Eilmer activities at Centre for Hypersonics and beyond E OF QUEENSLAND

Eilmer: UQ's multi-physics hypersonic flow solver 2020-2021 news

- Official 4.0 version release in July 2021
- Jacobian-free Newton-Krylov accelerator for fluid and solid domains for steady-state simulations
- Time-accurate simulations of coupled fluid-solid domains using super time-stepping
- · Generalised multi-temperature modelling capability
- Adjoint solver for CFD-based optimisation

2020-2021 outcome highlights

- · Adjoint optimization of high-speed inlet
- Study on unsteadiness on double cones (JFM, 916:A5)
- · Study on effectiveness of electron transpiration cooling

Damm et al. (2020) AIAA J. 58(6) Discrete Adjoint Optimization of a Hypersonic Inlet Rowan Gollan, Nicholas Gibbons, Kyle Damm and Peter Jacobs

H.G. Hornung, R.J. Gollan and P.A. Jacobs

Figure 12. One cycle of the pulsating unsteadiness, condition A at location a in figure 3. The separation of the panels is approximately 35 μ s.

Eilmer v 4.0.0 release: what's in the box?

git checkout v4.0.0

Capabilities/features supported in v4.0.0.

- transient time-stepping
 - Euler
 - predictor-corrector
 - RK-3 variants
- local time-stepping
- grid capabilities
 - structured grids
 - unstructured grids
 - moving grid (user-defined motion and shock-fitting)
 - import GridPro format
 - import SU2 format
- parallel execution
 - with shared memory (on NUMA platforms)
 - with MPI (for inter- and intra-node execution)

- gas models
 - ideal gas
 - mixtures of thermally perfect gases
- kinetics
 - finite-rate chemistry (for thermally perfect gas mixtures)
- turbulence models
 - Spalart-Allmaras
 - ο **k**-ω
- conjugate heat transfer (coupling fluid/solid domains)
 - $\circ\,$ structured grids in 2D or 3D
- shock-fitting
- user-defined run-time customisation for:
 - initial conditions
 - boundary conditions
 - source terms
 - grid motion
- block-marching mode

BoLT-II project: CHT RANS and DNS

Algorithm enhancements in **Eilmer** for transient heating of BoLT-II flight vehicle:

1) Improvements to fluid domain Newton-Krylov accelerator

- Adaptive ILU preconditioner
- Improved robustness via under-relaxation informed by a physicality check

2) Improved speed of calculation for solid domain updates via super-time-stepping implementation

Conjugate heat transfer: validation

Test case:

• Mach 6.5 air flowing over a hollow cylinder

Method	Wall-clock (s)	Speed-up
Euler	917	1
STS (S=3)	223	4.1
STS (S=5)	125	7.3
STS (S=10)	41	22.3
STS (S=100)	4	229.2

Simulation of electron transpiration cooling

CFD Results: 10 mm

