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Space News: Perseverence Rover
I Sister rover to Curiosity with new and improved components
I Landed in Jezero crater on Mars, 18th February 2020

Figure 1: False colour altimeter image of Jezero Crater, Mars.1

1photojournal.jpl.nasa.gov/jpeg/PIA23511.jpg



Space News: Perseverence
I Autonomous landing using Terrain Relative Navigation (TRN)

Figure 2: False colour hazard map of Jezero Crater, Mars. 2

2www.jpl.nasa.gov/images/jezeros-hazard-map



Space News: Perseverence

I Autonomous landing using Terrain Relative Navigation (TRN)

Figure 3: Perseverence rover landing site. 3

3@ThePlanetaryGuy



Space News: Chang’e 5
I China’s Chang’e 5 rover returns 2kg of moon rocks from Oceanus Procellarum
I Rocks are 1.2 billion years old (much younger than the Apollo or Luna missions)
I Launch date 24th November 2020, Lander returned 16th December

Figure 4: Chang’e 5 landing site. 4

4en.wikipedia.org/wiki/Chang%27e 5#/media/File:Landepunkt Chang%E2%80%99e 5.jpg



Space News: Hayabusa 2
I Ion-engine powered sample return mission to 162173 Ryugu
I ”Rubble Pile”, Type Cb asteroid, relatively young, formed from asteroid collisions
I Two samples taken and returned to Woomera Test Range on 5th of December

Figure 5: Asteroid 162173 Ryugu 5

5global.jaxa.jp/press/2018/06/images/20180627 hayabusa2 01.jpg
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Background: Electron Transpiration Cooling
I Thermionic emission discovered by many physicists in the 1800’s

I Electrons not even known about until 1897

I First proper treatment by Owen Richardson in 1900s, (1928 Nobel Prize)
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Figure 6: The “Edison Effect”: en.wikipedia.org/wiki/File:EdisonEffect.svg



Background: Electron Transpiration Cooling

I Interest in thermionic emission for hypersonics in 1960’s Touryan, 1965

I No mention of cooling, mostly concerned with power generation (?)

I Plasma wind-tunnel experiments at Mach 2.5, enthalpy of 32 MJ/kg

Figure 7: Plasma generator schematic from Touryan, 1965, figure 2



Background: Electron Transpiration Cooling

I Electrons take energy away from the surface and cool the emission point

I Surfaces can be sharp, compared to internal active cooling

I Need temperature/oxidation resistant material with low work function Φ
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Background: Electron Transpiration Cooling

I Sharp leading edges are hot because of 1/
√
R, but good for lower drag

I Low drag valuable to lifting hypersonic vehicles Lewis, 1999

I Sharp really means “sharp” R ≈ 1cm

Figure 8: Figures 1 (left) and 13 (right) from Santos, 2007



Current Work: ETC Linkage Project

I Lockheed Martin’s research division producing new electride materials

I Linkage Project with UQ started in 2020 to explore uses in hypersonics

I Brad Wheatley is our liason with Lockheed Martin Australia

Experiments in X2:

- Oliver Paxton

- Hadas Porat (DST)

- Ingo Jahn

- Richard Morgan

Two Fluid Plasma Modelling:

- Shazeb Imran

- Daryl Bond

- Vince Wheatley

CFD Modelling in Eilmer:

- Kyle Damm

- Rowan Gollan

- Peter Jacobs

- Myself



Current Work: ETC Modelling in Eilmer

Electron Transpiration Cooling in CFD:

1. High-temperature compressible flow simulation code

2. Thermionic/Radiative equilibrium wall boundary condition

3. Electric field solver and fluid coupling
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Current Work: 1. High-temperature flow simulation

As of July 2020, major improvements to Eilmer4 to handle:

1. A: Multicomponent species diffusion including ionised species

1. B: Vibrational/electronic energy exchange source terms

1. C: Catalytic wall boundary conditions



1. A: Multicomponent Species Diffusion
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I Diffusion coefficients calculated using collision integrals from Gupta
et al., 1990

I Charged particle Ds are modified to enforce ambipolar diffusion:
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I Enabled with:

config.mass_diffusion_model = "ficks_first_law"

config.diffusion_coefficient_type = "binary_diffusion"



