
Eilmer4: the next step in the UQ simulation
codes for high-enthalpy flows

Peter Jacobs, Rowan Gollan (as co-chief gardeners)
Kyle Damm, Elise Fahy, Daniel Potter

James Burgess, Heather Muir
and many others, as listed on the final slide...

School of Mechanical Engineering, University of Queensland

06 December 2016

Motivation and History

Gas dynamic formulation and code implementation

Example – hemisphere in shock tube

List of Contributors



Motivation – High-enthalpy Flows

I An application of
high-enthalpy flow from your
grand-parents’ days.

I Not much has changed.



Motivation – Computational Fluid Dynamic Tools



Eilmer in a nutshell

I Eulerian/Lagrangian description of the flow
(finite-volume, 2D axisymmetric or 3D).

I Transient, time-accurate, optionally implicit
updates for steady flow.

I Shock capturing plus shock fitting boundary.

I Multiple block, structured and unstructured grids.

I Parallel computation on a cluster computer, using MPI in
Eilmer2,3 and shared memory in dgd/Eilmer4.

I High-temperature nonequilibrium thermochemistry (GPU).

I Dense-gas thermodynamic models and rotating frames of
reference for turbomachine modelling.

I Turbulence models: Baldwin-Lomax and k-ω.

I Coupling to radiation and ablation codes for aeroshell flows.

I ...plus conjugate heat transfer and MHD



Origins

I in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

I Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

I All configuration hard-coded into the Fortran source code and
compiled to run on a Cray supercomputer.

I In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

I Dec 1990: following a CFD lesson on the chalk-board from
Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology



Development of Eilmer

I 1993 built sm3d, a space-marching code for 3D scramjet flows

I 1995 through 1999: the postgrad years expanded scope of
experimentation and application

I 1996: code reformulation around fluxes (frequent discussions
with Mike Macrossan); all code still in C with a preprocessor
having a little command interpreter built in.

I 1997: discovered scripting languages Tcl and Python

I May 2003: scriptit.tcl provided fully programmable
environment for simulation-preparation.

I Aug 2004: Elmer began as a hybrid code using Python and C.

I Jun 2005: rewrite of Elmer(2) in C alone.

I Jul 2006: rewrite Elmer2 in C++ and, in 2008, call it
Eilmer3. Class-based implementation was easier to extend.



Eilmer – Let’s do it right, again.

Fred Brooks, in the “Mythical Man-Month: Essays on software
engineering”

Sooner or later the first system is finished, and the
architect, with firm confidence and a demonstrated
mastery of the class of systems, is ready to build a
second system. ...
This second is the most dangerous system a man ever
designs. ...
The general tendency is to over-design the second
system, using all the ideas and frills that were cautiously
sidetracked on the first one.

We’re OK, this is not our second system.
cns4u, mbcns, mbcns2, Elmer, Elmer2, Eilmer3 ... Eilmer4.



Eilmer4 – think big, but control the complexity.

I Jun 2015+: rebuild in the D and Lua programming languages.

I Heather Muir has been working on the unstructured-grid
generator. based on the paving algorithm.



Mathematical gas dynamics (in differential form)
Conservation of mass:

∂

∂t
ρ+∇ · ρu = 0 (1)

Conservation of species mass:

∂

∂t
ρi +∇ · ρiu = − (∇ · Ji ) + ω̇i (2)

Conservation of momentum:

∂

∂t
ρu +∇ · ρuu = −∇p −∇ ·

{
−µ(∇u + (∇u)†) + 2

3
µ(∇ · u)δ

}
(3)

Conservation of total energy:

∂

∂t
ρE +∇ · (e +

p

ρ
)u = ∇ · [k∇T +

Nv∑
s=1

kv,s∇Tv,s ] +∇ ·

[
Ns∑
i=1

hiJi

]
−
(
∇ ·
[{
−µ(∇u + (∇u)†) + 2

3
µ(∇ · u)δ

}
· u
])
− Qrad (4)

Conservation of vibrational energy:

∂

∂t
ρiev,i+∇·ρiev,iu = ∇·[kv,i∇Tv,i ]−∇·ev,iJi+QT−Vi +QV−Vi +QChem−Vi

−Qradi

(5)



More maths...

