

Trajectory-Based Conjugate Heat Transfer Simulation of the BoLT-II Flight Experiment

Centre for Hypersonics

Dr Kyle Damm, Dr Damian Curran, Dr Rowan Gollan, A/Prof. Anand Veeraragavan

Outline

- Motivation: BoLT-II thermal analysis
- Numerical methods for CHT:
 - Fluid-Solid coupling
 - Fluid-Solid solver
- Accelerated transient simulation of solid domain via Super-Time-Stepping:
 - Overview
 - Performance investigation on a hypersonic flow problem
- Demonstration: **BoLT-II trajectory-based** simulation

Motivation: BoLT-II Thermal Loading

Fluid-Solid Coupling

- Partitioning approach separate fluid solver and solid solver
- For hypersonic flows the fluid time scale << solid time scale
 A.Steady-state flow fields at each trajectory point
 - B.Transient evolution of heat soak into solid
- Coupling strategy (Flux Forward Temperature Back):

1.Choose Δt_{couple}

- 2.Perform a fluid domain steady-state update (fixed temperature boundary condition)
- 3. Transfer heat flux from fluid domain to solid domain
- 4.Perform solid domain transient update (fixed heat flux boundary condition)
- 5. Transfer temperature from solid domain to fluid domain
- 6.Repeat steps 2-5 for N stages where $T_{flight} = N\Delta t_{couple}$

Fluid-Solid Solver

- Eilmer open-source multi-physics solver (http://gdtk.uqcloud.net/)
- 2D/3D cell-centered finite volume compressible flow solver
 - Solves the Euler, Navier-Stokes, RANS equations
 - Operates on structured/unstructured grids (native, GridPro, SU2)
 - Several gas models: ideal, thermally perfect, multi-temperature, state-specific
- 2D/3D cell-centered finite volume **solid solver** (energy conservation equation)
- Time-accurate updates using Runge-Kutta family of integrators
- Jacobian-Free Newton-Krylov (JFNK) method for accelerated steady-state convergence

Super-Time-Stepping

- Investigated Super-Time-Stepping (STS) for accelerated transient time integration
- STS is a type of Stabilised Explicit Runge-Kutta method
- Runge-Kutta-Legendre variant implemented (s-stages):

$$y_{0} = y(t_{0})$$

$$y_{1} = y_{0} + \tilde{\mu}_{1}\Delta t y'_{0}$$

$$y_{j} = \mu_{j}y_{j-1} + \nu_{j}y_{j-2} + \tilde{\mu}_{j}\Delta t y'_{j-1}$$

$$y(t + \Delta t) = y_{s}$$

$$\mu_{j} = (2j - 1)/j$$

$$\nu_{j} = (1 - j)/j$$

$$\tilde{\mu}_{j} = 2\mu_{j}/(s^{2} + 2)$$

- Inner stages are RK-like
- Enables an increase in the stable time-step:

$$\Delta t = \Delta t_{explicit} \left(\frac{s^2 + s}{2} \right)$$

- Theoretical speed-up of O(s) relative to an Euler update scheme
- Algorithm adaptively chooses **appropriate s value** for each step

Super-Time-Stepping

- CHT simulation of **hypersonic** flow over a hollow cylinder
 - Based on experiments by Wieting (1987)
 - Validation results presented in paper
- Simulated 5 seconds of wind tunnel experiment
- Using $\Delta t_{\text{COUPLe}} = 1.0 \text{ s}$ (i.e. 5 flow/solid solutions)
- Compare wall-clock time for:
 - Traditional Euler scheme
 - STS scheme employing s_{max} = 5, 10, 50, 100, 200

Super-Time-Stepping

method	Δt (s)	Wall-clock (s)	Speedup factor
Euler	6.947×10^{-5}	305.46	1.0
STS ($s = 5$)	1.042×10^{-3}	144.66	2.1
STS ($s = 10$)	3.821×10^{-3}	58.54	5.2
STS ($s = 50$)	8.858×10^{-2}	9.28	32.9
STS ($s = 100$)	3.508×10^{-1}	4.58	66.7
STS ($s = 169$)	9.980×10^{-1}	2.76	110.7

- Results are for the largest time-step taken during a simulation (corresponding to $s \leq s_{max}$)
- STS allows for a stable time-step orders of magnitude larger than the stable Euler time-step
- The speedup factor is approximately **O(s)**
- The time-step for s = 200 is larger than 1.0 s, hence the adaptive algorithm is invoked on the first step

BoLT-II Trajectory Simulation

- Simulated portion of the descent trajectory
- $\bullet\,\mbox{From}\,t_{start}=396\,\,s$ to $t_{final}=406\,\,s$
- $\Delta t_{couple} = 2~s$ (i.e. 5 flow/solid solutions)
- Uniform initial **solid temperature** at 300 K
- Each flow simulation is initialized by the **freestream condition**
- Spalart-Allmaras turbulence model
- Approximately 8.5 million fluid cells and 3.5 million solid cells

BoLT-II Trajectory Simulation

- JFNK solver converges fluid domain in 500 steps
- Solid domain STS breakdown:
 - $s_{max} = 1000$
 - Maximum time-step $\Delta t_{max} = 1.757 \ s$
 - 6 solid time-steps to simulate 2.0 seconds
- Equivalent Euler time-stepping:
 - $\Delta t_{\text{explicit}} = 3.5 \times 10^{-6} \text{ s}$
 - Would require over 500,000 Euler time-steps!
 - Theoretical speedup factor of approx. 500

Conclusions

Super-Time-Stepping...

- Is a simple to implement explicit update scheme for solving parabolic PDEs
- Allows large stable time-steps orders of magnitude larger than an Euler time-step
- Achieves a speedup factor of O(s)
- Has been an enabling technology for large scale **BoLT-II trajectory-based CHT** simulations

Contact

Dr Kyle Damm Postdoctoral Research Fellow kyle.damm@uqconnect.edu.au +61 437308617

CRICOS 00025B