A Newton-Krylov Algorithm for Hypersonic Flows Performance Demonstration and Application

K. A. Damm

Centre for Hypersonics, School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland 4072, Australia

22nd July 2021

- Motivation: Hypersonic vehicle design via numerical optimization
- Newton-Krylov methods
- Eilmer4 overview
- Demonstrative examples
- Application: BoLT-II
- Grand challenge: HIFiRE-7
- Future Work

Hypersonic Vehicle Design

•Flow around a vehicle is **complex**:

- -- Shock-shock interactions
- -- Shock boundary layer interactions
- -- Separated regions of flow
- -- Thermochemical nonequilibrium

• High-fidelity CFD to resolve flow physics

Source: Alex Ward (Hypersonix)

Hypersonic Vehicle Design Optimization

•Example: minimum-drag slender body of revolution

- -- Many flow solutions to achieve converged design
- -- Adjoint-based method requires **deep** convergence

Newton-Krylov Methods

Residual function defined as

$$\frac{d\mathbf{U}}{dt} = \mathbf{R}(\mathbf{U}) = -\frac{1}{V} \sum_{faces} (\overline{F_c} - \overline{F_v}) \cdot \hat{n} \, dA + \mathbf{S}$$

Fully discrete form written using a backward difference

$$\frac{\Delta \mathbf{U}^k}{\Delta t} = \mathbf{R}(\mathbf{U}^{k+1}), \quad \Delta \mathbf{U}^k = \mathbf{U}^{k+1} - \mathbf{U}^k$$

Since we don't know $\mathbf{R}(\mathbf{U}^{k+1})$, we linearise in time

$$\frac{\Delta \mathbf{U}^k}{\Delta t} = \mathbf{R}(\mathbf{U}^k) + \frac{\partial \mathbf{R}(\mathbf{U}^k)}{\partial \mathbf{U}^k} \Delta \mathbf{U}^k$$

This is then rearranged to recover the implicit-Euler time marching iterate

$$\mathbf{J}(\mathbf{U}^k)\Delta\mathbf{U}^k = \left[\frac{1}{\Delta t}\mathbf{I} - \frac{\partial\mathbf{R}(\mathbf{U}^k)}{\partial\mathbf{U}^k}\right]\Delta\mathbf{U}^k = \mathbf{R}(\mathbf{U}^k), \quad \mathbf{U}^{k+1} = \mathbf{U}^k + \Delta\mathbf{U}^k$$

Note: as $\frac{1}{\Delta t}$ approaches 0, Newton's method is recovered

Cell

Newton-Krylov Methods

Solving the linear system

$$\mathbf{J}(\mathbf{U}^k) \Delta \mathbf{U}^k = \mathbf{R}(\mathbf{U}^k) \to \mathbf{A}\mathbf{x} = \mathbf{b}$$

Algorithm 6.9 GMRES

1.Compute
$$r_0 = b - Ax_0 \ \beta := ||r_0||_2$$
, and $v_1 := r_0/\beta$ 2.For $j = 1, 2, \dots, m$ Do:3.Compute $w_j := Av_j$ 4.For $i = 1, \dots, j$ Do: $h_{ij} := (w_j, v_i)$ 6. $w_j := w_j - h_{ij}v_i$ 7.EndDo8. $h_{j+1,j} = ||w_j||_2$. If $h_{j+1,j} = 0$ set $m := j$ and go to 119. $v_{j+1} = w_j/h_{j+1,j}$ 10.EndDo11.Define the $(m + 1) \times m$ Hessenberg matrix $\bar{H}_m = \{h_{ij}\}_{1 \le i \le m+1, 1 \le j \le m}$.12.Compute y_m the minimizer of $||\beta e_1 - \bar{H}_m y||_2$ and $x_m = x_0 + V_m y_m$.

Source: Saad (2003)

$$\mathbf{J}\mathbf{v} = \left[\mathbf{R}(\mathbf{U} + \epsilon \mathbf{v}) - \mathbf{R}(\mathbf{U})\right]/\epsilon$$

*We use a complex step variant

Newton-Krylov Methods

- Benefits of the Newton-Krylov approach:
 - -- able to treat **R(U)** as a **black box**
 - -- good for high speed flows (i.e. grids with high aspect ratio cells)
 - -- works for both structured and unstructured grids
 - -- avoid the need to derive and code implicit boundary conditions
 - -- easily parallelized and scales well in parallel
 - -- efficient on memory, in particular in 3D

• **DISCLAIMER:** GMRES requires a **preconditioning** step for fast convergence!!

- -- popular methods: Jacobi, SGS/SSOR (LU-SGS), ILU
- -- most require approximate matrix to be constructed
- -- we use forward-mode AD via a **complex-step derivate** approach
- -- can freeze matrix over several steps to amortize cost

Compressible Flow Governing Equations

Conservation of mass:

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \rho \mathbf{u} = \mathbf{0} \tag{1}$$

Conservation of species mass:

$$\frac{\partial}{\partial t}\rho_i + \nabla \cdot \rho_i \mathbf{u} = -\left(\nabla \cdot \mathbf{J}_i\right) + \dot{\omega}_i \tag{2}$$

Conservation of momentum:

$$\frac{\partial}{\partial t}\rho \mathbf{u} + \nabla \cdot \rho \mathbf{u} \mathbf{u} = -\nabla p - \nabla \cdot \left\{ -\mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\dagger}) + \frac{2}{3}\mu (\nabla \cdot \mathbf{u})\delta \right\}$$
(3)