Thermodynamic model of the gas...
Finite-rate chemical kinetics...
Radiation energy exchange...
Boundary conditions...
Features:

I 3D from the beginning, 2D as a special case

I structured- and unstructured-meshes for complex geometries

I refined thermochemistry

I moving meshes (Jason Qin and Kyle Damm)

I simplified and generalized boundary conditions

I coupled heat transfer

I shared-memory parallelism for multicore workstation use

I block-marching for speed (nenzfr and nozzle design)



Code structure

I D language data storage and solver, with embedded Lua
interpreters for preprocessing, user-controlled run-time
configuration in boundary conditions and source terms and
thermochemical configuration.



Collecting the low-hanging fruit of parallelism

1   // First-stage of gas-dynamic update.
2   shared int ftl = 0; // time-level within the overall convective-update
3   shared int gtl = 0; // grid time-level remains at zero for the non-moving grid
4   if (GlobalConfig.apply_bcs_in_parallel) {
5   foreach (blk; parallel(gasBlocks,1)) {
6   if (blk.active) { blk.applyPreReconAction(sim_time, gtl, ftl); }
7   }
8   } else {
9   foreach (blk; gasBlocks) {
10   if (blk.active) { blk.applyPreReconAction(sim_time, gtl, ftl); }
11   }
12   }
13   

Notes:

I Need to keep most data thread local.

I D Compiler expands “parallel” into code that hands out tasks
to the default ThreadPool.



How far have we gone, in lines of source code.

At 60 lines per page,
the Eilmer4 code is equivalent to a 1200 page document.

 0

 50000

 100000

 150000

 200000

 250000

 300000

0
1
/0

1
/2

0
0
9

0
1
/0

1
/2

0
1
0

0
1
/0

1
/2

0
1
1

0
1
/0

1
/2

0
1
2

0
1
/0

1
/2

0
1
3

0
1
/0

1
/2

0
1
4

0
1
/0

1
/2

0
1
5

0
1
/0

1
/2

0
1
6

0
1
/0

1
/2

0
1
7

L
in

e
s
 o

f 
c
o
d
e
, 
d
o
c

Date

Source code and documentation development

e3code
e4code
e3doc



Verification and Validation Examples

Verification:

I Are we solving the equations correctly?

I Compare with numerical solutions from other codes.

I Manufactured solution that we must match (using special
source terms and boundary conditions).

Validation:

I Are we solving the correct gas-dynamic equations?

I Compare with experimental measurements.



Example: hemispherical probe in shock-tube flow

I Rose & Stark, 1958

I Approximate as a 2D, axisymmetric flow around a hemisphere.



Input script – gas model and flow

sphere.lua
~/papers/presentations/eilmer4−talk−sep−2016/figures/

1/1
05/09/16

−− sphere.lua
−− This script is used to setup a simlulation of Rose and Stark’s
−− hemispherical heat−transfer probe set in a shock tube.
−−
−− PAJ and RJG, 2016−08−28
−− Parts of this file go way back to before 2010 with bits taken from
−− the mbcns2/lehr_sphere example.
−−
config.title = "Rose and Stark experiment"
R = 6.6e−3 −− nose radius, metres
−− free stream conditions taken from Table 1, Entry 5
nsp, nmodes, gmodel = setGasModel(’cea−lut−air.lua’)
p_init = 6.7 −− Pa
p_inf = 535.6 −− Pa
T_inf = 2573.5 −− K
vx_inf = 2436.5 −− m/s
inflow = FlowState:new{p=p_inf, T=T_inf, velx=vx_inf}
initial = FlowState:new{p=p_init, T=T_inf}

