
Supplementary	Methods	
Error	correction.		The	error	corrector	Quake	was	run	on	all	data	sets,	as	was	the	
Allpaths‐LG	error	corrector.		For	Quake,	we	used	a	k‐mer	size	of	18,	and	the	recipe	
to	run	it	was	as	follows:	
  echo frag_1.fastq      frag_2.fastq >  genome.ls  
  echo shortjump_1.fastq shortjump_2.fastq >> genome.ls  
  quake.py -f genome.ls  -k 18 –p 20	
	
Allpaths‐LG	does	not	include	a	standalone	error	corrector;	however,	we	ran	the	
assembler	only	through	the	error	correction	steps	and	then	extracted	the	corrected	
reads.		The	default	k‐mer	sizes	in	Allpaths‐LG	are	24	for	the	fragment	reads	and	96	
for	the	jump	libraries.		The	error	corrected	reads	are	written	by	the	assembly	
pipeline	to	disk	.		It	creates	two	files	called	"frag_reads_corr.fastb"	and	
"jump_reads_ec.fastb.”		We	converted	these	files	from	FASTB	to	FASTA	format	and	
identified	mate‐pairs	based	on	their	adjacent	positions	in	the	files.		These	corrected	
reads	were	then	used	as	input	to	other	assemblers	in	the	evaluation.	
	
Software	versions.		Most	of	the	assemblers	in	this	study	are	under	continual	
development,	and	are	likely	to	change	and	improve	over	time.		The	versions	used	for	
the	results	described	here	are	as	follows:	

 Abyss,	version	1.2.7	
 Allpaths‐LG,	release	3‐35218	
 Bambus,	release	3.0.1	
 CABOG,	release	6.1	
 MSR‐CA,	release	1.0	
 SGA,	release	0.9.8	
 SOAPdenovo,	release	1.0.5	
 Velvet,	release	1.0.13	

	
SOAPdenovo	contains	a	separate	module	called	SOAPGapCloser.		This	improves	the	
contiguity	of	assemblies	dramatically:	for	example,	on	Rhodobacter,	the	contig	N50	
size	increased	from	~8	Kb	to	~131	Kb,	a	16‐fold	improvement.		We	ran	this	module	
on	all	assemblies	used	in	these	comparisons.		Velvet	contains	a	separate	module	
called	VelvetOptimizer.		We	found	that	this	significantly	improved	assemblies	using	
uncorrected	reads.		However,	when	we	used	corrected	reads	as	input	to	Velvet,	its	
assemblies	were	the	same	or	better	than	the	results	obtained	from	VelvetOptimizer.	
	
Recipes	for	genome	assemblies			
Here	we	describe	how	we	ran	each	assembler	on	all	the	genomes	described	in	this	
study.		Note	that	these	recipes	may	not	be	optimal	for	new	genomes,	but	they	should	
provide	a	good	starting	point.		Better	results	may	be	obtained	by	running	an	
assembler	multiple	times	with	different	parameter	settings,	which	is	the	strategy	we	
would	recommend.	
	



The	data	is	available	at	the	GAGE	website,	gage.cbcb.umd.edu.		For	each	genome,	we	
have	placed	all	the	assemblies	described	in	this	study,	the	original	data,	the	Quake‐
corrected	reads,	and	the	Allpaths‐corrected	reads	at:	
	 http://gage.cbcb.umd.edu/data/Staphylococcus_aureus/	
	 http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides/	
	 http://gage.cbcb.umd.edu/data/Hg_chr14/	
	 http://gage.cbcb.umd.edu/data/Bombus_impatiens/	
The	original	raw	data	for	all	genomes	is	available	at	NCBI,	http://www.ncbi.nih.gov.		
These	recipes	should	allow	others	to	replicate	our	results.		Note	that	some	
algorithms	include	random	components,	which	may	produce	some	variations	when	
re‐running	the	code	at	different	times.		E.g.,	CABOG	breaks	ties	randomly	in	its	unitig	
module,	and	if	the	order	of	the	input	reads	is	changed	even	slightly,	the	resulting	
assembly	will	be	different.	
	
