cm layer, the interaction between climate and soil shows the similar
importance as climate alone (Figure 5e). For a>1,000 years:a<10 years, climate becomes more important and is the
predominant control, particularly in deeper layers (Figures 5b, 5d, and 5f). Across all soil layers, climate alone
explains 22%–42% of the variance of a>1,000 years:a<10 years, and its interaction with soil (i.e., edaphic properties)
contributes additional 14%–29%, while soil alone and topographic properties have a marginal effect of 2%–10%
(Figures 5b, 5d, and 5f).

3.4. Uncertainty Assessment of the Estimates

We tested the effects of some assumptions on our estimations. First, we have investigated potential uncertainties
related to the accuracy of carbon input data set which are critical for estimating τ. Although the data set is derived
from field measurements with machine learning models and has considered the depth distribution of root growth
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and turnover as well as the vertical transport of carbon inputs through soil
profile, accurate measurement of depth‐specific carbon inputs is still a grand
challenge. We used the MODIS NPP product to derive carbon inputs for the
910 Δ14C profiles. The result shows that both the magnitude of carbon inputs
(Figures S1a and S1b in Supporting Information S1) and the associated es-
timations of the structure of τ and a (Figures S1c and S1d in Supporting
Information S1) are comparable between the two data sets. Second, to infer a
from a single Δ14C measurement, a homogeneous, one‐pool radiocarbon
model was used. However, as soil carbon composition is heterogeneous,
modeling a single pool would be too simplistic. The sensitivity analysis shows
that ±10% changes of a do not significantly change the structures of a and τ
(Figures S2a and S2b in Supporting Information S1). Again, ±10% changes
of mean transit times have negligible effects on the results (Figures S2c and
S2d in Supporting Information S1). Last, the calculation of age structure and
transit times relies on the specific ICBM model. We tested their sensitivity to
model structure by repeating all calculations using other three model varieties
considering different carbon input partitioning and pool exchanges (Figure S3
in Supporting Information S1), and do not find significant effects of model
structure on the overall patterns of the results (Figure S4 in Supporting In-
formation S1). This tolerance of the estimation to different uncertainty
sources would be due to that mean SOC age is much larger than mean carbon
input transit time (Figure 2). As such, any subtle changes induced by the
relevant uncertainties will have minor effects on the estimated distribution of
SOC ages and carbon input transit times.

4. Discussion
The results reveal fast transit of carbon inputs in the whole soil profile
regardless of entering depth. Our previous study focusing on mean transit
times and ages (i.e., a and τ) has proposed a mechanism underpinning such
fast transit (Wang et al., 2023; Xiao et al., 2022). That is, the majority of
carbon inputs such as root litter and exudates may be quickly utilized and
respired as CO2 by microbes in the rhizosphere (Finzi et al., 2015; Fontaine
et al., 2007; Zahar Haichar et al., 2014). Another possibility is that microbial

decomposition of soil carbon is inherently limited by energy availability (Fontaine et al., 2007; Henneron
et al., 2022; Lehmann & Kleber, 2015; Soong et al., 2020). Fresh carbon inputs are not only usually energy‐rich
(e.g., sugars and proteins) but also less involved in soil organo‐mineral interactions that reduce the accessibility of
carbon substrates to microbes. As such, new carbon inputs would be preferentially or easily used by soil microbes
(Osler & Sommerkorn, 2007; Van Den Hoogen et al., 2019). The finding can help explain the neutral responses of
SOC to carbon input changes observed in manipulative field experiments at the time scale of years up to several
decades (Jiang et al., 2020; Kuzyakov et al., 2019; Terrer et al., 2019).

In deep soil, microbial decomposition may suffer from more depth‐induced environmental constraints such as
lower O2 availability (Hartmann et al., 2014) and stronger organo‐mineral interactions (Poirier et al., 2020). It is
reasonable to expect slower decomposition of carbon inputs in deeper layers. However, such expectation is not
supported by the depth‐independent transit (Figure 3a). According to Liebig's law of the minimum, it is likely that
those environmental constrains are still secondary compared to energy limitation in deeper soil layers (Henneron
et al., 2022; Jones et al., 2018; Soong et al., 2020). Indeed, the carbon to nitrogen ratio (a lower value of which
indicates lower energy content) usually decreases with soil depth (Jobbagy & Jackson, 2001). Carbon inputs in
deep soil are mainly comprised of root debris and exudates, which usually have a higher C:N ratio and would be
preferentially utilized by microbes to acquire energy. At later decomposition stages at the time scale of decades or
centuries, remaining carbon inputs may have been microbially‐processed and ‐recycled many times. These
recycled carbon (e.g., microbial debris or necromass) are not energy‐rich anymore, and their transit may be
strongly mediated by physiochemical protection processes. This would be the reason of why aged soil carbon is
dominant, particularly in deeper layers (Figure 3b).

