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Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable
and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications
in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how
the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These
practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq
experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP
experiments that are updated routinely. The current guidelines address antibody validation, experimental replication,
sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in
these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing
and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.
org/) portals.

[Supplemental material is available for this article.]

Methods for mapping transcription-factor occupancy across the

genome by chromatin immunoprecipitation (ChIP) were devel-

oped more than a decade ago (Ren et al. 2000; Iyer et al. 2001; Lieb

et al. 2001; Horak and Snyder 2002; Weinmann et al. 2002). In

ChIP assays, a transcription factor, cofactor, or other chromatin

protein of interest is enriched by immunoprecipitation from cross-

linked cells, along with its associated DNA. Genomic DNA sites

enriched in this manner were initially identified by DNA hybrid-

ization to a microarray (ChIP-chip) (Ren et al. 2000; Iyer et al. 2001;

Lieb et al. 2001; Horak and Snyder 2002; Weinmann et al. 2002),

and more recently by DNA sequencing (ChIP-seq) (Barski et al.

2007; Johnson et al. 2007; Robertson et al. 2007). ChIP-seq has

now been widely used for many transcription factors, histone

modifications, chromatin modifying complexes, and other chro-

matin-associated proteins in a wide variety of organisms. There is,

however, much diversity in the way ChIP-seq experiments are

designed, executed, scored, and reported. The resulting variability

and data quality issues affect not only primary measurements,

but also the ability to compare data from multiple studies or to

perform integrative analyses across multiple data-types.

The ENCODE and modENCODE consortia have performed

more than a thousand individual ChIP-seq experiments for more

than 140 different factors and histone modifications in more

than 100 cell types in four different organisms (D. melanogaster,

C. elegans, mouse, and human), using multiple independent

data production and processing pipelines (The ENCODE Project

Consortium 2004, 2011; Celniker et al. 2009). During this work, we

developed guidelines, practices, and quality metrics that are ap-

plied to all ChIP-seq work done by the Consortium (Park 2009).

Here we describe these, together with supporting data and illus-
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trative examples. We emphasize issues common to all ChIP-seq

studies: immunoprecipitation specificity and quality, impact of

DNA sequencing depth, scoring and evaluation of data sets, ap-

propriate control experiments, biological replication, and data

reporting.

ChIP overview
The goals of a genome-wide ChIP experiment are to map the bind-

ing sites of a target protein with maximal signal-to-noise ratio and

completeness across the genome. The basic ChIP-seq procedure is

outlined in Figure 1A, and detailed protocols (and data) from our two

consortia can be obtained from the ENCODE and modENCODE

production groups listed at the UCSC Genome Browser: http://

encodeproject.org/ENCODE/ and http://www.modencode.org/,

respectively. Cells or tissues are treated with a chemical agent,

usually formaldehyde, to cross-link proteins covalently to DNA.

This is followed by cell disruption and sonication, or in some cases,

enzymatic digestion, to shear the chromatin to a target size of

100–300 bp (Ren et al. 2000; Iyer et al. 2001). The protein of interest

(transcription factor, modified histone, RNA polymerase, etc.) with

its bound DNA is then enriched relative to the starting chromatin

by purification with an antibody specific for the factor. Alterna-

tively, cell lines expressing an epitope-tagged factor can be gener-

ated and the fusion protein immunoprecipitated via the epitope tag.

After immuno-enrichment, cross-links are reversed, and the

enriched DNA is purified and prepared for analysis. In ChIP-chip,

the DNA is fluorescently labeled and hybridized to a DNA

microarray, along with differentially la-

beled reference DNA (Ren et al. 2000;

Iyer et al. 2001). In ChIP-seq, the DNA is

analyzed by high-throughput DNA se-

quencing. The ENCODE Consortium

chose ChIP-seq for human and mouse

experiments because it permits compre-

hensive coverage of large genomes and

increases site resolution ( Johnson et al.

2007; Robertson et al. 2007). For organisms

with small genomes, the modENCODE

Consortium has used both ChIP-chip

and ChIP-seq, as modern arrays can pro-

vide high-resolution coverage of small

genomes (Gerstein et al. 2010; Roy et al.

2010). In all formats, we identified pu-

tatively enriched genomic regions by

comparing ChIP signals in the experi-

mental sample with a similarly processed

reference sample prepared from appro-

priate control chromatin or a control

immunoprecipitation.

Different protein classes have dis-

tinct modes of interaction with the ge-

nome that necessitate different analytical

approaches (Pepke et al. 2009):

1. Point-source factors and certain chro-

matin modifications are localized at

specific positions that generate highly

localized ChIP-seq signals. This class

includes most sequence-specific tran-

scription factors, their cofactors, and,

with some caveats, transcription

start site or enhancer-associated his-

tone marks. These comprise the ma-

jority of ENCODE and modENCODE

determinations and are therefore the

primary focus of this work.

2. Broad-source factors are associated

with large genomic domains. Exam-

ples include certain chromatin marks

(H3K9me3, H3K36me3, etc.) and chro-

matin proteins associated with tran-

scriptional elongation or repression

(e.g., ZNF217) (Krig et al. 2007).

3. Mixed-source factors can bind in point-

source fashion to some locations of

Figure 1. Overview of ChIP-seq workflow and antibody characterization procedures. (A) Steps for
which specific ENCODE guidelines are presented in this document are indicated in red. For other steps,
standard ENCODE protocols exist that should be validated and optimized for each new cell line/tissue
type or sonicator. (*) A commonly used but optional step. (B) Flowchart for characterization of new
antibodies or antibody lots. (C ) Flowchart for use of antibody characterization assays.
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the genome, but form broader domains of binding in others.

RNA polymerase II, as well as some chromatin modifying pro-

teins (e.g., SUZ12) behave in this way (Squazzo et al. 2006).

Below, we report our experience with ChIP-seq experimental

design, execution, and quality assessment. We offer specific rec-

ommendations, based on current experience, as summaries in

boxes.

ChIP-seq experimental design considerations

Antibody and immunoprecipitation specificity

The quality of a ChIP experiment is governed by the specificity

of the antibody and the degree of enrichment achieved in the af-

finity precipitation step. The majority of ENCODE/modENCODE

ChIP experiments in human cells and in Drosophila embryos were

performed with antibodies directed against individual factors and

histone modifications. A total of 145 polyclonal and 43 mono-

clonal antibodies had been used to successfully generate ChIP-seq

data as of October 2011.

Antibody deficiencies are of two main types: poor reactivity

against the intended target and/or cross-reactivity with other

DNA-associated proteins. For these reasons, we have developed

a set of working standards and reporting guidelines designed to

provide measures of confidence that the reagent recognizes the

antigen of interest with minimal cross-reactivity toward other

chromosomal proteins. Widely accessible methods for measuring

antibody specificity and sensitivity range from semiquantitative

to qualitative, and each can have noise and interpretation issues.

We therefore emphasize reporting of antibody characterization

data so that users of the ChIP data, or the reagent itself, can

make informed judgments. We also recognize that a successful

experiment can be performed with reagents that fail to strictly

comply with these guidelines. For example, cross-reacting pro-

teins detected in an immunoblot assay might not interfere in

ChIP, because the protein is not attached to chromatin. Sec-

ondary tests of diverse types can help to provide confidence

concerning the acceptability of an antibody that fails an initial

assessment.

Two tests, a primary and a secondary test, are used to char-

acterize each monoclonal antibody or different lots of the same

polyclonal antibody. The ordering of the primary and secondary

tests are influenced by the effort required to execute each, with the

primary assay being easier to perform on large numbers of anti-

bodies. The tests differ for antibodies against transcription factors

vs. those against histone modifications. A detailed description of

the tests is provided in Box 1, and a typical workflow is presented in

Figure 2, B and C. For transcription-factor antigens, we adopted the

immunoblot as our primary assay, with immunostaining as the

alternative. The former can give more information about cross-

reacting material or multiple isoforms; the latter is typically less

sensitive, but provides information about nuclear location. Ex-

amples of antibodies that pass and fail these tests are shown in

Figure 2A.

