
Playing Chicken with compressible flows:
Re-implementing the core of Eilmer’s transient-flow solver in CUDA

Peter Jacobs

The University of (Southern) Queensland

08 June 2023

Multi-processing
The Chicken Code
Applications

The (not so) modern workstation

▶ My Dell workstation is a 2012 model.

▶ PCH=Platform Controller Hub

▶ DDR=Double Data Rate memory

Layout of the CPU on silicon

https://arstechnica.com/gadgets/2009/09/intel-launches-all-new-pc-
architecture-with-core-i5i7-cpus/

x86 Core processor

https://mechanical876.blogspot.com/2019/11/x86-processor-architecture.html

▶ It all feeds the floating-point functional units... fast.

▶ There are 4 processors in my workstation, so lets run the
calculations in parallel.

Scaling of run times when using multiple processors

p/n

s
tn

n = 4

1 /* parallel fraction calculation, pj, 2016-05-24 */
2 eq0: p + s = t1;
3 eq1: p/na + s = ta;
4 eq2: p/nb + s = tb;
5 solve([eq0, eq1, eq2], [t1, p, s]);
6

1 # fparallel.py
2 # Compute fraction of work done in parallel.
3 na = 3; ta = 3214.0-518.0
4 nb = 7; tb = 1904.0-453.0
5 p = -(na*nb*ta - na*nb*tb)/(na - nb)
6 s = (na*ta - nb*tb)/(na - nb)
7 t1 = p + s
8 fp = p/t1
9 print("p=", p, "s=", s, "t1=", t1, "fp=", fp)
10
11

▶ Amdahl’s model for serial and parallel work components with
n processors.

▶ p calculations/work can be done independently by n processors

▶ s calculations/work needs to be done by a single processor

Amdahl’s scaling for parallel calculations

0 10 20 30 40 50 60 70
number of processors, n

0

10

20

30

40

50

60

70

sp
ee

d
-u

p,
 t1

/tn

Speed-up given parallel fraction of work.

fp=1 ideal
fp=0.99
fp=0.927
fp=0.90
fp=0.85

▶ Estimated fp=0.99987 for Eilmer4 NK variant.

▶ With 64 cores, expect speed-up t1/tn=63.5.

Microprocessor trend data

▶ Epyc 7601, introduced 2017.06 with 19.2× 109 transistors

▶ M1 Max, introduced 2021.08 with 57.0× 109 transistors

▶ Radeon MI 250, introduced 2021.09 with 58.2× 109 transistors

▶ https://github.com/karlrupp/microprocessor-trend-data

Layout of the Graphics Processing Unit (GPU) on silicon

▶ TU102 GPU, Source:
NVIDIA Turing Architecture
Whitepaper

▶ 6 Graphics Processing
Clusters (GPCs)

▶ 12 Streaming
Multiprocessors (SMs) per
GPC

▶ 64 CUDA cores per SM
(4608 for the GPU)

▶ Extrapolating Eilmer
speed-up t1/tn=2882.

▶ A$249 buys a GTX 1650
graphics card with a Tu117
GPU and 896 CUDA cores.

Layout of the GPU – Top-level structure

Layout of the GPU – The Streaming Multiprocessor

▶ 64 CUDA cores per SM with a
cache of shared memory.

▶ The cores have integer and
floating-point functional units.

▶ Register file is local memory for the
threads (but limited to 64kB)

▶ Warp scheduler runs sets of 32
threads of code (warps) in parallel
on each SM.

▶ Many more threads are scheduled
to run concurrently.

▶ It is cheap to swap warps (sets) of
32 threads if they get stalled,
waiting for data to be delivered
from global memory.

HPC God Fathers – Seymour Cray and John Rollwagen

Do you want your wagon pulled by 4 hefty bullocks or 1024 chickens?

27 Cray-2 computers were built and sold.
https://www.computerhistory.org/revolution/supercomputers/10/68/273
https://www.computerhistory.org/revolution/supercomputers/10/68/86

Free-piston-driven GPU

▶ NVIDIA, 2009

GPU activities in recent years

https://tuckdbpostcards.org/items/35560 (Artist: Wally Fiakowska)

▶ GPU-powered chemical-update in Eilmer (Kyle Damm).

▶ Shocked flows with Walsh functions (Jamie Border).

▶ Spatz, a Cartesian-grid based flow solver (Christine Mittler).

