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About Me!

I am Nick:
• PhD in supersonic combustion, 2019
• Started as postdoctoral fellow @ UQ in 2020
• CFD code dev (Eilmer) and HPC sims expert
• This work sponsored by ARC grant DP230102601

n.gibbons@uq.edu.au

nicholas-gibbons-67342555
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What is Eilmer?

Eilmer is our flagship open-source supersonic CFD code:
• Part of the Gasdynamic Toolkit (GDTk)
• Maintained at UQ and UniSQ

Try the code: gdtk.uqcloud.net
• Free and open-source (Paper: [1])
• Very capable nonequilibrium thermochemistry models
• Parallel scaling to 1000's of cores
• LES/DNS/RANS enabled on complex geometries
• Extensively validated against decades of experiments

Apollo capsule at 18.6° angle of attack
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https://gdtk.uqcloud.net/


Today’s Talk: Oxygen Enrichment for High Mach Number Scramjets

An Airbreathing 3-Stage to Orbit System for Launching Small Satellites:

Developed by Michael Smart and Matthew Tetlow [2]
• Thomas Jazra [3]
• Dawid Preller [4]
• Sholto Forbes-Spyratos [5]
• Alex Ward [6]

Scramjet Off point is important:
• Marginal thrust/drag performance
• Uncertainty about best Mach number
• Room for improvement with added O2?

Vertical Launch:
 - Mach 0
 - Isp ~ 200 s

Scramjet On:
 - Mach 5
 - Isp ~ 1000 s

Scramjet Off:
 - Mach 10-12
 - Isp ~ 400 s 

Payload Delivered:
 - Mach 25 
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How do scramjets work again?

• Scramjet engines get high performance by harvesting oxygen from the atmosphere
• Significantly better Isp and size compared to a rocket
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Why Oxygen Enrichment?

Accelerator scramjets start to struggle at high altitude/Mach numbers:
• Can we carry a little bit of onboard oxygen to help at the end?
• First let’s simulate this problem with Eilmer
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Let’s start with an existing, published design: The M12REST Engine

Originally developed by Suraweera and Smart [7]:
• Improvements by James Barth and Vince Wheatley [8]
• Experimental testing Dylan Wise and Michael Smart [9]
• More improvements by Will Landsberg and Anand Veeraragavan [10]

IsolatorForebody Inlet Combustor Nozzle
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This Work: Preliminary Validation and Exploratory Simulations with Eilmer

3D, Steady-State, Reacting, RANS calculations with Eilmer v4:
• 9M and 27M cell medium and fine grids
• Spalart-Allmaras-Edwards single-equation RANS turbulence model
• Chemical Reactions with 13 species, 33 reaction model of Jachimowski
• Uses Eilmer’s Jacobian-Free Newton-Krylov (JFNK) [11] steady-state solver.

Flow conditions are based on a James Barth experiment in T4, shot 11491:
• Mach 12 flight enthalpy at 37.38 km, through the Mach 10 nozzle
• Fuelled to equivalence ratio of 1.24, with 30/70 split

p (Pa) T (K) u (m/s) M H_0 (MJ/kg) Radicals
Actual Flow: 1176.6 386.79 3630.2 9.183 7.01 Present
Flight Eqv: 398.66 243.71 3678.4 11.75 7.01 Absent
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This Work: Preliminary Validation and Exploratory Simulations with Eilmer
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Comparison to Experiment

Simulated Wall Pressure
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Comparison to Experiment
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Spatial Convergence

Medium Mesh:
• 9,356,036 hexahedral cells
• Partitioned into 1280 blocks
• Walls clustered to 2 μm

Fine Mesh:
• 27,451,851 hexahedral cells
• Partitioned into 2176 blocks
• Walls clustered to 2 μm
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Temporal Convergence

Assess convergence in time using the Global Relative Residual: | 𝑑𝑈
𝑑𝑡 | / | 𝑑𝑈

𝑑𝑡 |0

0 5 10 15
Total Wall Clock (Hours)

10−6

10−4

10−2

100

G
lo

ba
l R

el
at

iv
e 

Re
si

du
al

9M Cell M12REST on 1280 Cores

0 2 4 6 8
Total Wall Clock (Hours)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
27M Cell M12REST on 2176 Cores

0

10

20

30

40

50

0

10

20

30

40

50

n 
In

ne
r I

te
ra

tio
ns

12 / 17



Preliminary Oxygen Enrichment Testing

Oxygen Premixing:

EP = 1
8
𝑚̇𝑂2
𝑚̇𝐻2

× 100%

Try EP=12.5%:
• Premixed only in main injectors
• Otherwise match shot 11491

0

20

40

60

80

Co
w

l S
id

e 
p/

p1

Simulated Wall Pressure

−5

0

y

0 20 40 60 80 100
x

0
10
20
30
40
50
60
70

Bo
dy

 S
id

e 
p/

p1

CFD (Fuelled)
CFD (12.5% Enriched)
Exp Barth 2014

13 / 17



Q1D Flow Analysis

Collapse 3D flow into 1D:
• Slice the flow at x stations
• Sum up total flux through slice
• Find flowstate with the same total

Fi

F1D

𝐹1𝐷(𝑇 , 𝜌, 𝑣, 𝑌𝑠) =
∑𝑖 𝐹𝑖𝐴𝑖

∑𝑖𝐴𝑖
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Q1D Flow Analysis: Thrust

Calculate idealised thrust force:
• Choose an ambient pressure
• Frozen, isentropic expansion at

each point

Nice Improvement!
• Increased thrust from EP=12.5%
• No signs of overheating
• Probably just excess fuel burning
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Thanks!

• The GDTK Team: PJ, Rowan, Kyle, and Reece
• Vince Wheatley
• Pawsey Supercomputing Centre
• Typst

TRY TYPST

LaTeX

LaTeX
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