−− Now set some configuration options
body_flow_time = R/vx_inf
t_final = 10 * body_flow_time −− allow time to establish
ni = 32; nj = 64
config.axisymmetric = true
config.viscous = true
config.spatial_deriv_calc = "divergence"
config.spatial_deriv_locn = "vertices"
config.viscous_signal_factor = 0.1
config.viscous_delay = 2 * body_flow_time
config.flux_calc = AUSMDV
config.gasdynamic_update_scheme = "moving_grid_2_stage"
config.grid_motion = "shock_fitting"
config.shock_fitting_delay = 3 * body_flow_time  
config.max_time = t_final
config.max_step = 800000
config.dt_init = 1.0e−12
config.cfl_value = 0.4
config.dt_plot = config.max_time/10.0

−− Set up the geometry for defining the grid
a = Vector3:new{x=0.0, y=0.0}
b = Vector3:new{x=−R, y=0.0}
c = Vector3:new{x=0.0, y=R}
d = { Vector3:new{x=−1.5*R, y=0.0}, Vector3:new{x=−1.5*R, y=R},
      Vector3:new{x=−R, y=2*R}, Vector3:new{x=0.0, y=3*R} }
−− Set up surface and grid
sphere_edge = Arc:new{p0=b, p1=c, centre=a}
psurf = makePatch{north=Line:new{p0=d[#d], p1=c}, south=Line:new{p0=d[1], p1=b},

east=sphere_edge, west=Bezier:new{points=d}}
cf_radial = RobertsFunction:new{end0=false, end1=true, beta=1.2}
grid = StructuredGrid:new{psurface=psurf, niv=ni+1, njv=nj+1,

cfList={north=cf_radial, south=cf_radial}}

blk = SBlockArray{grid=grid, fillCondition=initial, label=’blk’,
bcList={west=InFlowBC_ShockFitting:new{flowCondition=inflow},

east=WallBC_NoSlip_FixedT:new{Twall=296.0},
north=OutFlowBC_Simple:new{}},

                  nib=1, njb=4}

dofile("sketch−domain.lua")

Notes:

I user’s input script is Lua source code

I arguments to function calls delimited by ()

I tables delimited by {}
I object model by convention as described in Ierusalimschy’s

book “Programming in Lua”



Input script – geometry definition

sphere.lua
~/papers/presentations/eilmer4−talk−sep−2016/figures/

1/1
05/09/16

−− sphere.lua
−− This script is used to setup a simlulation of Rose and Stark’s
−− hemispherical heat−transfer probe set in a shock tube.
−−
−− PAJ and RJG, 2016−08−28
−− Parts of this file go way back to before 2010 with bits taken from
−− the mbcns2/lehr_sphere example.
−−
config.title = "Rose and Stark experiment"
R = 6.6e−3 −− nose radius, metres
−− free stream conditions taken from Table 1, Entry 5
nsp, nmodes, gmodel = setGasModel(’cea−lut−air.lua’)
p_init = 6.7 −− Pa
p_inf = 535.6 −− Pa
T_inf = 2573.5 −− K
vx_inf = 2436.5 −− m/s
inflow = FlowState:new{p=p_inf, T=T_inf, velx=vx_inf}
initial = FlowState:new{p=p_init, T=T_inf}

−− Now set some configuration options
body_flow_time = R/vx_inf
t_final = 10 * body_flow_time −− allow time to establish
ni = 32; nj = 64
config.axisymmetric = true
config.viscous = true
config.spatial_deriv_calc = "divergence"
config.spatial_deriv_locn = "vertices"
config.viscous_signal_factor = 0.1
config.viscous_delay = 2 * body_flow_time
config.flux_calc = AUSMDV
config.gasdynamic_update_scheme = "moving_grid_2_stage"
config.grid_motion = "shock_fitting"
config.shock_fitting_delay = 3 * body_flow_time  
config.max_time = t_final
config.max_step = 800000
config.dt_init = 1.0e−12
config.cfl_value = 0.4
config.dt_plot = config.max_time/10.0