▶ Chicken, port the “traditional” gas-dynamics core of Eilmer.

The Chicken compressible-flow code

▶ Time-marching, shock-capturing, laminar, 3D flow.

▶ Ideal gas model with simple combustion.

▶ Design goal: simple enough code to write in a month or two.

▶ To use thousands of cores, we have to partition the
calculations into small, independent parcels of work.

Gas-dynamic equations

Conservation statements for mass, momentum and energy
determine what happens next:

∂

∂t

∫
V
UdV = −

∮
S
F c · n̂ dA+

∫
V
QdV ,

For a two-species (α, β) gas, the array (U) of conserved quantities
and convective flux vectors (F) in 2D are

U =

ρ
ρvx
ρvy
ρE
ρYβ

 , F c =

ρvx

ρv2x + p
ρvyvx

ρEvx + pvx
ρYβvx

 î +

ρvy
ρvxvy
ρv2y + p

ρEvy + pvy
ρYβvy

 ĵ ,

Conserved quantities in the U vector are per unit volume.
Total specific energy is E = u + 1

2v
2.

The chemical reactions appear as source terms for Yβ and energy.

Flux calculators

To compute the flux of mass, momentum and energy at each face,
we work in the local coordinate frame of the face, n̂ is the unit
normal, t̂ is the corresponding unit tangent.

We usually think of the flux calculator as incorporating some
approximate solution to the Riemann problem for the interaction of
a left (L) flow state and a right (R) flow state, with the flux values
being estimated at the initial location of the interface.

The flux for a uniform supersonic flow is

F c =

ṁ

ṁ vn + p
ṁ vt

ṁ (E + p/ρ)
ṁ Yβ

 n̂

where ṁ = ρ vn is the mass flux.

Cells, faces, vertices and indexing

x

jface[i][j]

jface[i][j+1]

iface[i+1][j]
iface[i][j]

cell[i][j]

vtx[i+1][j]

vtx[i+1][j+1]

vtx[i][j]

vtx[i][j+1]

y

vertex: geometric location
face:

▶ Defined by vertices at ends.

▶ We calculate fluxes of mass,
momentum and energy
across each face.

cell:

▶ Defined by bounding faces.

▶ Flow state associated with
cell centre.

▶ Each finite-volume cell is the
basic unit over which the
gas-dynamic equations are
applied.

Boundary conditions, multiple blocks

The picture at left shows strips of cells within two
blocks. They are aligned even though they are
shown offset.

▶ Each block has two “ghost” cells associated
with each end of the strip.

▶ Convective boundary conditions are
implemented by copying appropriate data
into the ghost cells. Red arrows indicate data
transfer.

▶ An adjacent block interacts through a simple
copy of the flow data.

▶ There is a fixed ordering of the blocks (in the
i, j and k index directions).

▶ Interaction with a solid wall involves
reflection of the flow data in the frame of the
boundary face.

Overview of the calculation process

Given a discretized domain, an initial flow at t = 0, and a set of
boundary conditions, do:

1. Set up ghost-cell flow states to effect the boundary conditions.

2. For all faces, compute flux vectors.

3. For all cells, update conserved quantities and flow states over
small dt.

4. Maybe save the flow data for postprocessing.

5. Move on to time t + dt.

6. If t < tmax , go back to step 1.

7. We are done.

Gas-dynamic update code for CPU (only)

1 // Gas-dynamic update over three stages with TVD-RK3 weights.
2 int bad_cell_count = 0;
3 // Stage 1.
4 // number t = SimState::t; // Only needed if we have time-dependent source terms or BCs.
5 apply_boundary_conditions_for_convective_fluxes();
6 for (auto& bcc : bad_cell_counts) bcc = 0;
7 #pragma omp parallel for
8 for (int ib=0; ib < Config::nFluidBlocks; ib++) {
9 BConfig& cfg = blk_configs[ib];

10 Block& blk = fluidBlocks[ib];
11 if (cfg.active) {
12 blk.calculate_convective_fluxes(Config::flux_calc, Config::x_order);
13 if (Config::viscous) {
14 apply_viscous_boundary_conditions(blk, cfg);
15 blk.add_viscous_fluxes();
16 }
17 bad_cell_counts[ib] = blk.update_stage_1(cfg, SimState::dt);
18 }
19 }
20 for (auto bcc : bad_cell_counts) bad_cell_count += bcc;
21 if (bad_cell_count > 0) {
22 throw runtime_error("Stage 1 bad cell count: "+to_string(bad_cell_count));
23 }

▶ Runs everything on the CPU.