Our consortia also include one of five criteria as a secondary

characterization: (1) factor ‘‘knockdown’’ by mutation or RNAi, (2)

independent ChIP experiments using antibodies against more

than one epitope on a protein or against different members of the

same complex, (3) immunoprecipitation using epitope-tagged

constructs, (4) affinity enrichment followed by mass spectrometry,

or (5) binding-site motif analysis. Motif enrichment is the easiest

assay to perform, but requires pre-existing information about the

sequences to which a protein binds and assumes that the motif is

uniquely recognized in a given cell source by the factor of interest.

ChIP with a second antibody or against an epitope-tagged con-

struct and siRNA experiments coupled with ChIP provide in-

dependent evidence that the target sites are bound by the factor

of interest. We found that mass spectrometry is particularly useful

for cases where multiple or unexpected bands are observed on

an immunoblot and the presence of spliced isoforms, post-trans-

lational modification, or degradation is suspected. Additionally, it

can precisely identify potential alternate sources of ChIP signal,

often with novel biological implications, which can be tested by

additional ChIP experiments. Due to the significant effort and

expense required to perform these assays, our standard for the

consortia requires only one secondary assay. We found that ;20%

(44 of 227) of the tested commercially available antibodies against

transcription factors meet these characterization guidelines and

also function in ChIP-seq assays.

To date, 55% of consortia antibodies have been submitted

with mass spectrometry data, 28% with ChIP data using a second

antibody, epitope tag, or alternate member of a known complex,

10% with data from motif analysis (this standard has only been

used by ENCODE for 1 yr), and 7% with siRNA knockdown data.

A summary of motif detection for all data sets is in preparation

(P Kheradpour and M Kellis, in prep.).

Validating histone modification antibodies involves multiple

issues (Egelhofer et al. 2011): (1) specificity with respect to other

nuclear/chromatin proteins, (2) specificity with respect to un-

modified histones and off-target modified histone residues (e.g.,

H3K9me vs. H3K27me), (3) specificity with respect to mono-, di-,

and trimethylation at the same residue (e.g., H3K9me1, H3K9me2,

and H3K9me3), and (4) lot-to-lot variation. For all consortia his-

tone measurements, we set the standard that immunoblot analysis

and one of the following secondary criteria are applied: Peptide-

binding tests (dot blots), mass spectrometry, immunoreactivity

analysis in cell lines containing knockdowns of a relevant histone

modification enzyme or mutants histones, or genome annotation

enrichment. The details of these standards are in Box 1.

Immunoprecipitation using epitope tagged constructs

Given the challenges in obtaining antibodies for suitable ChIP,

an attractive alternative is to tag the factor with an exogenous

epitope and immunoprecipitate with a well-characterized mono-

clonal reagent specific for the tag. Epitope-tagging addresses the

problems of antibody variation and cross-reaction with different

members of multigene families by using a highly specific reagent

that can be used for many different factors. However, this in-

troduces concerns about expression levels and whether tagging

alters the activity of the factor. The level of expression is typically

addressed by using large clones (usually fosmids and BACs) car-

rying as much regulatory information as possible to make the level

of expression nearly physiological (Poser et al. 2008; Hua et al.

2009). Higher expression is known to result in occupancy of sites

not necessarily occupied at physiological levels (DeKoter and

Singh 2000; Fernandez et al. 2003). In ENCODE/modENCODE,

tagged factors have been used most extensively thus far for C.

elegans studies, where factors have been tagged with GFP and

shown to complement null mutants; six of six tested to date have

been found to complement (Zhong et al. 2010; V Reinke, unpubl.).

In some cases, information regarding expression is not available

and expression from an exogenous promoter has been used

(P Farnham, unpubl.)
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Box 1: ENCODE guidelines for antibody and immunoprecipitation characterization

Characterization of antibodies directed against transcription factors

Antibodies directed against transcription factors must be characterized using both a primary and secondary characterization; characterizations must
be repeated for each new antibody or antibody lot number that is used for ChIP-seq (Fig. 1B,C).

Primary mode of characterization

Antibodies are characterized by one of two primary methods, immunoblot analysis, or immunofluorescence.

Immunoblot analyses

Immunoblot analyses are performed on protein lysates from either whole-cell extracts, nuclear extracts, chromatin preparations, or
immunoprecipitated material (before proceeding to ChIP assays, it is helpful to demonstrate that the protein of interest can be efficiently
immunoprecipitated from a nuclear extract, see Fig. 2B). We use the guideline that the primary reactive band should contain at least 50% of the signal
observed on the blot. Ideally, this band should correspond to the size expected for the protein of interest (Fig. 2A). However, the electrophoretic
mobility of many factors can deviate significantly from the expected size due to modifications, isoform differences, or intrinsic properties of the factor.
Therefore, antibodies for which the main band differs from the expected size by >20% or for which multiple bands are seen (such that no band
represents >50% of the signal) can be used under certain circumstances. In these cases, further criteria must be met, such as (1) the unexpected
mobility must have been properly documented in published studies using the same antibody lot, (2) the signal in the band(s) is reduced by siRNA
knockdown or mutation, or (3) the factor can be identified in all band(s) by mass spectrometry.

Immunofluorescence

Some antibodies that work well for ChIP do not work well in immunoblots. If immunoblot analysis is not successful, immunofluorescence can be used
as an alternative method. Staining should be of the expected pattern (e.g., nuclear and only in cell types or under specific growth conditions that
express the factor) (Fig. 2C). Because immunofluorescence does not provide evidence that the antibody detects only one protein, this validation
method should be combined with a method that reduces the level of the protein, such as siRNA- or shRNA-mediated knockdown, or used with
a knockout cell line or organism (see below).

Secondary mode of characterization

In addition to the primary mode of characterization, the consortia performs at least one of the following five assays as an additional secondary test:

Knockdown or knockout of the target protein

Immunoblots or immunoprecipitations are performed in duplicate using extracts from siRNA or shRNA knockdowns or from knockout mutant cell
lines or organisms. We use the guideline that the primary immunoblot (or immunofluorescence) signal, along with additional immunoreactive bands,
should be reduced to no more than 30% of the original signal and any signal remaining after genetic mutation, RNAi, or siRNA is noted. As an
alternative, knockdown can also be measured with ChIP experiments. ENCODE data can be submitted if reduction of ChIP-chip or ChIP-seq signals by
>50% relative to control is observed. A suitable control knockdown (e.g. using ‘‘scrambled’’ siRNA sequences) should also be performed and the data
should be submitted; reduction of signal should not be observed in the control knockdown data set. The methodology used for binding-region signal
normalization (for instance, normalization against total read counts or using values from reference peaks quantified by qPCR under all experimental
conditions) should also be reported.

Immunoprecipitation followed by mass spectrometry

All immunoreactive bands identified by immunoblot analysis are analyzed (Fig. 2D). ENCODE passes such analyses if the protein of interest is identified
in such bands; if additional chromosomal proteins are identified in an immunoreactive band, the Consortium accepts the experiment as long as they
are present at lower prevalence than the desired protein (as measured by peptide counts or other methods) or can be demonstrated to arise from
nonspecific immunoprecipitation (e.g., also present in a control immunoprecipitation). All proteins identified by mass spectrometry and the number
of peptide counts for each are reported.

Immunoprecipitation with multiple antibodies against different parts of the target protein or members of the same complex

Different antibodies against different parts of the same protein or other members of a known protein complex can be used in analyzing the specificity
of antibodies. In the ENCODE Consortium, results of the different ChIP experiments are compared and significant overlap of enriched loci is expected
(ChIP-seq experiments are compared using the IDR-based standards in Box 3). Note that for different proteins that are members of a complex, there
may be some functions that are independent of one another. Thus, the targets lists for two different proteins may not entirely overlap. In this case,
specific evidence about limited overlap of binding specificity in the literature is presented to justify the significance of the overlap observed between
data sets for the factors in question.

