Advanced Use of Eilmer for Hypersonic Flow Simulation

Rowan Gollan and Peter Jacobs

Day 2: 10 May 2018

The University of Queensland

Short Course Outline, Day 2

Morning: presentation & discussion

- Eilmer for simulation of hypersonic flows
- Advanced thermochemistry
- Turbulence modelling
- Parallel computing: small & large scale
- Advanced/experimental features
 - user-defined BCs and source terms
 - moving grid
 - shock-fitting boundaries
 - block-marching mode
 - wall functions for turbulence
 - GPU-acceleration of reacting flows
 - steady-state solver
 - adjoint solver for optimisation
 - state-specific chemistry coupled to flow

Afternoon: hands-on activities

- Installing MPI version of Eilmer
- Working in 3D
 - importing grids from 3rd-party grid generation tools
 - partitioning structured and unstructured grids
- Fourth example: Reacting air flow over a sphere
- Fifth example: shock-wave boundary-layer interaction
- Tips & tricks:
 - running simulations in parallel
 - using the block-marching mode
- Bring-your-own examples

Why How hypersonics?

How hypersonics?

Conservation of mass:

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \rho \mathbf{u} = 0 \tag{1}$$

Conservation of species mass:

$$\frac{\partial}{\partial t}\rho_i + \nabla \cdot \rho_i \mathbf{u} = -\left(\nabla \cdot \mathbf{J}_i\right) + \dot{\omega}_i \tag{2}$$

Conservation of momentum:

$$\frac{\partial}{\partial t}\rho \mathbf{u} + \nabla \cdot \rho \mathbf{u} \mathbf{u} = -\nabla p - \nabla \cdot \left\{ -\mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\dagger}) + \frac{2}{3}\mu (\nabla \cdot \mathbf{u})\delta \right\}$$
(3)

Conservation of total energy:

$$\frac{\partial}{\partial t}\rho E + \nabla \cdot (e + \frac{p}{\rho})\mathbf{u} = \nabla \cdot [k\nabla T + \sum_{s=1}^{N_{v}} k_{v,s}\nabla T_{v,s}] + \nabla \cdot \left[\sum_{i=1}^{N_{s}} h_{i}\mathbf{J}_{i}\right] - \left(\nabla \cdot \left[\left\{-\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\dagger}) + \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\delta\right\} \cdot \mathbf{u}\right]\right) - Q_{\mathsf{rad}} \quad (4)$$

Conservation of vibrational energy:

$$\frac{\partial}{\partial t}\rho_{i}e_{v,i} + \nabla \cdot \rho_{i}e_{v,i}\mathbf{u} = \nabla \cdot [k_{v,i}\nabla T_{v,i}] - \nabla \cdot e_{v,i}\mathbf{J}_{i} + Q_{T-v_{i}} + Q_{V-v_{i}} + Q_{\mathsf{Chem}-v_{i}} - Q_{\mathsf{rad}_{i}}$$
(5)

Flows with chemical nonequilibrium

- Flow can be distinguished (and modelled) in three classifications:
 - 1. frozen flow (ideal gas model) $t_{chem} \gg t_{flow}$
 - 2. nonequilbrium flow (finite-rate chemistry) $t_{chem} \approx t_{flow}$
 - 3. equilibrium flow $t_{chem} \ll t_{flow}$
- Model for rate of chemical change: Law of Mass Action

$$\frac{d[X_i]}{dt} = (\nu_i^{''} - \nu_i^{'}) \left\{ k_f \prod_i [X_i]^{\nu_i^{'}} - k_b \prod_i [X_i]^{\nu_i^{''}} \right\}$$

Forward and reverse rates are computed from a modified Arrhenius form

$$k = AT^n e^{-T_a/T}$$

alternatively, reverse rates may come from computing the equilibrium constant

- This ODE integrators available are:
 - Mott's α Quasi-Steady-State approach (for stiff systems, eg. combustion)
 - Runge-Kutta-Fehlberg (efficient for non-stiff systems, eg. endothermic chemistry)

Chemistry input file

No.† r	Reaction	Forward rate coefficient, $k_{f,r}$, $cm^{3}/mole-sec$	Backward rate coefficient, k _{b,r} , cm ³ /mole-sec or cm ⁶ /mole ² -se	Third body M
1	$O_2 + M_1 \rightleftharpoons 2O + M_1$	$3.61 \times 10^{18} T^{-1.0} exp(-5.94 \times 10^4/T)$	$3.01 \times 10^{15} T^{-0.5}$	0,N,O ₂ ,N ₂ ,NO
2	$N_2 + M_2 \rightleftharpoons 2N + M_2$	$1.92 \times 10^{17} T^{-0.5} exp(-1.131 \times 10^{5}/T)$	$1.09 \times 10^{16} T^{-0.5}$	0,0 ₂ ,N ₂ ,N0
3	$N_{2}+N \rightleftharpoons 2N+N$	$4.15 \times 10^{22} T^{-1.5} exp(-1.31 \times 10^{5}/T)$	$2.32 \times 10^{21} T^{-1.5}$	