−− Set up the geometry for defining the grid
a = Vector3:new{x=0.0, y=0.0}
b = Vector3:new{x=−R, y=0.0}
c = Vector3:new{x=0.0, y=R}
d = { Vector3:new{x=−1.5*R, y=0.0}, Vector3:new{x=−1.5*R, y=R},
      Vector3:new{x=−R, y=2*R}, Vector3:new{x=0.0, y=3*R} }
−− Set up surface and grid
sphere_edge = Arc:new{p0=b, p1=c, centre=a}
psurf = makePatch{north=Line:new{p0=d[#d], p1=c}, south=Line:new{p0=d[1], p1=b},

east=sphere_edge, west=Bezier:new{points=d}}
cf_radial = RobertsFunction:new{end0=false, end1=true, beta=1.2}
grid = StructuredGrid:new{psurface=psurf, niv=ni+1, njv=nj+1,

cfList={north=cf_radial, south=cf_radial}}

blk = SBlockArray{grid=grid, fillCondition=initial, label=’blk’,
bcList={west=InFlowBC_ShockFitting:new{flowCondition=inflow},

east=WallBC_NoSlip_FixedT:new{Twall=296.0},
north=OutFlowBC_Simple:new{}},

                  nib=1, njb=4}

dofile("sketch−domain.lua")

Notes:

I Fully-parametric grid generator is available.

I Table entries are mostly named. This is an advantage for large
numbers of parameters and helps to make your input script
self-documenting.

I Also, could import grids. Good for complex geometries
because you may use your favourite gridding tool.



Input script – flow-domain with boundary conditions

sphere.lua
~/papers/presentations/eilmer4−talk−sep−2016/figures/

1/1
05/09/16

−− sphere.lua
−− This script is used to setup a simlulation of Rose and Stark’s
−− hemispherical heat−transfer probe set in a shock tube.
−−
−− PAJ and RJG, 2016−08−28
−− Parts of this file go way back to before 2010 with bits taken from
−− the mbcns2/lehr_sphere example.
−−
config.title = "Rose and Stark experiment"
R = 6.6e−3 −− nose radius, metres
−− free stream conditions taken from Table 1, Entry 5
nsp, nmodes, gmodel = setGasModel(’cea−lut−air.lua’)
p_init = 6.7 −− Pa
p_inf = 535.6 −− Pa
T_inf = 2573.5 −− K
vx_inf = 2436.5 −− m/s
inflow = FlowState:new{p=p_inf, T=T_inf, velx=vx_inf}
initial = FlowState:new{p=p_init, T=T_inf}

−− Now set some configuration options
body_flow_time = R/vx_inf
t_final = 10 * body_flow_time −− allow time to establish
ni = 32; nj = 64
config.axisymmetric = true
config.viscous = true
config.spatial_deriv_calc = "divergence"
config.spatial_deriv_locn = "vertices"
config.viscous_signal_factor = 0.1
config.viscous_delay = 2 * body_flow_time
config.flux_calc = AUSMDV
config.gasdynamic_update_scheme = "moving_grid_2_stage"
config.grid_motion = "shock_fitting"
config.shock_fitting_delay = 3 * body_flow_time  
config.max_time = t_final
config.max_step = 800000
config.dt_init = 1.0e−12
config.cfl_value = 0.4
config.dt_plot = config.max_time/10.0