Immunoprecipitation with an epitope-tagged version of the protein

An epitope-tagged version of the target protein may be used, preferably expressed from the endogenous gene promoter. ENCODE conducts and
analyzes such experiments as described above for the use of multiple antibodies.

Motif enrichment

For transcription factors, if a factor has a well-characterized motif derived from in vitro binding studies or another justifiable method, and if either no
paralogs are expressed in the cell lines being analyzed or if the antibody is raised to a unique region of the factor, motif enrichment can be used for
validation. Motif analysis can be performed using a defined set of high-quality peaks (a 0.01 IDR threshold is used), and for ENCODE data to be
submitted, motifs should be enriched at least fourfold compared with all accessible regions (e.g., DNase hypersensitive regions) and present in >10%
of analyzed peaks. Analysis of data sets deposited as of January 2011 identified data sets that meet these standards for 49 of 85 factors (Fig. 2E). We
note that due to differences in transcription-factor recruitment mechanisms, failure of a data set to meet the motif enrichment threshold does not
necessarily indicate poor quality data.

(continued)
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Other considerations

1. For antibodies directed against members of a multigene family, the best practice is to prepare or obtain antibodies that recognize protein regions
unique to individual family members. For an ENCODE validated antibody, any potential cross-reaction is noted when reporting data collected using
that antibody.

2. For antibodies that have been previously characterized for one cell type, ENCODE has used only one validation method (such as immunoblot
analysis) when the antibody is used to perform ChIP in a new cell type or organism. If an antibody has been validated in at least three different
cell types, we do not require further validation for ChIP-seq experiments with additional cell types for ENCODE submission. Similarly, for whole
organisms, if the antibody has been characterized in three growth stages, no further characterization is required.

3. If antibodies derived from the same lot are used by different groups in ENCODE, they only need to be characterized once. However, antibodies from
different lots of the same catalog number are characterized as if they were new antibodies.

Epitope-tagged proteins

Epitope-tagged factors are introduced into cells by transfection of an expression construct. To help ensure that ChIP-seq results obtained using the
tagged factor are comparable to those expected for the endogenous factor, ENCODE uses the criteria that tagged factors are expressed at
a comparable amount to the endogenous factor. This is usually achieved by cloning into a low-copy number vector and using the natural promoter to
drive expression. If the tagged protein is expressed from a heterologous promoter, data comparing expression levels of the tagged and endogenous
proteins (i.e., immunoblots to measure protein levels or qPCR to measure RNA levels) are needed. There are special cases in which ChIP cannot be
obtained at endogenous protein levels, and here, elevated expression can provide useful information. ENCODE’s recommended control for epitope-
tagged measurements is an immunoprecipitation using the same antibody against the epitope tag in otherwise identical cells that do not express the
tagged factor.

Histone modifications

For ENCODE data to be submitted, all commercial histone antibodies are validated by at least two independent methods, as described below, and
new lots of antibody are analyzed independently. These validations are performed by the ENCODE laboratory performing the ChIP-seq or by the
antibody supplier, but only if the supplier provides data for the specific lot of antibody. The tests need only be performed once for each antibody
lot.

Primary test

All antibodies used in ENCODE ChIP experiments are checked for reactivity with nonhistone proteins and with unmodified histones by performing
immunoblot analysis on total nuclear extract and recombinant histones. To enable visual quantification of reactivity, a concentration series of
both extract and recombinant histones are analyzed using recombinant histone levels that are comparable to those of the target histone in
nuclear extract. Since cross-reactivity may vary between species, this test is performed using nuclear extracts from each species to be studied by
ChIP. To pass the criteria for submission in ENCODE, the specific histone band should constitute at least 50% of the signal in western blots of
nuclear extract, show at least 10-fold enrichment relative to any other single band, and show at least 10-fold enriched signal relative to
unmodified histone.

Secondary test

In addition to the primary test, antibody specificity is verified by at least one additional test. The pros and cons of each test are described. The first two
are the most commonly used.

Peptide binding tests

Peptide binding and peptide competition assays provide a fast method to initially evaluate the specificity and relative binding strength of antibodies
to histone tails with different modifications (e.g., H3K9 or H3K27 and me1, me2, and me3 levels of methylation). A potential drawback is that
antibodies may differ in their binding specificity toward histone tail peptides in vitro versus toward full-length histones in the context of chromatin in
IP experiments. Nevertheless, observing at least a 10-fold enriched binding signal for the modification of interest relative to other modifications
provides confidence in the antibody specificity. For these assays, histone tail peptides with particular modifications can be purchased commercially.
Alternatively, peptide binding and/or competition assays using the same lot of antibody can be performed by the company from which the antibody
is purchased.

Mass spectrometry

For antibodies generated against related and historically problematic modifications, the ability of the antibody to effectively distinguish between
similar histone marks (e.g., H3K9me and H3K27me) and between different levels of methylation (e.g., H3K9me1, H3K9me2, and H3K9me3)
can be tested by mass spectrometry analysis of material immunoprecipitated from histone preparations. For ENCODE data, the target
modification constitutes at least 80% of the immunoprecipitated histone signal. This test may often not be successful because IP for one
modification can simultaneously isolate coassociated histones with other modifications. Thus, only a positive result (i.e., a specific modification)
is interpretable.

Mutants defective in modifying histones

Strains or cell lines harboring knockouts or catalytically inactive mutants of enzymes responsible for particular histone modifications offer the
opportunity to test antibody specificity. Such mutants exist for S. cerevisiae, S. pombe, Drosophila, C. elegans and can, in cases where the modifying
enzymes are nonredundant, be created for mammalian cells. For submitted ENCODE/modENCODE data, antibody signal is reduced to below 10%
of wild-type signal in mutant samples, compared with wild type. RNAi or siRNA depletion of histone modifying activity may be substituted for
mutants. Mutant or RNAi or siRNA reduction of signal can be assayed by immunoblot analysis or by immunofluorescence staining. Mutant/RNAi/
siRNA tests usually do not allow testing antibodies for the ability to discriminate between mono-, di-, and trimethylation. In cases where more than
one enzyme modifies the same residue (e.g., H3K9 methylation in Drosophila), double mutants or RNAi may be required. Replicates of this test are
encouraged but not required for ENCODE/modENCODE data to be submitted. However, positive controls showing that the antibody works on

Box 1: Continued

(continued)
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Replication, sequencing depth, library complexity,
and site discovery

Biological replicate experiments from independent cell cultures,

embryo pools, or tissue samples are used to assess reproducibility.

Initial RNA polymerase II ChIP-seq experiments showed that more

than two replicates did not significantly improve site discovery

(Rozowsky et al. 2009). Thus, the ENCODE Consortium set as our

standard that all ChIP measurements would be performed on two

independent biological replicates. The irreproducible discovery

rate (IDR) analysis methodology (Li et al. 2011) is now used to

assess replicate agreement and set thresholds (discussed further

below). For experiments with poor values for quality metrics de-

scribed in Section III, additional replicate(s) have been generated.

For a typical point-source DNA-binding factor, the number

of ChIP-seq positive sites identified typically increases with the

number of sequenced reads (Myers et al. 2011). This result is

expected, as studies of numerous factors by ENCODE and by other

groups have repeatedly found a continuum of ChIP signal strength,

rather than a sharply bounded and discrete set of positive sites

(Rozowsky et al. 2009; Myers et al. 2011). Weaker sites can be

detected with greater confidence in larger data sets because of the

increased statistical power afforded by more reads. Figure 3 shows

an analysis of peak calls for 11 human ENCODE ChIP-seq data

sets for which deep-sequence data (30–100 million mapped reads)

were obtained. Clear saturation of peak counts was observed for

one factor with few binding sites, but counts continued to increase

at varying rates for all other factors, including a case in which

>150,000 peaks were called using 100 million mapped reads. Ex-

amination of peak signals reveals that the signal enrichments

consistently plateau at greater sequencing depths. At 20 million

mapped reads, which we currently use as a minimum for all

ENCODE ChIP experiments for point-source transcription factors

(Box 2), five- to 13-fold median enrichments are the norm; new

peaks identified after 20 million reads give enrichments that are

;20% of the enrichment of the strongest peaks (Fig. 3C). In-

terestingly, many additional peaks, with enrichment values of

three- to sevenfold, can still be found by sequencing to much

greater depths. It is likely that many of these regions correspond

to low-affinity sites and/or regions of open chromatin that bind

TFs less specifically.