Table II. Chemical Reactions and Rate Coefficients

An extract of rate constants. Source: Gupta et al. (1990)

Eilmer input is designed to follow the typical layout of rate constants in the literature.¹

```
Reaction{
    '02 + M <=> 0 + 0 + M',
    fr={'Arrhenius', A=3.610e+18, n=-1.00, C=59400.00},
    br={'Arrhenius', A=3.010e+15, n=-0.50, C=0.0},
    label='r1',
    efficiencies={02=9.0, N2=2.0, 0=25.0, N=1.0, N0=1.0}
}
```

¹And we provide a chemkin2eilmer converter tool.

Validation of reacting flow model for air

- Lobb (1964) performed a series of experiments to measure shock detachment distance on spheres fired into air at hypervelocities
- A 0.5 in nylon sphere was fired in a ballistic range into air at various speeds and pressures

Stagnation streamline properties for reacting air over sphere

7

Flows with thermal nonequilibrium

molecules:	atoms:
translation	translation
rotation	
vibration	
electronic	electronic

Why isn't the vibrational energy in equilibrium?

- it typically takes 5-10 collisions for the rotational mode to equilibriate at the translational temperature
- however, it can take on the order of 10²-10³ collisions for vibrational modes to equilibriate

A specific example...

For a blunt body of nose radius 1 m with a velocity of 10 km/s at an altitude of 75 km:

$$au_{flow} pprox 10^{-4} s, au_{chem} pprox 10^{-3} s, au_{vib} pprox 10^{-5}$$

Thivet, Perrin and Candel (1991)

Engineering model for flows with thermal nonequilibrium

$$\frac{\partial}{\partial t}\rho_{i}e_{v,i}+\nabla\cdot\rho_{i}e_{v,i}\mathbf{u}=\nabla\cdot[k_{v,i}\nabla T_{v,i}]-\nabla\cdot e_{v,i}\mathbf{J}_{i}+Q_{\tau-v_{i}}+Q_{v-v_{i}}+Q_{\mathsf{Chem}-v_{i}}-Q_{\mathsf{rad}_{i}}$$

- Internal energy modes are separable (Born-Oppenheimer approximation)
- Each separated mode is assumed to populate a Boltzmann distribution at a particular temperature
- Nonequilibrium occurs when these governing temperatures differ for different energy modes
- Depending on extent of nonequilbrium, each molecular species might have its own describing vibrational temperature
- Example: four-temperature air model has one temperature to describe tranlsational/rotational energy and one temperature each for vibrational energy of N₂, O₂ and NO

Thermal nonequilibrium: energy exchange

$$\frac{\partial}{\partial t}\rho_{i}e_{v,i} + \nabla \cdot \rho_{i}e_{v,i}\mathbf{u} = \nabla \cdot [k_{v,i}\nabla T_{v,i}] - \nabla \cdot e_{v,i}\mathbf{J}_{i} + Q_{T-v_{i}} + Q_{V-v_{i}} + Q_{\mathsf{Chem}-v_{i}} - Q_{\mathsf{rad}_{i}}$$

Translational-vibrational energy exchange

$$Q_{T-V_i} = \sum_{c=1}^{n_s} x_c \frac{e_{v,p}^* - e_{v,p}}{(\tau_v^{p-c})_{v-T}}$$

Vibrational-vibrational energy exchange

$$Q_{V-V_{i}} = \sum_{q=1,q\neq p}^{n_{V}} \frac{x_{q}}{(\tau_{v}^{p-q})_{V-V}} \left(\frac{1 - \exp(-\Theta_{v,p}/T)}{1 - \exp(-\Theta_{v,q}/T)} \frac{e_{v,q}}{\hat{e}_{v,q}} (\bar{e}_{v,p} - e_{v,p}) - \frac{e_{v,p}}{\hat{e}_{v,q}} (\bar{e}_{v,q} - e_{v,q}) \right)$$

Thermal nonequilibrium: chemistry-energy coupling

$$\frac{\partial}{\partial t}\rho_i e_{v,i} + \nabla \cdot \rho_i e_{v,i} \mathbf{u} = \nabla \cdot [k_{v,i} \nabla T_{v,i}] - \nabla \cdot e_{v,i} \mathbf{J}_i + Q_{T-v_i} + Q_{V-v_i} + Q_{\mathsf{Chem}-v_i} - Q_{\mathsf{rad}_i}$$