−− Set up the geometry for defining the grid
a = Vector3:new{x=0.0, y=0.0}
b = Vector3:new{x=−R, y=0.0}
c = Vector3:new{x=0.0, y=R}
d = { Vector3:new{x=−1.5*R, y=0.0}, Vector3:new{x=−1.5*R, y=R},
      Vector3:new{x=−R, y=2*R}, Vector3:new{x=0.0, y=3*R} }
−− Set up surface and grid
sphere_edge = Arc:new{p0=b, p1=c, centre=a}
psurf = makePatch{north=Line:new{p0=d[#d], p1=c}, south=Line:new{p0=d[1], p1=b},

east=sphere_edge, west=Bezier:new{points=d}}
cf_radial = RobertsFunction:new{end0=false, end1=true, beta=1.2}
grid = StructuredGrid:new{psurface=psurf, niv=ni+1, njv=nj+1,

cfList={north=cf_radial, south=cf_radial}}

blk = SBlockArray{grid=grid, fillCondition=initial, label=’blk’,
bcList={west=InFlowBC_ShockFitting:new{flowCondition=inflow},

east=WallBC_NoSlip_FixedT:new{Twall=296.0},
north=OutFlowBC_Simple:new{}},

                  nib=1, njb=4}

dofile("sketch−domain.lua")

Notes:

I May define many blocks on a single grid.

I We attach boundary conditions to the domain and specify the
initial flow condition.

I Boundary conditions default to class WallBC WithSlip.

I Some boundary conditions need extra information.



Results – evolution of the temperature field

I Characteristic time
τ = R

Vx,∞
= 2.7µs.

I Start viscous effects at 2τ .

I Start shock-fitting at 3τ .

I Run simulation to 10τ .

I Temperature range shown is
451 K to 3331 K.



Results – heat transfer distribution around sphere

 0.1

 1

 0  10  20  30  40  50  60  70  80  90

q
/q

s

angle from stagnation point, degrees

Normalised heat transfer to R6.6mm sphere with Ms=8

Eilmer4 simulation
Kemp-Rose-Detra theory

Kemp-Rose-Detra experiment



Results – stagnation-point heat transfer

 0

 0.5

 1

 1.5

 2

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

q
s
 M

W
/m

2

1/ni

Stagnation-point heat transfer to a 6.6mm hemisphere

Eilmer4
linear fit



The Many Contributors

Ghassan Al’Doori, Nikhil Banerji, Justin Beri, Peter Blyton, Daryl Bond,

Arianna Bosco, Djamel Boutamine, Laurie Brown, James Burgess, David

Buttsworth, Wilson Chan, Sam Chiu, Chris Craddock, Brian Cook, Jason

Czapla, Kyle Damm, Andrew Dann, Andrew Denman, Zac Denman, Luke

Doherty, Elise Fahy, Antonia Flocco, Delphine Francois, James Fuata, Nick

Gibbons, David Gildfind, Richard Goozeé, Sangdi Gu, Stefan Hess, Jonathan

Ho, Carolyn Jacobs, Ingo Jahn, Chris James, Ian Johnston, Ojas Joshi, Xin

Kang, Rainer Kirchhartz, Sam Lamboo, Steven Lewis, Pierre Mariotto, Tom

Marty, Matt McGilvray, David Mee, Carlos de Miranda-Ventura, Luke

Montgomery, Heather Muir, Jan-Pieter Nap, Brendan O’Flaherty, Andrew

Pastrello, Paul Petrie-Repar, Jorge Sancho Ponce, Daniel Potter, Jason (Kan)

Qin, Deepak Ramanath, Andrew Rowlands, Michael Scott, Umar Sheikh, Sam

Stennett, Ben Stewart, Joseph Tang, Katsu Tanimizu, Augustin

Tibere-Inglesse, Pierpaolo Toniato, Paul van der Laan, Tjarke van Jindelt,

Anand Veeraragavan, Jaidev Vesudevan, Han Wei, Mike Wendt, Brad (The

Beast) Wheatley, Vince Wheatley, Lachlan Whyborn, Adriaan Window, Hannes

Wojciak, Fabian Zander, Mengmeng Zhao


	Motivation and History
	Gas dynamic formulation and code implementation
	Example – hemisphere in shock tube
	List of Contributors