To	run	AllPaths‐LG,	we	used	this	command:	
	
Staphylococcus	aureus:	
RunAllPaths3G PRE=. REFERENCE_NAME=. DATA_SUBDIR=. RUN=allpaths 
SUBDIR=run ERROR_CORRECTION=True FIX_SOME_INDELS=False 
	
Rhodobacter	sphaeroides:	
RunAllPaths3G PRE=. REFERENCE_NAME=. DATA_SUBDIR=. RUN=allpaths 
SUBDIR=run 
	
Human	Chromosome	14:	
RunAllPaths3G PRE=. REFERENCE_NAME=. DATA_SUBDIR=. RUN=allpaths 
SUBDIR=run ERROR_CORRECTION=True FIX_SOME_INDELS=True 
	
 
	
For	CABOG,	we	used	the	following	command:  
runCA -d . -p asm –s runCA.spec *.frg 
	
runCA.spec contains	multiple	parameters	used	by	CA	or	CABOG	during	assembly.	
The	following	parameters,	most	of	which	are	defaults,	were	used	in	the	best	
assembly	for	each	organism:	
	
Rhodobacter	sphaeroides:	
doOverlapBasedTrimming = 0, unittiger = bog, 
bogBreakAtIntersections = 0, bogBadMateDepth = 1000, 
merylThreads = 20, merOverlapperThreads = 1, 
merOverlapperExtendConcurrency = 20, 
merOverlapperSeedConcurrency = 20, ovlThreads = 1, 
ovlConcurrency = 20, ovlCorrConcurrency = 20 , 
frgCorrThreads = 1, frgCorrConcurrency = 20, merylMemory = 
12800, ovlStoreMemory = 24000, doExtendClearRanges = 0, 
cnsConcurrency = 20 



	
Human	Chromosome	14:	
doOverlapTrimming = 0, unittiger = bog, merylThreads = 20, 
merOverlapperThreads = 1, merOverlapperExtendConcurrency = 
20, merOverlapperSeedConcurrency = 20, ovlThreads = 1, 
ovlConcurrency = 20, ovlCorrConcurrency = 20, 
frgCorrThreads = 4, frgCorrConcurrency = 8, cnsConcurrency 
= 20, merylMemory = 12800, obtMerThreshold = 1000, 
ovlMerThreshold = 1000, ovlStoreMemory = 12800, 
frgCorrBatchSize = 2000000, merOverlapperExtendBatchSize = 
2000000, merOverlapperSeedBatchSize = 2000000, 
ovlCorrBatchSize = 2000000, doExtendClearRanges = 1, 
ovlMemory = 8GM --hashload 0.8, ovlHashBlockSize = 2000000, 
ovlRefBlockSize = 32000000 
	
Bombus	impatiens:	
doOverlapTrimming = 0, unittiger = bog, merylThreads = 24, 
merOverlapperThreads = 1, merOverlapperExtendConcurrency = 
24, merOverlapperSeedConcurrency = 24, ovlThreads = 1, 
ovlConcurrency = 24, ovlCorrConcurrency = 24, 
frgCorrThreads = 4, frgCorrConcurrency = 8, cnsConcurrency 
= 24, merylMemory = 8192, obtMerThreshold = 1000, 
ovlMerThreshold = 1000, ovlStoreMemory = 8192, 
frgCorrBatchSize = 2000000, merOverlapperExtendBatchSize = 
2000000, merOverlapperSeedBatchSize = 2000000, 
ovlCorrBatchSize = 2000000, doExtendClearRanges = 0, 
doFragmentCorrection = 0, ovlMemory = 8GM --hashload 0.8 --
hashstrings 4000000, ovlHashBlockSize = 2000000, 
ovlRefBlockSize = 2000000 
	
	
For	Velvet,	we	used:	
velveth . 31 -fastq \ 
    -shortPaired  frag_12.fastq \ 
    -shortPaired2 shortjump_12.rev.fastq \ 
    -shortPaired3 longjump_12.fastq 
 
velvetg . -exp_cov auto \ 
    -ins_length  $MEA_FRAG      -ins_length_sd  $STD_FRAG \ 
    -ins_length2 $MEA_SHORTJUMP -ins_length2_sd $STD_SHORTJUMP \ 
    -ins_length3 $MEA_LONGJUMP  -ins_length3_sd $STD_LONGJUMP \ 
    -scaffolding yes -exportFiltered yes -unused_reads yes 
 
where	the	longjump	library	was	used	only	for	the	assembly	of	human	chromosome	14,	
and	$MEA_*	and	$STD_*	are	mean	and	standard	deviations	of	the	corresponding	libraries.	
 