Gas-dynamic update code for GPU
1 // Gas-dynamic update over three stages with TVD-RK3 weights.
2 bad_cell_count = 0;
3 status = cudaMemcpy(bad_cell_count_on_gpu, &bad_cell_count, sizeof(int), cudaMemcpyHostToDevice);
4 if (status) throw runtime_error("Stage 0, could not copy bad_cell_count to gpu.");
5 //
6 // Stage 1.
7 // number t = SimState::t; // Only needed if we have time-dependent source terms or BCs.
8 for (int ib=0; ib < Config::nFluidBlocks; ib++) {
9 BConfig& cfg = blk_configs[ib];

10 Block& blk = fluidBlocks[ib];
11 if (!cfg.active) continue;
12 Block& blk_on_gpu = fluidBlocks_on_gpu[ib];
13 BConfig& cfg_on_gpu = blk_configs_on_gpu[ib];
14 //
15 int nGPUblocks = cfg.nGPUblocks_for_faces;
16 int nGPUthreads = Config::threads_per_GPUblock;
17 calculate_fluxes_on_gpu<<<nGPUblocks,nGPUthreads>>>(blk_on_gpu, cfg_on_gpu, flowStates_on_gpu, fluidBlocks_on_gpu,
18 Config::flux_calc, Config::x_order, Config::viscous);
19 auto cudaError = cudaGetLastError();
20 if (cudaError) throw runtime_error(cudaGetErrorString(cudaError));
21 //
22 nGPUblocks = cfg.nGPUblocks_for_cells;
23 nGPUthreads = Config::threads_per_GPUblock;
24 update_stage_1_on_gpu<<<nGPUblocks,nGPUthreads>>>(blk_on_gpu, cfg_on_gpu, Config::source_terms,
25 SimState::dt, bad_cell_count_on_gpu);
26 cudaError = cudaGetLastError();
27 if (cudaError) throw runtime_error(cudaGetErrorString(cudaError));
28 }
29 status = cudaMemcpy(&bad_cell_count, bad_cell_count_on_gpu, sizeof(int), cudaMemcpyDeviceToHost);
30 if (status) throw runtime_error("Stage 1, could not copy bad_cell_count from gpu to host cpu.");
31 if (bad_cell_count > 0) {
32 throw runtime_error("Stage 1, bad cell count: "+to_string(bad_cell_count));
33 }

▶ This code runs on CPU and launches many threads of kernel
functions that run on the GPU.

▶ Those threads are where the work is done.

Update-stage-1 code on GPU

1 __global__
2 void update_stage_1_on_gpu(Block& blk, const BConfig& cfg, int isrc, number dt, int* bad_cell_count)
3 {
4 int i = blockIdx.x*blockDim.x + threadIdx.x;
5 if (i < cfg.nActiveCells) {
6 FVCell& c = blk.cells_on_gpu[i];
7 ConservedQuantities dUdt0;
8 c.eval_dUdt(dUdt0, blk.faces_on_gpu, isrc);
9 blk.dQdt_on_gpu[i] = dUdt0; // keep

10 ConservedQuantities U = blk.Q_on_gpu[i]; // U0
11 for (int j=0; j < CQI::n; j++) { U[j] += dt*dUdt0[j]; }
12 blk.Q_on_gpu[cfg.nActiveCells + i] = U; // keep update
13 int bad_cell_flag = c.fs.decode_conserved(U);
14 atomicAdd(bad_cell_count, bad_cell_flag);
15 if (bad_cell_flag) {
16 printf("Stage 1 update, Bad cell at pos x=%g y=%g z=%g\n", c.pos.x, c.pos.y, c.pos.z);
17 }
18 }
19 }

▶ This code is a kernel function that runs in a thread of code
execution on GPU.

▶ It is started with thread-specific context.

▶ Each thread works on a single finite-volume cell.