The relationship of ChIP signal strength to biological regula-

tory activity is a current area of active investigation. The biological

activity of known enhancers, defined in the literature independently

of ChIP data, is distributed quite broadly relative to ChIP-seq signal

strength (Ozdemir et al. 2011; G DeSalvo, G Marinov, K Fisher,

A Kirilusha, A Mortazavi, B Williams, and B Wold, in prep.). Some

highly active transcriptional enhancers reproducibly display modest

ChIP signals (Fig. 4B). This means that one cannot a priori set a

specific target threshold for ChIP peak number or ChIP signal

strength that will assure inclusion of all functional sites (see Dis-

cussion). Therefore, a practical goal is to maximize site discovery by

optimizing immunoprecipitation and sequencing deeply, within

reasonable expense constraints. For point-source factors in mam-

malian cells, a minimum of 10 million uniquely mapped reads are

used by ENCODE for each biological replicate (providing a mini-

mum of 20 million uniquely mapped reads per factor); for worms

and flies a minimum of 2 million uniquely mapped reads per rep-

licate is used. For broad areas of enrichment, the appropriate num-

ber of uniquely mapped reads is currently under investigation, but at

least 20 million uniquely mapped reads per replicate for mammalian

cells and 5 million uniquely mapped reads per replicate for worms

and flies is currently being produced for most experiments.

Site discovery and reproducibility are also affected by the

complexity of a ChIP-seq sequencing library (Fig. 4A). We define

library complexity operationally as the fraction of DNA fragments

that are nonredundant. With increased depth of sequencing of a

library, a point is eventually reached where the complexity will be

exhausted and the same PCR-amplified DNA fragments will be

sequenced repeatedly. Low library complexity can occur when

very low amounts of DNA are isolated during the IP or due to

problems with library construction.

A useful complexity metric is the fraction of nonredundant

mapped reads in a data set (nonredundant fraction or NRF), which

we define as the ratio between the number of positions in the ge-

nome that uniquely mappable reads map to and the total number

of uniquely mappable reads; it is similar to a recently published

redundancy metric (Heinz et al. 2010). NRF decreases with se-

wild-type samples processed in parallel, and positive controls showing that the mutant extract is amenable to the assay employed are included for
data to be submitted.

Mutant histones

Mutant histones (e.g., histone H3 with Lys4 mutated to Arg or Ala) expressed in yeast provide another avenue to test specificity by immunoblot
analysis or even by ChIP. When analyzing a strain containing a mutated histone that cannot be modified, we expect at least a 10-fold reduction in
immunoblot or IP signal relative to wild-type histone preparations. Mutant histone tests cannot distinguish whether antibodies discriminate between
mono, di, and trimethylation.

Annotation enrichment

Enrichment at annotated features (e.g., transcription start sites) can be used as a validation criterion for certain chromatin-associated modifications
and proteins. If a well-characterized modification (e.g. H3K4me3) is analyzed, the observed localization to annotations are expected to be similar to
that of known overlap standards derived from the literature or existing ChIP-seq data sets (for point source peaks, overlap with known annotations can
be assessed using the IDR guidelines in Box 3).

Use of two different antibodies

Even if antibodies pass the specificity tests described above, observing similar ChIP results with two independent antibodies provides added
confidence. We therefore aspire to obtain ChIP-seq data from two independent antibodies whenever possible, providing statistical comparisons of the
results and presenting the intersection of the peak sets obtained with the two antibodies. The reasons for a significant discordance can be either
biological or technical, and merit further dissection.

Box 1: Continued
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Figure 2. Representative results from antibody characterization assays. (A) Immunoblot analyses of antibodies against SIN3B that (left) pass quality
control (Santa Cruz sc13145) and (right) fail quality control (Santa Cruz sc996). Lanes contain nuclear extract from GM12878 cells (G) and K562 cells (K).
Arrows indicate band of expected size of 133 kDa. Molecular weights (MW) are in kilodaltons. (B) Immunoblot analysis of an antibody against TBLR1
(Abcam ab24550) that passes quality control and can be used for immunoprecipitation. Immunoprecipitations (IPs) were performed from nuclear lysates
of K562 cells. Arrow indicates band of expected size (56 kDa) that is detected in the input lysate (lane 1) and is efficiently (cf. lanes 3 and 2) and specifically
(absent in lane 4) immunoprecipitated. (*) IgG light and heavy chains. (C ) Immunofluorescence analyses of antibodies that pass (left) and fail (right) quality
control. (D) Immunoprecipitation/mass spectrometry analysis of an antibody against SP1 (Santa Cruz sc-17824). Whole-cell lysates (WCL) of K562,
GM12878, and HepG2 were immunoprecipitated, and a band of expected size (;106 kDa) was detected on a Western blot with SP1 primary antibody.
The immunoprecipitation was repeated in K562 WCL, separated on a gel, stained with Coomassie Blue, and the band previously detected on the Western
blot was excised and analyzed by mass spectrometry. Peptides were identified using MASCOT (Matrix Science) with probability-based matching at
P < 0.05. Subsequent analysis was performed in Scaffold (Proteome Software, Inc.) at 0.0% protein FDR and 0.0% peptide FDR. SP1 protein was detected
(along with common contaminants that are often obtained in control experiments) (data not shown) and is highlighted in bold and light blue. (E)
Histogram depicting motif fold-enrichment (blue) for all transcription factors for which ENCODE ChIP-seq data is available (85 factors). Enrichments are
relative to all DNase-accessible sites and were corrected for sequence bias using shuffle motifs. Motif searches were conducted with a matching stringency
of 4–6. Where multiple data sets are available for a factor, the data set with the highest enrichment was counted. Data sets that meet the ENCODE standard
of fourfold enrichment (indicated by blue line) were found for 60% of factors. Motif representation, as a percentage of all analyzed peaks, is shown in red
for all factors for which a data set exists that exceeds the enrichment standard. A total of 96% of these data sets meet the ENCODE standard of >10% motif
representation (red line). All calculations were carried out on peaks identified by IDR analysis (0.01 cut-off ).
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quencing depth, and for point source TFs,

our current target is NRF $0.8 for 10

million (M) uniquely mapped reads (Box

2). We expect that, as sequencing tech-

nology improves and read numbers in the

hundreds of millions per lane become fea-

sible, even complex libraries from point-

source factor libraries may be sequenced at

depths greater than necessary. To maxi-

mize information that can be obtained for

each DNA-sequencing run and to prevent

oversequencing, barcoding and pooling

strategies can be used (Lefebvre et al.

2010).

Control sample

An appropriate control data set is critical

for analysis of any ChIP-seq experiment

because DNA breakage during sonication

is not uniform. In particular, some re-

gions of open chromatin are preferen-

tially represented in the sonicated sam-

ple (Auerbach et al. 2009). There are also

platform-specific sequencing efficiency

biases that contribute to nonuniformity

(Dohm et al. 2008). There are two basic

methods to produce control DNA sam-

ples, each of which mitigates the effects

of these issues on binding-site identifica-

tion: (1) DNA is isolated from cells that

have been cross-linked and fragmented

under the same conditions as the immu-

noprecipitated DNA (‘‘Input’’ DNA); and

(2) a ‘‘mock’’ ChIP reaction is performed

using a control antibody that reacts

with an irrelevant, non-nuclear antigen

(‘‘IgG’’ control). For both types of con-

trols, ENCODE groups sequence to a

depth at least equal to, and preferably

larger than, that of the ChIP sample.

