Hypersonic Aerodynamic Shape Optimisation

Reece Otto

Centre for Hypersonics The University of Queensland

August 8, 2024

Airframe Integration for Hypersonic Vehicles

Airframe integration (Schweikart [2]).

Required capture area vs Mach number (Ward [1]).

- required engine size scales with M_∞
- use airframe to assist with compression & expansion
- components are coupled, geometrically complex, require high-fidelity modelling
 - numerical optimisation

Aerodynamic Shape Optimisation

Optimised hypersonic lifting body (Zhang et al.).

- two levels of design optimisation: MDO & ASO
- theme in ASO literature: geometric freedom sacrificed for efficiency
- gradient calculation cost for N DVs:
 - finite differences: N+1 flow solutions
 - adjoint method: 1 flow solution + 1 linear system solution
- limited application of adjoint method for 3D hypersonic design

Optimised hypersonic inlet (Drayna).

Thesis aim: Investigate the applicability of adjoint-based shape optimisation for three-dimensional hypersonic vehicle design.

Part 1: Methodology

- geometric manipulation
- gradient calculation

Part 2: Design Applications

- minimum-drag hypersonic slender body of revolution
- hypersonic lifting body

(Chen et al. [5])

Geometric Parameterisation and Deformation

3D Shape Parameterisation Methods

- high local control, analytical representation, allows integrated mesh movement
- susceptible to overlap, tangency issues

- highly general, robust, DV selection decoupled from surface representation
- discrete representation, separate mesh deformation

Two-level Free-form Deformation

Wing parameterised with two-level FFD (Reist et al. [8]).

Integrated Shape and Grid Deformation

Plate geometry morphed into a blended-wing body (Hicken and Zingg [9]).

- fit entire mesh with B-Splines
- move mesh control points rather than vertices
- use cheap distance-based routine for control points

Parameterisation Methodology

Deformation Methodology

Gradient Calculation

objective function: J = J(D), gradients/shape sensitivities: dJ/dD

Finite differences

$$rac{\partial J}{\partial D_j} = rac{J(D_j+h) - J(D_j)}{h}$$
 (1)

- for each design variable D_j :
 - 1. perturb variable: $D_j + h$
 - 2. update surfaces and grid: \pmb{X}
 - 3. run flow solver: \boldsymbol{U}
 - 4. evaluate function: $J(D_j + h)$
 - 5. evaluate eqn 1

Adjoint method

$$\frac{dJ}{d\boldsymbol{D}} = \frac{\partial J}{\partial \boldsymbol{D}} + \boldsymbol{\lambda}^{T} \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{D}}$$
(2)
$$\left[\frac{\partial \boldsymbol{R}}{\partial \boldsymbol{U}}\right]^{T} \boldsymbol{\lambda} = -\left[\frac{\partial J}{\partial \boldsymbol{U}}\right]^{T}$$
(3)

- 1. compute partial derivatives
- 2. solve adjoint equations (equation 3)
 - sparse linear system
- $3. \ {\rm evaluate \ equation} \ 2$

Shape Sensitivity Verification – Hypersonic Bump

- modelling: Mach 5 flow Euler, NS & RANS
- <u>objective</u>: $J = F_{D,wave}$
- design variables: D_1 vertical translation, D_2 vertical scaling

Blocking	Method	$\partial J/\partial D_1$	$\partial J/\partial D_2$
1B	adjoint complex-step	$7.652439748627\underline{\textbf{438}}\text{e-}01 \\ 7.652439748627\underline{\textbf{382}}\text{e-}01$	$\begin{array}{l}9.8008643528069 \underline{10} \text{e-}04\\9.8008643528069 \underline{64} \text{e-}04\end{array}$
$2\mathrm{B}$	adjoint complex-step	7.652449114021 <u>621</u> e-01 7.652449114021 <u>596</u> e-01	9.8008784557861 <u>87</u> e-04 9.8008784557861 <u>31</u> e-04
4B	adjoint complex-step	$7.6524312915124 \underline{93}{e-01}$ $7.6524312915124 \underline{51}{e-01}$	9.8008553495246 <u>67</u>e-04 9.8008553495246 <u>28</u> e-04
8B	adjoint complex-step	$7.652449084951 \underline{116} e\text{-}01 \\7.652449084951 \underline{075} e\text{-}01$	9.8008784110591 <u>61</u> e-04 9.8008784110591 <u>22</u> e-04
27B	adjoint complex-step	$7.6524292886105 \underline{84} e\text{-}01 \\7.6524292886105 \underline{14} e\text{-}01$	9.8008527369557 <u>65</u> e-04 9.8008527369557 <u>54</u> e-04

Optimisation Algorithm

Sparse Nonlinear OPTimizer (SNOPT)