▶ Calls other functions that run in the same thread on the GPU.

eval-dUdt code on GPU or CPU
1 __host__ __device__
2 void eval_dUdt(ConservedQuantities& dUdt, FVFace faces[], int isrc)
3 // These are the spatial (RHS) terms in the semi-discrete governing equations.
4 {
5 number vol_inv = one/volume;
6 auto& fim = faces[face[Face::iminus]];
7 auto& fip = faces[face[Face::iplus]];
8 auto& fjm = faces[face[Face::jminus]];
9 auto& fjp = faces[face[Face::jplus]];

10 auto& fkm = faces[face[Face::kminus]];
11 auto& fkp = faces[face[Face::kplus]];
12 // Introducing local variables for the data helps
13 // promote coalesced global memory access on the GPU.
14 number area_im = fim.area; ConservedQuantities F_im = fim.F;
15 number area_ip = fip.area; ConservedQuantities F_ip = fip.F;
16 number area_jm = fjm.area; ConservedQuantities F_jm = fjm.F;
17 number area_jp = fjp.area; ConservedQuantities F_jp = fjp.F;
18 number area_km = fkm.area; ConservedQuantities F_km = fkm.F;
19 number area_kp = fkp.area; ConservedQuantities F_kp = fkp.F;
20 //
21 for (int i=0; i < CQI::n; i++) {
22 // Integrate the fluxes across the interfaces that bound the cell.
23 number surface_integral = area_im*F_im[i] - area_ip*F_ip[i]
24 + area_jm*F_jm[i] - area_jp*F_jp[i] + area_km*F_km[i] - area_kp*F_kp[i];
25 // Then evaluate the derivatives of conserved quantity.
26 // Note that conserved quantities are stored per-unit-volume.
27 dUdt[i] = vol_inv*surface_integral;
28 }
29 //
30 if (isrc != SourceTerms::none) add_source_terms(dUdt, isrc);
31 return;
32 } // end eval_dUdt()

▶ Used for both CPU and GPU flavours of Chicken.

Flow along a flat plate - 1

▶ Mach 4 free stream,
1.1m plate, 440mm
high domain.

▶ 220×2×192 = 84480
cells

▶ At x=1m, δ=3.4mm

▶ 198 ns/cell/update-
stage on GTX1650

▶ 14 ns/cell/update-
stage on A100

▶ 20µs/cell/Euler-step
for 2D cns4u code on
Cray-Y/MP back in
1991

Flow along a flat plate - 2

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2

y
,

m
m

vx/vxe

Chicken
CLBL

Velocity profile near wall at x = 1.0 m

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2

y
,

m
m

rho/rhoe

Chicken
CLBL

Density profile near wall at x = 1.0 m

▶ Compare profile through
boundary layer at x=1m.

▶ Reference data from
Schetz’ compressible,
laminar boundary-layer
(CLBL) program.

Transverse injection into a Mach 4 flow - 1

▶ Mach 4 flow in x-direction, boundary-layer profile at x=0.

▶ Sonic injection, in y-direction, through square port.

▶ 6 structured-grid blocks for half of the domain.

Transverse injection into a Mach 4 flow - 2

▶ Inflow with
boundary-layer profile
from self-similar
solution (Anderson’s
text book).

▶ 1,176,000 cells,
2.6GB memory
allocated on CPU and
GPU

▶ Run time 1.6 hours
on GTX1650

▶ 199 ns/cell/update-
stage

GPU hackathon team in front of Gadi

▶ November 2022

▶ NVIDIA mentor: Wei Fang

1 https://ascii.co.uk/art/chicken
2
3
4 MM MM MM MM
5 <' ___/| <' ___/| >' ___/| <' ___/|
6 _ _/ _ _/ O _ _/ _ _/
7][][][]!
8
9 Ordinary Chicken Chicken Laying Crowing Chicken Chicken with

10 an Egg Wooden Leg
11
12
13 MM MM ______ MM
14 <' ___/| <' ___/| /______\
15][/ \ ___________/ WW
16
17 Rooster Jogging Chicken Chicken Soup Falling Chicken
18
19
20 MM MM _--_ MM ///
21 <' __/ `> / \ <` ___/| <' ___/|
22 _ _/ | | _ _/. _ _/
23][____/][* \ \
24
25 Siamese Twin Chicken in an No Comment Racing Chicken
26 Chicken Early State
27
28 |
29 MM MM MM | MM
30 <' ___/| o>' ___/| <' ___/| =' ___/|
31 u/ _ _/ O _ _/ _ _/ _ _/
32][()][][][
33
34 Chicken Smoking Puking Chicken Chicken Leading a Whistling
35 a Pipe Japanese Tourist Group Chicken

	Multi-processing
	The Chicken Code
	Applications