Conservation of total energy:

$$\frac{\partial}{\partial t}\rho E + \nabla \cdot (e + \frac{p}{\rho})\mathbf{u} = \nabla \cdot [k\nabla T + \sum_{s=1}^{N_{v}} k_{v,s}\nabla T_{v,s}] + \nabla \cdot \left[\sum_{i=1}^{N_{s}} h_{i}\mathbf{J}_{i}\right] - \left(\nabla \cdot \left[\left\{-\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\dagger}) + \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\delta\right\} \cdot \mathbf{u}\right]\right) - Q_{\mathsf{rad}} \quad (4)$$

Conservation of vibrational energy:

$$\frac{\partial}{\partial t}\rho_{i}e_{v,i}+\nabla\cdot\rho_{i}e_{v,i}\mathbf{u}=\nabla\cdot[k_{v,i}\nabla T_{v,i}]-\nabla\cdot e_{v,i}\mathbf{J}_{i}+Q_{T-V_{i}}+Q_{V-V_{i}}+Q_{\mathsf{Chem}-V_{i}}-Q_{\mathsf{rad}_{i}}$$
(5)

Spatial Discretization

- Convective Fluxes
 - -- Flux calculators
 - + EFM, AUSMDV, HLLC, LDFSS, Hanel, HLLE, Roe, ASF
 - -- Structured Grids
 - + Piecewise parabolic reconstruction O(h³)
 - + Modified Van Albada limiter
 - -- Unstructured Grids
 - + Least-squares reconstruction O(h²)
 - + Venkatakrishnan limiter
 - + Limiter freezing available
- Viscous Fluxes
 - -- Augmented-face face-tangent method
 - + Least-squares method to reconstruct gradients at cell center
 - + Special averaging using gradients, flowstates, and cell geometry
 - + available with structured and unstructured grids
 - + retains high spatial order for multi-block simulations

Example #1: Inviscid Cone

- Flow Condition: Mach 1.5 single-species air
- Geometry: 20 degree cone (2D axisymmetric)
- Numerics: AUSMDV with O(h²) spatial reconstruction
- CFL schedule: 1.0 to 1x10⁶ (automatic growth)
- Solving Euler equations

Example #2: Laminar Flat Plate

- Flow Condition: Mach 4 single-species air
- Geometry: 2D flat plate
- Numerics: AUSMDV with O(h²) spatial reconstruction
- **CFL schedule**: 0.1 to 1x10⁶ (automatic growth)
- Solving Navier-Stokes equations

Example #3: Turbulent Flat Plate

- Flow Condition: Mach 4.5 single-species air
- Geometry: 2D flat plate model from Mabey (1976)
- Numerics: AUSMDV with O(h) spatial reconstruction
- **CFL schedule**: 0.1 to 1x10⁶ (automatic growth)
- Solving **RANS** equations
- Employed **k-omega** two-equation turbulence model

Example #4: Laminar Reacting Flow over a Sphere

K. A. Damm

UQ-TUM-DLR Workshop

Application: BoLT-II Project Simulations

Source: AFRL/Johns Hopkins APL

- Boundary-Layer Transition program sponsored by AFRL/AFOSR
- Project goal: Provide database for natural boundary layer transition
- Ground tests, simulations, flight experiment (later this year)
- Application #1: high-fidelity steady-state simulations to feed into DNS work
- Application #2: assist in T4 tunnel experimental design

Application: BoLT-II High-fidelity Laminar Simulation

- Flow Condition: Mach 6 (tunnel condition) single-species air
- **Geometry:** 1/3 scale BoLT-II tunnel model
- Numerics: blended Hanel-AUSMDV with O(h²) spatial reconstruction
- CFL schedule: 0.001 to 1000 (conservative schedule)
- Solving Navier-Stokes equations
- 6.5 million cell (GridPro) structured elements stored in unstructured grid format
- Grid partitioned into 480 blocks using Eilmer4 METIS wrapper

Application: BoLT-II High-fidelity Laminar Simulation

Application: BoLT-II CHT Simulation

- Flow Condition: Mach 6 (tunnel condition) single-species air
- Geometry: 1/3 scale BoLT-II tunnel model
- Numerics: AUSMDV with O(h³) spatial reconstruction
- CFL schedule: 0.1 to 1000 (conservative schedule)
- Solving Navier-Stokes equations in fluid domain
- Solving **energy** equation in **solid domain**
- 1.2 million cell (GridPro) structured elements stored in structured grid format

Application: BoLT-II CHT Simulation

Grand Challenge: HIFiRE-7 Simulation

- Flow Condition: Mach 7.8 (tunnel condition) single-species air
- Geometry: 75% scale HIFiRE-7 flowpath model
- Numerics: Hanel with O(h) spatial reconstruction
- CFL schedule: 1 to 2000 (conservative schedule)
- Solving Euler equations
- 45 million cell (**Pointwise**) unstructured grid (c\o NASA)
- Grid partitioned into 768 blocks using Eilmer4 METIS wrapper

Source: Chan et al. (2014)

Grand Challenge: HIFiRE-7 Simulation

Future Work

•Newton-Krylov acclerator:

- -- Evaluate performance of new preconditioners: Jacobi, SGS, SGS relaxation
- -- Compare performance to in-house matrix-based SGS relaxation solver
- Design optimization:

K. A. Damm

- -- Extend adjoint solver to incorporate:
 - + finite-rate chemistry
 - + two-temperature modelling

-- Explore application of optimizer to flows in **thermochemical nonequilibrium**

UQ-TUM-DLR Workshop