While the IgG control mimics a ChIP

experiment more closely than does an

‘‘input’’ control, it is important that IgG

control immunoprecipitations recover

enough DNA to build a library of suffi-

ciently high complexity to that of the ex-

perimental samples; otherwise, binding-

site identifications made using this control

can be significantly biased.

Regardless of the type of control

used, ENCODE and modENCODE groups

perform a separate control experiment

for each cell line, developmental stage,

and different culture condition/treatment

because of known and unknown differ-

ences in ploidy, genotype, and epigenetic

features that affect chromatin prepara-

tion. To serve as a valid control, we use

identical protocols to build ChIP and

control sequencing libraries (i.e., the same

as the number of PCR amplification cycles,

Figure 3. Peak counts depend on sequencing depth. (A) Number of peaks called with Peak-seq
(0.01% FDR cut-off) for 11 ENCODE ChIP-seq data sets. (B) Called peak numbers for 11 ChIP-seq data
sets as a function of the number of uniquely mapped reads used for peak calling. (Inset) Called peak
data for the MAFK data set from HepG2 cells, currently the most deeply sequenced ENCODE ChIP-
seq data set (displayed separately due to the significantly larger number of reads relative to the other
data sets). Data sets are indicated by cell line and transcription factor (e.g., cell line HepG2, tran-
scription factor MAFK). (C ) Fold-enrichment for newly called peaks as a function of sequencing
depth. For each incremental addition of 2.5 million uniquely mapped reads, the median fold-en-
richment for newly called peaks as compared with an IgG control data set sequenced to identical
depth is plotted.
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fragment size, etc.). Although rare in our experience, control li-

braries with particularly strong sonication biases have been ob-

served and they can adversely affect peak calling (Supplemental

Fig. S1). As much as possible, ENCODE/modENCODE groups also

generate a separate control for each batch of sonicated samples to

control for possible sonication variation.

Peak calling

After mapping reads to the genome, peak calling software is used

to identify regions of ChIP enrichment. We have used several

peak calling algorithms and corresponding software packages, in-

cluding SPP, PeakSeq, and MACs (Ji et al. 2008; Valouev et al. 2008;

Zhang et al. 2008; Rozowsky et al. 2009). The resulting output of

these algorithms generally ranks called regions by absolute signal

(read number) or by computed significance of enrichment (e.g.,

P-values and false discovery rates). Because ChIP signal strength is

a continuum with many more weak sites than strong ones (Fig.

4B), the composition of the final peak list depends heavily on the

specific parameter settings and the algorithm used as well as the

quality of the experiment itself. Thresholds that are too relaxed

lead to a high proportion of false positives for each replicate, but as

discussed below, subsequent analysis can strip false positives from

a final joint peak determination. Different peak-calling algorithms

rely on different statistical models to calculate P-values and false

discovery rates (FDR), meaning that significance values from dif-

ferent software packages are not directly comparable. When using

standard peak-calling thresholds, successful experiments generally

identify thousands to tens of thousands of peaks for most TFs in

mammalian genomes, although some exceptions are known

(Frietze et al. 2010; Raha et al. 2010). In all cases, it is important to

use an appropriate control experiment in peak calling.

Calling discrete regions of enrichment for Broad-source factors

or Mixed-source factors is more challenging and is at an earlier stage

of development. Methods to identify such regions are emerging

(e.g., ZINBA [Rashid et al. 2011] [installation package at http://

code.google.com/p/zinba/], Scripture [Guttman et al. 2010], and

MACS2, an updated version of MACS that is specifically designed

to process mixed signal types [https://github.com/taoliu/MACS]).

Standards for the identification of broad enrichment regions are

currently in development.

Evaluating ChIP-seq data
The quality of individual ChIP-seq experiments varies considerably

and can be especially difficult to evaluate when new antibodies are

being tested or when little is known about the factor and its binding

motif. The ENCODE Consortium has developed and uses metrics

for several aspects of ChIP-seq quality, together with traditional

site-inspection-based evaluation. When applied and interpreted as

a group, these metrics and approaches provide a valuable overall

assessment of experimental success and data quality.

Browser inspection and previously known sites

A first impression about ChIP-seq quality can be obtained by local

inspection of mapped sequence reads using a genome browser.

Although not quantitative, this approach is very useful, especially

when a known binding location can be examined; read distribu-

tion shape and signal strength relative to a control sample can

provide a sense of ChIP quality. A true signal is expected to show

a clear asymmetrical distribution of reads mapping to the forward

and reverse strands around the midpoint (peak) of accumulated

reads. This signal should be large compared with the signal of

the same region from the control library. Of course it is not feasible to

inspect the whole genome in this manner, and evaluating a limited

number of the strongest sites may overestimate the quality of the

entire data set (Supplemental Fig. S2). The genome-wide metrics

discussed below provide more objective and global assessments.

Measuring global ChIP enrichment (FRiP)

For point-source data sets, we calculate the fraction of all mapped

reads that fall into peak regions identified by a peak-calling algo-

rithm (Ji et al. 2008). Typically, a minority of reads in ChIP-seq

experiments occur in significantly enriched genomic regions (i.e.,

peaks); the remainder of the read represents background. The

fraction of reads falling within peak regions is therefore a useful

and simple first-cut metric for the success of the immunoprecipi-

tation, and is called FRiP (fraction of reads in peaks). In general,

FRiP values correlate positively and linearly with the number of

called regions, although there are exceptions, such as REST (also

known as NRSF) and GABP, which yield a more limited number of

Box 2: ChIP experimental design guidelines

Sequencing and library complexity

For each ChIP-seq point-source library, ENCODE’s goal is to obtain $10 million uniquely mapping reads per replicate experiment for mammalian
genomes, with a target NRF (nonredundancy fraction) $0.8 for 10 million reads. The corresponding objective for modENCODE point-source factors
is to obtain $2 M uniquely mapped reads per replicate, $0.8 NRF. The modENCODE target for broad-source ChIP-seq in Drosophila is $5 million
reads, and the ENCODE provisional target for mammalian broad-source histone marks is $20 million uniquely mapping reads at NRF $0.8. The
distribution of NRF values for all ENCODE data sets is shown in Figure 7.

Control libraries

ENCODE generates and sequences a control ChIP library for each cell type, tissue, or embryo collection and sequences the library to the appropriate
depth (i.e., at least equal to, and preferably greater than, the most deeply sequenced experimental library). If cost constraints allow, a control library
should be prepared from every chromatin preparation and sonication batch, although some circumstances can justify fewer control libraries.
Importantly, a new control is always performed if the culture conditions, treatments, chromatin shearing protocol, or instrumentation is significantly
modified.

Reproducibility

Experiments are performed at least twice to ensure reproducibility. For ENCODE data to pass criteria for submission, concordance is determined from
analysis using the IDR methodology (current ENCODE criteria are in Box 3), and a third replicate is performed if the standard is not reached. Cut-offs
for identifying highly reproducible peaks for use in subsequent analyses can be determined by IDR (typically using a 1% threshold).
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Figure 4. (Legend on next page)
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called regions but display very high enrichment (Fig. 4C). Most (787

of 1052) ENCODE data sets have a FRiP enrichment of 1% or more

when peaks are called using MACS with default parameters. The

ENCODE Consortium scrutinizes experiments in which the FRiP

falls below 1%.

The 1% FRiP guideline works well when there are thousands

to tens of thousands of called occupancy sites in a large mammalian

genome. However, passing this threshold does not automatically

mean that an experiment is successful and a FRiP below the threshold

does not automatically mean failure. For example, ZNF274 and hu-

man RNA polymerase III have very few true binding sites (Frietze et al.

2010; Raha et al. 2010), and a FRiP of <1% is obtained. At the other

extreme, ChIP experiments using antibody/factor pairs capable of

generating very high enrichment (such as REST and GABP men-

tioned above) and/or binding-site numbers (CTCF, RAD21, and

others) can result in FRiP scores that exceed those obtained for most

factors (Fig. 5C), even for experiments that are suboptimal. Thus,

FRiP is very useful for comparing results obtained with the same

antibody across cell lines or with different antibodies against the

same factor. FRiP is sensitive to the specifics of peak calling, in-

cluding the way the algorithm delineates regions of enrichment

and the parameters and thresholds used. Thus, all FRiP values that

are compared should be derived from peaks uniformly called by

a single algorithm and parameter set.