 



For	SOAPdenovo,	we	created	a	SOAPdenovo.config	file	and	ran	the	
SOAPdenovo	and	GapCloser	commands	as	follows:		
 
Staphylococcus	aureus:		
echo "[LIB]\n avg_ins=180\n reverse_seq=0\n asm_flags=1\n 
rank=1\n f1=frag_1.cor.fasta\n f2=frag_2.cor.fasta\n" > 
SOAPdenovo.config 
echo "[LIB]\n avg_ins=3500\n reverse_seq=0\n asm_flags=2\n 
rank=2\n f1=shortjump_1.cor.fasta\n f2=shortjump_2.cor.fasta\n" 
>> SOAPdenovo.config 
 
SOAPdenovo all -K 31 -p 24 -s SOAPdenovo.config -o asm  
 
GapCloser -b SOAPdenovo.config -a asm.scafSeq -o asm2.scafSeq -t 
8 -p 31 
	
Rhodobacter	sphaeroides:		
echo "[LIB]\n avg_ins=180\n reverse_seq=0\n asm_flags=1\n 
rank=1\n f1=frag_1.cor.fasta\n f2=frag_2.cor.fasta\n" > 
SOAPdenovo.config 
echo "[LIB]\n avg_ins=3500\n reverse_seq=0\n asm_flags=2\n 
rank=2\n f1=shortjump_1.cor.fasta\n f2=shortjump_2.cor.fasta\n" 
>> SOAPdenovo.config 
 
SOAPdenovo all -K 31 -p 16 -s SOAPdenovo.config -o asm  
 
GapCloser -b SOAPdenovo.config -a asm.scafSeq -o asm2.scafSeq -t 
8 -p 31 
	
Human	Chromosome	14:		
echo "[LIB]\n avg_ins=180\n reverse_seq=0\n asm_flags=1\n 
rank=1\n f1=chr14_fragment_1.cor.fasta\n 
f2=chr14_fragment_2.cor.fasta\n" > SOAPdenovo.config 
echo "[LIB]\n avg_ins=3000\n reverse_seq=0\n asm_flags=2\n 
rank=2\n f1=chr14_shortjump_1.cor.fasta\n 
f2=chr14_shortjump_2.cor.fasta\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=35000\n reverse_seq=0\n asm_flags=2\n 
rank=3\n f1=chr14_longjump_1.cor.fasta\n 
f2=chr14_longjump_2.cor.fasta\n" >> SOAPdenovo.config 
 
SOAPdenovo all -K 47 -p 16 -s SOAPdenovo.config -o asm  
 
GapCloser -b SOAPdenovo.config -a asm.scafSeq -o asm2.scafSeq -t 
8 -p 31 
	
Bombus	impatiens:	
echo "[LIB]\n avg_ins=400\n reverse_seq=0\n asm_flags=2\n 
rank=2\n q1=s_1.1_sequence.cor.rev.fastq\n 
q2=s_1.2_sequence.cor.rev.fastq\n" > SOAPdenovo.config 



echo "[LIB]\n avg_ins=8000\n reverse_seq=0\n asm_flags=2\n 
rank=3\n q1=s_2.1_sequence.cor.rev.fastq\n 
q2=s_2.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=400\n reverse_seq=0\n asm_flags=3\n 
rank=1\n q1=s_3.1_sequence.cor.rev.fastq\n 
q2=s_3.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=400\n reverse_seq=0\n asm_flags=3\n 
rank=1\n q1=s_5.1_sequence.cor.rev.fastq\n 
q2=s_5.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=400\n reverse_seq=0\n asm_flags=3\n 
rank=1\n q1=s_6.1_sequence.cor.rev.fastq\n 
q2=s_6.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=400\n reverse_seq=0\n asm_flags=3\n 
rank=1\n q1=s_7.1_sequence.cor.rev.fastq\n 
q2=s_7.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=400\n reverse_seq=0\n asm_flags=3\n 
rank=1\n q1=s_8.1_sequence.cor.rev.fastq\n 
q2=s_8.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
echo "[LIB]\n avg_ins=3000\n reverse_seq=0\n asm_flags=2\n 
rank=2\n q1=s_9.1_sequence.cor.rev.fastq\n 
q2=s_9.2_sequence.cor.rev.fastq\n" >> SOAPdenovo.config 
 