Chemistry-vibration coupling

• If the gas is in nonequilibrium, how are the reaction rates affected?

$$k = k^{EQ}(T)\Psi(T, T_{v,i})$$

- When chemical reactions take place, how does this effect the average vibrational energy?
- A preferential model is implemented in Eilmer by Knab et al. This is a generalised and extended version of Treanor & Marrone's preferential dissociation model.

$$Q_{\mathsf{Chem}-V_{i}} = \sum_{j=1}^{Nr} \left[-G_{va,ij} \frac{1}{f_{i}} \left(\frac{df_{i}}{dt} \right)_{f} + G_{app,ij} \frac{1}{f_{i}} \left(\frac{df_{i}}{dt} \right)_{r} \right]$$

Vibrational nonequilibrium validation: double cone experiments

CODICE Run 50					
Quantity	Value				
H ₀ (MJ/kg)	5.28				
<i>p</i> ₀ (MPa)	8.48				
<i>Т</i> ₀ (К)	4269				
u_∞ (m/s)	3066				
$ ho_\infty$ (Pa)	63.6				
$ ho_\infty$ (kg/m³)	$1.29 imes 10^{-3}$				
T_∞ (K)	166				
<i>Т</i> _{ν,∞} (К)	2711				
mass fraction of N_2	0.9999				
mass fraction of N	0.0001				
\textit{Re}_{∞} (m $^{-1}$)	$3.6 imes10^5$				

CLIBPC Pup 80

Grid	no. cells normal to wall	no. cells along first ramp	no. cells along second ramp	no. cells along shoulder	total no. cells
1	40	120	120	60	12 000

Grid	no. cells normal to wall	no. cells along first ramp	no. cells along second ramp	no. cells along shoulder	total no. cells
1	40	120	120	60	12 000
2	80	240	240	120	48 000

14

no. cells ormal to wall	no. cells along first ramp	no. cells along second ramp	no. cells along shoulder	total no. cells
40	120	120	60	12 000
80	240	240	120	48 000
120	360	360	180	108 000
	no. cells formal to wall 40 80 120	no. cells no. cells along first ramp 40 120 80 240 120 360	no. cells no. cells no. cells along first ramp along second ramp 40 120 120 80 240 240 240 120 360 360	no. cellsno. cellsno. cellsno. cellsnormal to wallalong first rampalong second rampalong shoulder401201206080240240120120360360180

Grid	no. cells normal to wall	no. cells along first ramp	no. cells along second ramp	no. cells along shoulder	total no. cells
1	40	120	120	60	12 000
2	80	240	240	120	48 000
3	120	360	360	180	108 000
4	160	480	480	240	192 000

16

Double cone: thermal equilibrium assumption

Grid	no. cells normal to wall	no. cells along first ramp	no. cells along second ramp	no. cells along shoulder	total no. cells
1	40	120	120	60	12 000
2	80	240	240	120	48 000
3	120	360	360	180	108 000
4	160	480	480	240	192 000

Double cone: comparison to experiment

Validation: 2-temperature reacting air flow over a sphere

Validation: 2-temperature reacting air flow over a sphere

Turbulence modelling

When the turbulence model is activated, Eilmer solves the Reynolds-Averaged Navier-Stokes (RANS) equations.

The turbulence model in Eilmer is the Wilcox-2006 $k - \omega$ model.

For more details, see:

 FLUIDS
 Volume 70, Issue 4

 10 October 2012
 Pages 493-514

 Advertisement
 Advertisement

👮 PDF 🔧 TOOLS < SHARE

21

Validation: $k - \omega$ turbulence model

Mach 3.7 flow over a flat plate, adiabatic wall condition.

Advanced and experimental features

User-customisation: boundary conditions and source terms

- Sometimes users would like to do a special one-time modelling job that requires special boundary conditions or special source terms.
- Another use for the user-defined BCs and source terms is when one wants to test or prototype a boundary condition before it gets converted to D code and included in the main simulation program.
- Eilmer allows programmable boundary conditions and source terms by allowing the user to write small Lua programs.

User-customisation: boundary conditions and source terms


```
function ghostCells(args)
ghost = {}
ghost.p = 95.84e3 -- pressure, Pa
ghost.T = 1103.0 -- temperatures, K (as a table)
ghost.massf = {air=1.0} -- mass fractions to be provided as a table
ghost.velx = 1000.0 -- x-velocity, m/s
ghost.vely = 0.0 -- y-velocity, m/s
ghost.velz = 0.0
return ghost, ghost
24
```

Moving grid capability

- Moving grids and moving boundaries are also controlled using small Lua programs built by the user.
- It is hard to predict all the types of motion that users would want to simulate, hence the user-built programs to control the motion.
- The user needs to set the velocity of the grid points and the simulation code takes care of updating to the new positions.
- With enoug creativity, this can be used to simulate fluid-structure interation problems.