Cross-correlation analysis

A very useful ChIP-seq quality metric that is independent of peak

calling is strand cross-correlation. It is based on the fact that a high-

quality ChIP-seq experiment produces significant clustering of

enriched DNA sequence tags at locations bound by the protein of

interest, and that the sequence tag density accumulates on forward

and reverse strands centered around the binding site. As illustrated

in Figure 5D, these ‘‘true signal’’ sequence tags are positioned at a

distance from the binding site center that depends on the fragment

size distribution (Kharchenko et al. 2008). A control experiment,

such as sequenced input DNA, lacks this pattern of shifted stranded

tag densities (Supplemental Fig. S1). This has made it possible to

develop a metric that quantifies fragment clustering (IP enrich-

ment) based on the correlation between genome-wide stranded

tag densities (A Kundaje, Y Jung, P Kharchenko, B Wold, A Sidow,

S Batzoglou, and P Park, in prep.). It is computed as the Pearson

linear correlation between the Crick strand and the Watson strand,

after shifting Watson by k base pairs (Fig. 5E). This typically pro-

duces two peaks when cross-correlation is plotted against the shift

value: a peak of enrichment corresponding to the predominant

fragment length and a peak corresponding to the read length

(‘‘phantom’’ peak) (Fig. 4E; Heinz et al. 2010; A Kundaje, Y Jung,

P Kharchenko, B Wold, A Sidow, S Batzoglou, and P Park, in prep.).

The normalized ratio between the fragment-length cross-

correlation peak and the background cross-correlation (normalized

strand coefficient, NSC) and the ratio between the fragment-

length peak and the read-length peak (relative strand correlation,

RSC) (Fig. 4G), are strong metrics for assessing signal-to-noise ra-

tios in a ChIP-seq experiment. High-quality ChIP-seq data sets

tend to have a larger fragment-length peak compared with the

read-length peak, whereas failed ones and inputs have little or no

such peak (Figs. 4G, 5A,B; Fig. 7, below). In general, we observe

a continuum between the two extremes, and broad-source data sets

are expected to have flatter cross-correlation profiles than point-

sources, even when they are of very high quality. As expected, the

NSC/RSC and FRiP metrics are strongly and positively correlated for

the majority of experiments (Fig. 4F). As with the other quality

metrics, even high-quality data sets generated for factors with few

genuine binding sites tend to produce relatively low NSCs.

These measures form the basis for one of the current quality

standards for ENCODE data sets. We repeat replicates with NSC

values <1.05 and RSC values <0.8 and, if additional replicates

produce low values, we include a note with the reported data

set (Box 3). We illustrate the application of our ChIP-seq quality

metrics to a failed pair of replicates in Figure 5, A–E. Initially, two

EGR1 ChIP-seq replicates were generated in the K562 cell line.

Based on the cross-correlation profiles, FRiP score, and number of

called regions, these replicates were flagged as marginal in quality.

The experiments were repeated, with all quality control metrics

improving considerably. On this basis, the superior measurements

replaced the initial ones in the ENCODE database.

Consistency of replicates: Analysis using IDR

As noted above, the modENCODE and ENCODE consortia gener-

ate two independent biological replicates, with each experiment

passing the basic quality control filters. As another measure of

experiment quality, we take advantage of the reproducibility in-

formation provided by the duplicates using the IDR (irreproducible

discovery rate) statistic that has been developed for ChIP-seq

(Li et al. 2011; discussed in detail in A Kundaje, Q Li, B Brown,

J Rozowsky, A Harmanci, S Wilder, S Batzoglou, I Dunham,

M Gerstein, E Birney, et al., in prep.).

Given a set of peak calls for a pair of replicate data sets, the

peaks can be ranked based on a criterion of significance, such as the

P-value, the q-value, the ChIP-to-input enrichment, or the read

coverage for each peak (Fig. 6A–E). If two replicates measure the

same underlying biology, the most significant peaks, which are

likely to be genuine signals, are expected to have high consistency

between replicates, whereas peaks with low significance, which are

more likely to be noise, are expected to have low consistency. If the

consistency between a pair of rank lists that contains both signif-

Figure 4. Criteria for assessing the quality of a ChIP-seq experiment. (A) Library complexity. Individual reads mapping to the plus (red) or minus strand
(blue) are represented. (B) Distribution of functional regulatory elements with respect to the strength of the ChIP-seq signal. ChIP-seq was performed
against myogenin, a major regulator of muscle differentiation, in differentiated mouse myocytes. While many extensively characterized muscle regulatory
elements exhibit strong myogenin binding, a large number of known functional sites are at the low end of the binding strength continuum. (C ) Number
of called peaks vs. ChIP enrichment. Except in special cases, successful experiments identify thousands to tens of thousands of peaks for most TFs and,
depending on the peak finder used, numbers in the hundreds or low thousands indicate a failure. Peaks were called using MACS with default thresholds.
(D) Generation of a cross-correlation plot. Reads are shifted in the direction of the strand they map to by an increasing number of base pairs and the
Pearson correlation between the per-position read count vectors for each strand is calculated. Read coverage as wigglegram is represented, not to the
same scale in the top and bottom panels.) (E ) Two cross-correlation peaks are usually observed in a ChIP experiment, one corresponding to the read length
(‘‘phantom’’ peak) and one to the average fragment length of the library. (F ) Correlation between the fraction of reads within called regions and the
relative cross-correlation coefficient for 1052 human ChIP-seq experiments. (G ) The absolute and relative height of the two peaks are useful determinants
of the success of a ChIP-seq experiment. A high-quality IP is characterized by a ChIP peak that is much higher than the ‘‘phantom’’ peak, while often very
small or no such peak is seen in failed experiments.
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Figure 5. Quality control of ChIP-seq data sets in practice. EGR1 ChIP-seq was performed in K562 cells in two replicates. ChIP enriched regions were
identified using MACS. However, the cross-correlation plot profiles (A) indicated that both IPs were suboptimal, with one being unacceptable. In
agreement with this judgment, ChIP enrichment (C ) and peak number (D) also indicated failure. The ChIP-seq assays were repeated (B), with all quality
control metrics improving significantly (B,D), and many additional EGR1 peaks were identified as a result. (E ) Representative browser snapshot of the four
EGR1 ChIP-seq experiments, showing the much stronger peaks obtained with the second set of replicates. (F ) Distribution of EGR1 motifs relative to the
bioinformatically defined peak position of EGR1-occupied regions derived from ChIP-seq data in K562 cells. Regions are ranked by their confidence scores
as called by SPP.
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icant and insignificant findings is plotted, a transition in consis-

tency is expected (Fig. 6C,F). This consistency transition provides an

internal indicator of the change from signal to noise and suggests

how many peaks have been reliably detected.

The IDR statistic quantifies the above expectations of con-

sistent and inconsistent groups by modeling all pairs of peaks

present in both replicates as belonging to one of two groups: a re-

producible group, and an irreproducible group (Li et al. 2011). In

general, the signals in the reproducible group are more consistent

(i.e., have a larger correlation coefficient) and are ranked higher

than the irreproducible group. The proportion of identifications

that belong to the ‘‘noise’’ component and the correlation of the

significant component are estimated adaptively from the data. The

IDR provides a score for each peak, which reflects the posterior

probability that the peak belongs to the irreproducible group.