- $\bullet\,$ sequential quadratic programming (SQP) gradient-based
- constrained non-linear problems
- designed for hundreds to thousands of DVs $\left[10\right]$

Minimum-drag Hypersonic Slender Bodies of Revolution

- objective: minimise wave drag
- <u>constraints</u>: fixed length and base diameter (L/D = 3)
- parameterisation: 23 DVs scale and translation of control planes
- modelling: inviscid Mach 6.28 flow

Slender Body Optimisation – Surface Animation

Slender Body Optimisation – Grid Animation

Optimisation Iteration: 0

Slender Body Optimisation – Nose Grid Animation

Optimisation Iteration: 0

Slender Body Optimisation – Flow Field Comparison

Slender Body Optimisation – Profile Comparison

Slender Body Optimisation – Convergence

Slender Body Optimisation – Breakdown of Costs

Hardware:

- CPU: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz 16 cores
- RAM: 12 \times 16GB (192GB) DDR4 2933MHz

Overall:

- parameterisation: 15s (serial)
- function & gradient evaluations: 52
- total time: 9hrs 40min

Each design iteration:

- flow solver: 3min 39s (MPI parallel)
- gradient calculation: 7min 34s (shared-memory parallel)
- geometry deformation: 7s (shared-memory parallel)

Optimisation of a Hypersonic Lifting Body

- modelling: $M_{\infty} = 8, \alpha = 8^{\circ}, 40$ km altitude, inviscid, laminar & turbulent
- objective: maximise J = L/D
- <u>constraints</u>: fixed length & must contain payload
- parameterisation: 118 FFD DVs & 3 payload DVs

Lifting Body Optimisation – Surface Animation (1/2)

Lifting Body Optimisation – Surface Animation (2/2)

Lifting Body Optimisation – Grid Animation

Lifting Body Optimisation – Comparison to Baseline

Lifting Body Optimisation – Convergence

Lifting Body Optimisation – Breakdown of Costs

Hardware:

- CPU: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz 16 cores
- RAM: 12 \times 16GB (192GB) DDR4 2933MHz

Overall:

- parameterisation: 11s (serial)
- function & gradient evaluations: 47
- total time: 2hr 50min

Each design iteration:

- flow solver: 22s (MPI parallel)
- gradient calculation: 2min 47s (shared-memory parallel)
- geometry deformation: 4.4s (shared-memory parallel)

References I

- Alexander Ward. "Aftbody design of winged-cone derived hypersonic vehicles". PhD thesis. School of Mechanical and Mining Engineering, The University of Queensland, 2022.
- Larry Schweikart. The Hypersonic Revolution, Case Studies in the History of Hypersonic Technology: Volume III, the Quest for the Obital Jet: The Natonal Aero-Space Plane Program (1983-1995). Createspace Independent Publishing Platform, 1998. ISBN: 9781478146179.
- [3] B. Zhang et al. "Efficient Aerodynamic Shape Optimization of the Hypersonic Lifting Body Based on Free Form Deformation Technique". In: *IEEE Access* 7 (Oct. 2019), pp. 147991–148003. DOI: 10.1109/ACCESS.2019.2945082.
- [4] T. W. Drayna. "Design and Optimization of Hypersonic Inward-Turning Inlets". PhD thesis. The University of Minnesota, 2011.
- [5] Song Chen et al. "Aerodynamic Shape Optimization of Common Research Model Wing-Body-Tail Configuration". In: Journal of Aircraft 53.1 (2016), pp. 276–293. DOI: 10.2514/1.C033328.
- [6] T. M. Leung and D. W. Zingg. "Aerodynamic Shape Optimization of Wings Using a Parallel Newton-Krylov Approach". In: AIAA Journal 50.3 (2012), pp. 540–550. DOI: 10.2514/1.J051192.
- G. K. W. Kenway. "A Scalable, Parallel Approach for Multi-Point, High-Fidelity Aerostructural Optimization of Aircraft Configurations". PhD thesis. Graduate Department of Aerospace Engineering, University of Toronto, 2013.

- [8] T. A. Reist et al. "Cross Validation of Aerodynamic Shape Optimization Methodologies for Aircraft Wing-Body Optimization". In: AIAA Journal 58.6 (2020), pp. 2581–2595. DOI: 10.2514/1.J059091.
- [9] J. E. Hicken and D. W. Zingg. "Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement". In: AIAA Journal 48.2 (2010), pp. 400–413. DOI: 10.2514/1.44033.
- [10] P. E. Gill, W. Murray, and M. A. Saunders. "SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization". In: SIAM Review 47.1 (2005), pp. 99–131. DOI: 10.1137/S0036144504446096.