Moving grid capability: grid motion program

```
pSpeed = 293.5 -- m/s
L = 0.5 - m
H = 0.1 - m
endDomain = L
function assignVtxVelocities(sim_time, dt)
   pPos = pSpeed * sim_time
   L = endDomain - pPos
   imin = blockData[0].vtxImin
   imax = blockData[0].vtxImax
   jmin = blockData[0].vtxJmin
   jmax = blockData[0].vtxJmax
   for j=jmin, jmax do
      for i=imin,imax do
         pos = getVtxPosition(0, i, j, 0)
         vtxSpeed = ((endDomain - pos.x)/L)*pSpeed
         setVtxVelocity(Vector3:new{x=vtxSpeed}, 0, i, j)
      end
   end
end
```

Shock-fitting boundaries

- For blunt body flows, it is critical to have nicely aligned grids with the bow shock.
- One solution is to do direct shock-fitting at the boundaries.
- Eilmer uses moving grid capability and a specialised shock-fitting boundary condition to allow shock-fitting at inflow boundaries.

GPU acceleration for chemically reacting flows

Graphics Processing Units for High Performance Computing

CPUs:

+ excellent serial thread performance
+ modern branch prediction and efficient memory access

+ handle complex algorithms well without too much developer intervention

GPUs:

+ excel at floating point operations
+ high performance through thread parallelism

+ parallelism is Single-Instruction, Multiple-Data (SIMD) type

+ hardware abstraction is low: requires careful effort on part of developer

GPU acceleration: Eilmer implementation

+ operator-splitting algorithm

GPU acceleration: proof-of-concept, early results

Steady-state solver: update schemes in Eilmer

explicit updates:

- Euler, predictor-corrector, Runge-Kutta 3 family
- time efficient for computing unsteady flows
- application: simulation of gas dynamics in hypersonic impulse facilities

implicit updates:

- can be constructed to give accelerated convergence to steady-state
- time efficient for computing steady flows
- applications:
 - + steady flow analysis of test articles in impulse facilities
 - + aerodynamic optimisation for hypersonic vehicles and inlets

Steady-state solver: outer iterations

Using Newton's method to solve the zero equation, F(u) = 0.
These steps are called the outer iterations.

Taylor expansion: $\mathbf{F}(\mathbf{u}^{k+1}) = \mathbf{F}(\mathbf{u}) + \mathbf{F}'(\mathbf{u}^k) \left[\mathbf{u}^{k+1} - \mathbf{u}^k\right] + \text{h.o.t}$

•Set $F(u^{k+1}) = 0$

- •Ignore higher order terms
- •Notation substitution...

$$\mathbf{J}(\mathbf{u}^k) \Delta \mathbf{u}^k = -\mathbf{F}(\mathbf{u}^k), \quad \mathbf{u}^{k+1} = \mathbf{u}^k + \Delta \mathbf{u}^k$$

Given u⁰
 Repeat for k = 0,..., good enough:

1a. Solve $\mathbf{J}(\mathbf{u}^k) \Delta \mathbf{u}^k = -\mathbf{F}(\mathbf{u}^k)$ 1b. $\mathbf{u}^{k+1} = \mathbf{u}^k + \Delta \mathbf{u}^k$ Solving the linear system $\mathbf{J}(\mathbf{u}^k) \Delta \mathbf{u}^k = -\mathbf{F}(\mathbf{u}^k) \rightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$

- The solution to the matrix equation is solved by an iterative process.
- In particular, the Generalized Minimal RESidual (GMRES) method is used
- •On each iteration, a matrix-vector product builds a new trial vector
- The final solution vector is formed from a linear combination of the trial vectors
- The GMRES method is not restricted based on the type of matrix. This makes it good for a wide class of linear systems that results from discretizing PDEs.

Steady-state solver: some test cases

Mach 1.5 flow over a 20-deg cone

- · axisymmetric, inviscid, low supersonic Mach number
- . the classic "intro to eilmer" test case

Mach 10 flow over a 6-deg wedge

- 2D planar, inviscid, high Mach number
- conditions relevant to SPARTAN flight
- · principal test case for algorithm development

Mach 4 laminar flow over a flat plate

- 2D planar, viscous
- high aspect ratio cells

3D Method of Manufactured Solutions

- unstructured grid in 3D
- multiple block
- parallel
- viscous terms
- •user-defined B.C.s
- user-defined source terms

Steady-state solver

wall-clock time, s

Steady-state solver

Throwing in the kitchen sink...

- •unstructured grid in 3D
- multiple block
- parallel
- viscous terms
- user-defined B.C.s
- •user-defined source terms

Steady-state solver