A major advantage of IDR is that it can be used to establish

a stable threshold for called peaks that is more consistent across

laboratories, antibodies, and analysis protocols (e.g., peak callers)

than are FDR measures (A Kundaje, Q Li, B Brown, J Rozowsky,

A Harmanci, S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney,

et al., in prep.). Increased consistency comes from the fact that IDR

uses information from replicates, whereas the FDR is computed on

each replicate independently. The application of IDR to real-life data

is shown in Figure 6. A pair of high-quality RAD21 ChIP-seq repli-

cates display good consistency between IDR ranks for a large number

(;28,000) of highly reproducible peaks (Figs. 6A,B), with a clear in-

flection between the signal and noise populations near the 1% IDR

value (Fig. 6C). In contrast, a pair of SPT20 replicates, which had

already been flagged as low-quality based on the individual FRiP and

NSC/RSC metrics, display very low IDR reproducibility, with very few

significant peaks, and no visible inflection in the IDR curve (Fig. 6F).

It is important that the peak-calling threshold used prior to

IDR analysis not be so stringent that the noise component is entirely

unrepresented in the data, because the algorithm requires sampling

of both signal and noise distributions to separate the peaks into two

groups; thus relaxing the default stringency settings when running

a given peak caller is advised if IDR analysis will follow.

A caution in applying IDR is that it is dominated by the weakest

replicate (A Kundaje, Q Li, B Brown, J Rozowsky, A Harmanci,

S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney, et al., in

prep.). That is, if one replicate is quite poor, many ‘‘good’’ peaks

from the higher quality replicate will be rejected by IDR analysis,

because they are not reproducible in the weak replicate. To ensure

similar weighting of individual replicates, the number of significant

binding regions identified using IDR on each individual replicate

(obtained by partitioning reads into two equal groups to allow the

IDR analysis) is recommended to be within a factor of 2 for data sets

to be submitted to UCSC by ENCODE (Box 3).

ENCODE has begun applying IDR analysis to all ChIP ex-

periments. For all submitted ENCODE ChIP-seq data sets, the

number of bound regions identified in an IDR comparison be-

tween replicates is at least 50% of the number of regions identified

in an IDR comparison between two ‘‘pseudoreplicates’’ generated

by randomly partitioning available reads from all replicates (Box 3).

Guidelines for reporting ChIP-seq data
To facilitate data sharing among laboratories, both within and

outside the Consortium, and to ensure that results can be repro-

duced, ENCODE has established guidelines for data sharing in

public repositories. Raw data can be submitted to the Short Read

Archive (SRA) and ChIP results are submitted to GEO. Through

Box 3: ChIP-seq quality assessment guidelines

Within ENCODE, a set of data quality thresholds has been established for submission of ChIP-seq data sets. These have been constructed based on the
historical experiences of ENCODE ChIP-seq data production groups with the purpose of balancing data quality with practical attainability and are
routinely revised. The current standards are below and the performance of ENCODE data sets against these thresholds is shown in Figure 7.

Cross-correlation analysis

The current ENCODE practice is to calculate and report NSC and RSC for each experiment. For experiments with NSC values below 1.05 and RSC
values below 0.8, we currently recommend that an additional replicate be attempted or the experiment explained in the data submission as adequate
based on additional considerations.

Irreproducible discovery rate (IDR)

The following guidelines have been established for mammalian cells (optimal parameter may differ for other organisms). Biological replicates are
performed for each ChIP-seq data set and subjected to peak calling. IDR analysis is then performed with a 1% threshold. For submission to ENCODE,
we currently require that the number of bound regions identified in an IDR comparison between replicates to be at least 50% of the number of
regions identified in an IDR comparison between two ‘‘pseudoreplicates’’ generated by pooling and then randomly partitioning all available reads
from all replicates (Np/Nt < 2) (Fig. 7). To ensure similar weighting of individual replicates for identifying binding regions, we further recommend that
the number of significant peaks identified using IDR on each individual replicate (obtained by partitioning reads into two equal groups for the IDR
analysis) be within a factor of 2 of one another (N1/N2 < 2) (Fig. 7). Data sets which fail to meet these criteria may still be deposited by ENCODE
experimenters, provided that at least three experimental replicates have been attempted and a note accompanies these data sets explaining which
parameters fail to meet the standards and providing any technical information that may explain this failure. This guideline is for point source features;
metrics are still being determined for broad peak analyses.

Updated information about the performance of ENCODE data sets against these quality metrics and tools for determining these metrics will be
forthcoming through the ENCODE portal (http://encodeproject.org/ENCODE/).

Historical note

A simpler heuristic for establishing reproducibility was previously used as a standard for depositing ENCODE data and was in effect when much of the
currently available data was submitted. According to this standard, either 80% of the top 40% of the targets identified from one replicate using an
acceptable scoring method should overlap the list of targets from the other replicate, or target lists scored using all available reads from each replicate
should share more than 75% of targets in common. As with the current standards, this was developed based on experience with accumulated
ENCODE ChIP-seq data, albeit with a much smaller sample size.
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April 2012, 478 ChIP-seq data sets had been submitted to GEO

at accession ID PRJNA63441, with submission of all current

ENCODE data to be completed by June 2012. UCSC houses the

ENCODE data (Rosenbloom et al. 2011) and modMine houses

the modENCODE data (Contrino et al. 2011).

Box 4 provides a detailed description of the data and experi-

mental and analytical details to be shared so that others can re-

produce both experiments and analyses. Shared information includes

the experimental procedures for performing the ChIP, antibody in-

formation and validation data, as well as relevant DNA sequencing,

peak calling, and analysis details. For ENCODE experiments that do

not meet the guidelines described above, data and results may be

reported, with a note indicating that the criteria have not been met

and explaining why the data are nevertheless released.

Discussion
The ENCODE and ModENCODE standards and practices presented

here will be further revised as the protocols, technologies, and our

understanding of the assays change. Updated versions will be re-

leased and made available at http://encodeproject.org/ENCODE/

experiment_guidelines.html. We have begun to address the central

but vexing issue of immune reagent specificity and performance

by establishing a menu of primary and secondary methods for

antibody characterization, including performance-reporting prac-

tices. We also developed and applied global metrics to assess the

quality of several aspects of an individual ChIP-seq experiment:

Library complexity can be measured by the nonredundant fraction

(NRF); immunoenrichment can be measured by the fraction of reads

in called peaks (FRiP) and by cross-correlation analysis (NSC/RSC);

and replicate significance can be measured by IDR. We related these

global quality measures to more traditional inspection of ChIP-seq

browser tracks (Fig. 5) and discuss below how different aspects of

data quality interact with specific uses of ChIP-seq data.

How good can a ChIP-seq experiment be?

Thus far, the most successful point-source factor experiments

for ENCODE have FRiP values of 0.2–0.5 (factors such as REST,

GABP, and CTCF) (Fig. 4C) and NSC/RSC values of 5–12. Al-

though these quality scores and characteristics were routinely

obtained for the best-performing factor/antibody combinations,

they are not the rule; for most transcription factors, the ChIP

quality metrics were substantially lower and more variable (Fig. 7).

We believe that multiple issues contribute to the variability; the

quality of antibody (affinity and specificity) is surely important, but

epitope availability within fixed chromatin, sensitivity of the anti-

body to post-translational modifications of the antigen, how long and

how often the protein is bound to DNA, and other physical charac-

teristics of the protein–DNA interaction likely also contribute. Further

work with epitope-tagged factors, for which the antibody is not

a variable, should begin to sort among the possibilities.

Figure 6. The irreproducible discovery rate (IDR) framework for assessing reproducibility of ChIP-seq data sets. (A–C ) Reproducibility analysis for a pair
of high-quality RAD21 ChIP-seq replicates. (D,E ) The same analysis for a pair of low quality SPT20 ChIP-seq replicates. (A,D) Scatter plots of signal scores
of peaks that overlap in each pair of replicates. (B,E ) Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F ) The estimated IDR as a function of different rank thresholds. (A,B,D,E ) Black data points represent pairs of peaks that pass
an IDR threshold of 1%, whereas the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21 replicates show high
reproducibility with ;30,000 peaks passing an IDR threshold of 1%, whereas the SPT20 replicates show poor reproducibility with only six peaks passing
the 1% IDR threshold.
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When measurements differ in quality, the higher-quality

replicate often identifies thousands more sites than the lower. Do

sites present only in the superior ChIP experiment reflect true

occupancy? Motif analysis suggests that many do. In Figure 5F, the

position of EGR1 motifs relative to EGR1 ChIP-seq peaks is shown.