SOAPdenovo all -K 47 -p 16 -s SOAPdenovo.config -o asm  
 
GapCloser -b SOAPdenovo.config -a asm.scafSeq -o asm2.scafSeq -t 
8 -p 31 
 
 
For	ABySS,	we	used:	
 
Staphylococcus	aureus:	
abyss-pe  \ 
    k=31 n=5 name=asm lib='frag short' frag=frag_12.cor.fastq 
short=short_12.cor.fastq aligner=bowtie 
	
Rhodobacter	sphaeroides:	
abyss-pe  \ 
    k=31 n=5 name=asm lib='frag short' frag=frag_12.cor.fastq 
short=short_12.cor.fastq aligner=bowtie 
	
Human	Chromosome	14:	
abyss-pe  \ 
    k=31 n=5 j=6 name=asm lib='frag short long' 
frag=chr14_frag_12.cor.fastq short=chr14_shortjump_12.cor.fastq 
long=chr14_longjump_12.cor.fastq aligner=bowtie 
 
 
For	SGA,	we	used	the	following	commands:	
 
Staphylococcus	aureus:	



sga preprocess -p 1 frag_?.fastq > frag.pp.fa 
sga index -t 20 frag.pp.fa 
sga correct -k 31 -t 20 frag.pp.fa -o frag.pp.ec.fa 
sga index -t 31 frag.pp.ec.fa 
sga filter frag.pp.ec.fa 
sga overlap -t 20 –m 45 frag.pp.ec.filter.pass.fa 
sga assemble frag.pp.ec.filter.pass.asqg.gz 
ln -s default-contigs.fa genome.ctg.fasta 
sga-align --name frag  genome.ctg.fasta  frag_1.fastq 
frag_2.fastq 
sga-align --name shortjump genome.ctg.fasta  shortjump_1.fastq 
shortjump_2.fastq 
sga-bam2de.pl -n 5 --prefix frag frag.bam 
sga-bam2de.pl -n 5 --prefix shortjump shortjump.bam 
sga-astat.py  -m 200 frag.refsort.bam > genome.ctg.astat 
sga scaffold -m 200 --pe frag.de  --mate-pair shortjump.de  -a 
genome.ctg.astat -o genome.scaf genome.ctg.fasta 
sga scaffold2fasta -m 200 -f genome.ctg.fasta -o genome.scf.fasta 
genome.scaf --write-unplaced --use-overlap 
	
Rhodobacter	sphaeroides:	
sga preprocess -p 1 frag_?.fastq > frag.pp.fa 
sga preprocess -p 1 short_?.fastq > short.pp.fa 
sga index -t 20 frag.pp.fa 
sga index -t 20 short.pp.fa 
sga correct -k 31 -t 20 frag.pp.fa -o frag.pp.ec.fa 
sga correct -k 31 -t 20 short.pp.fa -o short.pp.ec.fa 
cat frag.pp.ec.fa short.pp.ec.fa > allReads.pp.ec.fa 
sga index -t 31 allReads.pp.ec.fa 
sga filter allReads.pp.ec.fa 
sga overlap -t 20 allReads.pp.ec.filter.pass.fa 
sga assemble allReads.pp.ec.filter.pass.asqg.gz 
ln -s default-contigs.fa genome.ctg.fasta 
sga-align --name frag  genome.ctg.fasta  frag_1.fastq 
frag_2.fastq 
sga-align --name shortjump genome.ctg.fasta  shortjump_1.fastq 
shortjump_2.fastq 
sga-bam2de.pl -n 5 --prefix frag frag.bam 
sga-bam2de.pl -n 5 --prefix shortjump shortjump.bam 
sga-astat.py  -m 200 frag.refsort.bam > genome.ctg.astat 
sga scaffold -m 200 --pe frag.de  --mate-pair shortjump.de  -a 
genome.ctg.astat -o genome.scaf genome.ctg.fasta 
sga scaffold2fasta -m 200 -f genome.ctg.fasta -o genome.scf.fasta 
genome.scaf --write-unplaced --use-overlap 
	