Figure 5. Variation partitioning modeling on transit time structure of carbon
inputs (τ>30 years:τ>1 year) and age structure of soil carbon (a>1,000 years:
a<10 years). Detailed climatic, edaphic and topographic variables were
described in Table S1 in Supporting Information S1. Values in blank area
show total variances explained by the variation partition analysis. Inset white
area in sub‐figure (f) shows 0%.
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Unlike earlier studies that focused on mean transit times and soil carbon age (i.e., a and τ), in this study, we
quantitatively demonstrate that natural soil carbon capture is a slow process by estimating the fraction of
carbon inputs transformed into different age groups of soil carbon. For instance, in the topsoil (0–30 cm),
where the majority of carbon inputs are received (Wang et al., 2023), we show that only 2% of this input
remains for over 1,000 years. This challenges the efficacy of managing carbon inputs (e.g., through land
management or increased plant productivity) to enhance long‐term soil carbon sequestration. Instead, it may
be more practical to identify methods that can stabilize new carbon inputs (e.g., biochar application (Weng
et al., 2017)), or identify locations where climate and soil conditions can preserve most new carbon inputs for
extended periods, such as boreal forests, tundra, or deeper soil layers (Wang et al., 2023). Under global
change and land use/management shifts, plant communities and their root systems and rooting depth may be
altered (Lange et al., 2015; Sokol & Bradford, 2019) therefore redistributing carbon inputs through the soil
profile. This may have significant long‐term consequences on the vertical distribution of SOC storage along
the soil profile. Promoting carbon input to deeper depths may be more effective for long‐term SOC accu-
mulation, but these effects may take a considerable time to become noticeable. In the modeling community,
the predominant focus is on soil carbon dynamics in the upper layers (e.g., 0–30 cm), with limited attention
given to the transiting of carbon inputs and soil carbon sequestration in deeper layers. Furthermore, the
majority of existing models primarily address soil carbon transit behaviors, while only a few consider soil
carbon aging processes, and even fewer integrate both aspects due to data availability and technological
constraints. In this context, we propose that accounts for these two distinct processes regarding soil carbon
input transit and soil carbon aging are vital. Most importantly, our estimates provide insights into improving
the assessment and representation of diverse carbon transit behaviors across various soil depths within Earth
system models, thereby facilitating more precise predictions of soil carbon dynamics across the entire soil
profile in response to climate change and land management.

Climate and soil properties show depth‐dependent, interactive and distinct effects on SOC aging and carbon
input transiting (Figure 5). This phenomenon may be attributed to different mechanisms/controls that would
act with the proceeding of the decomposition of carbon inputs (Lehmann & Kleber, 2015). Climate has an
overall larger impact on SOC aging than carbon input transiting. A possible explanation is that climate in-
fluences both carbon input and output which form age structure, while soil properties influence more on the
output/decomposition rate and soil aggregates formation that dominate the impacts on the transit time. Our
previous study has demonstrated that climate is the most important regulator of mean SOC age (Wang
et al., 2023; Xiao et al., 2022). For transit times, soil properties have been found to override climatic at-
tributes controlling mean transit times of carbon inputs in the 30–100 cm soil depths (Luo et al., 2019).
Another study focusing on soil carbon stock has also demonstrated that climatic and soil properties show
similar importance for controlling the global spatial pattern of SOC stock (Luo et al., 2021). It is well
recognized that SOC is comprised of a continuum of carbon compounds with different ages, and different
carbon fractions (e.g., particulate and mineral‐associated organic carbon) exert distinct response to climate
and land use changes (Lugato et al., 2021; Luo et al., 2020). These results suggest that final SOC storage
would be the combined and integrated consequences of the distinct decomposition and stabilization of those
compounds with different ages at different transit stages.

5. Conclusion
Our study quantified the age structure of SOC and the transit behavior of plant‐derived carbon inputs across
different soil depths. We found that aged carbon (>30 years) dominates SOC in deeper layers, but most
carbon inputs transit fast regardless of the depth of entering. In the topsoil (0–30 cm), where most carbon
inputs occur, only a small fraction of them (∼13%) stay longer than 30 years and contribute to long‐term
SOC sequestration. Our estimations can help improve testing and represent distinct carbon transit behav-
iors with the proceeding of decomposition across depths in Earth system models, thereby promoting reliable
prediction of whole‐profile SOC dynamics in response to climate change and land management.

Data Availability Statement
The data that support the findings of this study can be downloaded from figshare (Wang, 2022).
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