The known binding motif is prominent and concentrated centrally

under the ChIP peaks, as expected if the motif mediates occu-

pancy; importantly, the central location of the motif is observed,

even in the low-ranking peaks. The trend continues below the

peak-calling cut-offs, suggesting additional true occupancy sites.

Depending on the goals of an analysis, users may want to be more

or less conservative in defining the threshold for inclusion. Motif

presence could be used as one criterion for ‘‘rescuing’’ candidate

sites identified in only one experiment.

Box 4. Data reporting guidelines

Data should be submitted to public repositories. The following information is currently used by ENCODE/modENCODE to submit data to public
repositories.

Metadata
For submission of basic experimental data by ENCODE, the following information is minimally included:

• Investigator, organism, or cell line, experimental protocol (or reference to a known protocol).

• Indication as to whether an experiment is a technical or biological replicate.

• Catalog and lot number for any antibody used. If not a commercial antibody, indicate the precise source of the antibody.

• Information used to characterize the antibody, including summary of results (images of immunoblots, immunofluorescence, list of proteins

identified by mass spec, etc.).

• Peak calling algorithm29 and parameters used, including threshold and reference genome used to map peaks.

• A summary of the number of reads and number of targets for each replicate and for the merged data set.

• Criteria that were used to validate the quality of the resultant ChIP-seq data (i.e., overlap results or IDR29).

• Experimental validation results (e.g., qPCR).

• Link to the control track that was used.

• An explanation if the experiment fails to meet any of the standards.

High-throughput sequencing data

• Image files from sequencing experiments do not need to be stored.

• Raw data (FASTQ files) should be submitted to both GEO and SRA.

• Each replicate should be submitted independently.

• Target region and peak calling results.

Point source peaks
For point source peaks (e.g. experiments with antibodies to sequence-specific transcription factors), common features that are reported by ENCODE
researchers include:

• Peak position, defined as a single base pair.

• Start and end positions, defined as specific base pairs.

• Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

• Significance/accuracy measures:

u P-value determined using a method chosen by the submitter.

u Q-value (false discovery rate correction) determined using a method chosen by the submitter.

• Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

and Q-values, as applicable.

Broad regions

• Start and end positions, defined as specific base pairs.

• Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

• Significance/accuracy measures:

u P-value determined using a method chosen by the submitter.

u Q-value (false discovery rate correction) determined using a method chosen by the submitter.

• Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

and Q-values, as applicable.

• Point-source peaks can be called in addition to broad regions (i.e., one can have ‘‘peaks’’ and potentially ‘‘valleys’’ within ‘‘regions’’).

The investigator should determine whether their data best fits the broad region/point source peak data or both.

29For uniform peak calling within ENCODE, the MACS peak caller, version 1.4.2
was used. Scripts used for IDR analysis are at https://sites.google.com/site/
anshulkundaje/projects/idr.
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How good does a ChIP-seq experiment need to be?

We have observed that some biologically important sites can have

modest ChIP-seq signals (Fig. 4B), while some sites with very high

enrichment fail to give positive functional readouts in follow-up

experiments. Given this, the best practical guidance for setting

thresholds of sensitivity, specificity, and reproducibility will depend

on how the data are to be used. Below, we outline four different

common ChIP uses, ranging from more relaxed to stringent in

their requirements toward data quality and site-calling sensitivity.

Figure 7. Analysis of ENCODE data sets using the quality control guidelines. (A–C) Thresholds and distribution of quality control metric values in human
ENCODE transcription-factor ChIP-seq data sets. (A) NSC, (B) RSC, (C ) NRF. (D) IDR pipeline for assessing ChIP-seq quality using replicate data sets. (E,F ) Thresholds
and distribution of IDR pipeline quality control metrics in human ENCODE transcription factor ChIP-seq data sets. (Dashed lines) Current ENCODE thresholds
for the given metric, which are NSC > 1.05 (A); RSC > 0.8 (B); NRF > 0.8, N1/N2 $ 2 (where N1 refers to the replicate with higher N) (E ); Np/Nt $ 2 (F ).
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Motif analysis

Deriving DNA sequence motifs for a ChIP-assayed factor is rel-

atively simple and has been performed successfully for most

ENCODE ChIP-seq data sets (Fig. 2E). Experiments that pass the

thresholds we use for NRF, FRiP, and NSC/RSC typically produce

thousands to tens of thousands of regions, a sub-sample of which

can be readily used to deduce the recognition motif, although

more than one motif subfamily is sometimes found by additional

analysis (Johnson et al. 2007). Causal motifs are typically cen-

trally positioned and this can be used as a confirming diagnostic

(Fig. 6F). Notably, motif derivation can also be successful from

marginal quality data that fall below recommended quality

metric thresholds (especially if only the top-ranked peaks are used).

However, the risk of artifacts increases, and results from such anal-

yses should be cautiously interpreted and stringently validated.

Discovering regions to test for biological function such as transcriptional
enhancement, silencing, or insulation

Biologists often use ChIP-seq data to identify candidate regulatory

regions at loci of interest. When the goal is to find a few examples

of regulatory domains bound by a factor, data of modest quality

can still be useful if combined with close inspection of ChIP signals

and the corresponding controls before investing in functional

and/or mutagenesis studies. However, if the aspiration is to iden-

tify a comprehensive collection of all candidate regulatory regions

bound by a factor, very high-quality and deeply sequenced data

sets are required.

Deducing and mapping combinatoric occupancy

Typical cis-acting regulatory modules (CRM) are occupied by

multiple factors (Ghisletti et al. 2010; Lin et al. 2010; Wilson et al.

2010; A He et al. 2011; Q He et al. 2011; Tijssen et al. 2011) and

associated with multiple histone modifications (Barski et al. 2007;

Mikkelsen et al. 2007; Wang et al. 2008). A frequent goal of ChIP-

seq studies is to deduce a combination of factors that mediate

a common regulatory action at multiple sites in the genome. This

is a very quality-sensitive use of ChIP data since the presence of

one or more weak data sets that fail to identify significant frac-

tions of the true occupancy sites can seriously confound the

analysis; therefore we recommend only the highest quality data

sets be used for such analyses.

Integrative analysis

A new frontier of whole-genome analysis is the integration of

data from many (hundreds or thousands) experiments with the

goal of uncovering complex relationships. These endeavors typi-

cally use sophisticated machine learning methods (Ernst and Kellis

2010; Ernst et al. 2011; A Mortazavi, S Pepke, G Marinov, and

B Wold, in prep.) with complex and varying sensitivity to ChIP

strength; and such efforts can be very sensitive to data quality.

Conclusion
Our goal in developing these current working guidelines for

ChIP-seq experiments, now applied over a large number of factors,

was to provide information about experimental quality for users of

modENCODE and ENCODE data. The strongest ChIP-seq data-sets

that readily meet all quality specifications should be especially

useful for regulatory network inference and for diverse integrative

analyses, including the effects of genetic variation on human traits

and disease. The metrics, methods, and thresholds might also be

useful to the wider community, although our intention in out-

lining our approaches was not to imply that ENCODE criteria must

be applied rigidly to all studies. As discussed above, some ChIP data

and antibodies can and do fall outside these guidelines for varied

reasons, yet are highly valuable. In such cases it is critical to try

to understand why a data set looks unusual, and to assess the

implications for specific uses of those data or reagents. Similar

guidelines exist in ENCODE for RNA-seq, DNase-seq, FAIRE-seq,

ChIA-PET, and other related assays; the working standards and

protocols for these techniques can be found at the ENCODE

and modENCODE websites (http://encodeproject.org/ENCODE/

experiment_guidelines.html).

Data access
All data sets used in the analysis have been deposited for public

viewing and download at the ENCODE (http://encodeproject.org/

ENCODE/) and modENCODE (http://www.modencode.org/)

portals.
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