1. A: Multicomponent Species Diffusion

I Two-temperature simulations of Oliver Paxton’s proposed experiments:
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1. A: Multicomponent Species Diffusion

I Without ambipolar diffusion
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1. A: Multicomponent Species Diffusion

I With ambipolar diffusion:
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1. B: Vibrational/Electronic Energy Exchange
I In the two-temperature model, the temperatures relax via molecular

collisions:
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1. B: Vibrational/Electronic Energy Exchange

I The relaxation time τms depends on the molecular m and collider s

I Electron energy exchange requires collision cross section data σes
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1. B: Vibrational/Electronic Energy Exchange

model = "TwoTemperatureAir"

I Single hardcoded model implementing Gupta et al., 1990 and Gnoffo,
Gupta, and Shinn, 1989

I Includes relaxation rates and chemical rate equations

model = "TwoTemperatureGas"

I Composite gas model with interchangeable components

$ cat air-11sp-energy-exchange.inp

Mechanism{

"(*molcs) ~~ (*heavy)",

type = "V-T",

rate = "Landau-Teller",

relaxation_time = {"ParkHTC", submodel={"Millikan-White"}}

}



1. B: Vibrational/Electronic Energy Exchange
I Simulations of the Project FIRE flight tests (Lewis and Scallion, 1966)

I Multiple different relaxation schemes in examples/eilmer/2D/fireII:
I A copy of the legacy model (Gnoffo/Gupta Nasa TRs, 1989)
I The classic Park model (Chul Park, JHTH, 1993)
I Brand new model based on QCC calculations (Kim and Jo, IJHMT, 2021)
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1. C: Catalytic Wall Boundary Conditions

I Real walls can cause accelerated chemistry and significant flow changes:

∂Y
∂x = 0

Non-catalytic:

Y = Yeq

Fully catalytic:



1. C: Catalytic Wall Boundary Conditions
I Extra options for WallBC NoSlip FixedT:

I catalytic type="equilibrium"
I catalytic type="fixed composition"

I See example in examples/eilmer/2d/wall-catalysis:



1. C: Catalytic Wall Boundary Conditions

I Chemistry at the wall can significantly increase heat transfer:



2. Thermionic/Radiative Equilibrium Boundary Condition
I Energy from the flow qflow heats the edges of a hypersonic vehicle

I Meanwhile, the surface is cooled by radiation qrad and possibly ETC qetc
I Final temperature can be estimated with a steady state energy balance:

0 = qflow − qrad − qetc (4)
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2. Thermionic/Radiative Equilibrium Boundary Condition

I Eilmer BC WallBC ThermionicEmission solves these equations for T

I This gives a varying steady-state wall temperature along the boundary

0 = qflow − qrad − qetc (5)
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Application: Blunt Wedge from (Alkandry, 2014)

I ”Conceptual Analysis of Electron
Transpiration Cooling for the
Leading Edges of Hypersonic
Vehicles”, AIAA 2014-2674

I v = 6km/s, ρ = 2.3× 10−4,
T = 238K flow

I 11 species, two temperature air
model with ionisation

I Electron emission according to
Richardson’s law
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Application: Blunt Wedge from Alkandry, 2014
I Stagnation line temperature data
I ETC+Radiation vs. Radiation only



Application: What does it mean?

I Why does this ETC stuff matter anyway?

I CFD model gives Twall = f(v, ρ,R)

I Doing a sweep of altitude/velocity tells us where we can fly
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Application: What does it mean?

I I’ve submitted an abstract to 2021 Spaceplanes conference to try this

I 200 (?) simulations, need steady-state solver

I In the meantime let’s try a simple model for qflow:

qflow = 7.455× 10−5 ρ0.4705 v3.089

R0.52
(9)

I Correlation for convective heating from Brandis and Johnston, 2014

I Computed from a large number of LAURA simulations Gnoffo, 1990



Application: What does it mean?
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Application: What does it mean?
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Application: What does it mean?
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Conclusion: The Future of Eilmer4

I Official Eilmer4 paper in the works

I Version 4.0 Release

I Updated Website Coming Soon

WE NEED YOU!
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