Human	Chromosome	14:	
sga preprocess -p 1  frag_?.fastq > frag.pp.fa  
sga index -t 20 frag.pp.fa 
sga correct -k $K -i 10 -t 20 frag.pp.fa -e 0.04 -m 45 -o 
frag.pp.ec.fa  
sga index -t 20 frag.pp.ec.fa  



sga filter -t 20 frag.pp.ec.fa   
sga overlap -m 45 -t 20 frag.pp.ec.filter.pass.fa  
sga assemble frag.pp.ec.filter.pass.asqg.gz        
ln -s default-contigs.fa genome.ctg.fasta 
sga-align --name frag  genome.ctg.fasta  frag_1.fastq 
frag_2.fastq 
sga-align --name shortjump genome.ctg.fasta  shortjump_1.fastq 
shortjump_2.fastq 
sga-bam2de.pl -n 5 --prefix frag frag.bam 
sga-bam2de.pl -n 5 --prefix shortjump shortjump.bam 
sga-astat.py  -m 200 frag.refsort.bam > genome.ctg.astat 
sga scaffold -m 200 --pe frag.de  --mate-pair shortjump.de  -a 
genome.ctg.astat -o genome.scaf genome.ctg.fasta 
sga scaffold2fasta -m 200 -f genome.ctg.fasta -o genome.scf.fasta 
genome.scaf --write-unplaced --use-overlap 
 
For	MSR‐CA,	our	recipes	were	as	follows.		Running	the	assembler	simply	amounts	to	
specifying	the	locations	of	input	files	for	various	input	data	types,	such	as	short	
paired	end	Illumina	reads	and	jump	library	mate	pairs,	in	the	configuration	file.		(A	
brief	manual	for	MSR‐CA	assembler	is	available	at	
http://www.genome.umd.edu/SR_CA_MANUAL.htm).		Running	runSRCA.pl	from	the	
assembler	bin	directory,	with	the	configuration	file	specified	as	the	only	command	
line	parameter,	produces	the	assemble.sh	script	which	contains	a	complete	set	of	
commands	to	run	the	assembly.		The	core	assembly	engine	for	MSR‐CA	is	Celera	
(CABOG)	Assembler	(http://sourceforge.net/apps/mediawiki/wgs‐
assembler/index.php?title=Main_Page).	The	CABOG	version	runs	under	the	CA	
folder	in	the	assembly	directory.	The	final	products	of	the	assembly	such	as	contig	
and	scaffold	fasta	files	along	with	additional	assembly	information	can	be	found	
under	CA/9‐terminator/.		
	
In	the	following	we	list	the	notes	for	the	individual	assemblies:	

1. R.	sphaeroides:		we	specified	the	following	parameters	to	CA	in	the	config	file:		
CA_PARAMETERS=	ovlMerSize=30	cgwErrorRate=0.25	merylMemory=8192	
ovlMemory=4GB	
We	kept	all	other	parameters	at	their	default	values.	We	also	used	only	a	part	
of	the	jump	library	reads	‐‐	the	first	400,000	reads,	because	CA	is	not	
designed	to	handle	data	sets	with	over	100x	clone	coverage.	

2. S.	aureus:		we	specified	the	following	parameters	in	the	config	file:	
CA_PARAMETERS=	cgwErrorRate=0.25	merylMemory=8192	
ovlMemory=4GB	
EXTEND_JUMP_READS=1	
The	EXTEND_JUMP_READS	parameter	triggered	an	additional	step	of	
extending	the	jump	library	reads	on	the	3’	ends	to	make	them	compatible	
with	CA.		Originally	jump	library	reads	were	37	bases	long,	whereas	CA	
requires	reads	to	be	at	least	64	bases	long.	We	also	used	only	part	of	the	
jump	library	reads	–	the	first	400,000	reads.	



3. H.	sapiens:		we	specified	the	following	parameters	in	the	config	file:	
CA_PARAMETERS=	cgwErrorRate=0.25	merylMemory=8192	
ovlMemory=4GB	utgErrorRate=0.03	
We	also	manually	reverse	complemented	the	35	Kb	(“long	jump”)	library	
before	the	assembly	because	MSR‐CA	assembler	assumes	that	the	jump	
libraries	are	“outties”,	that	is	the	3’	ends	of	the	mated	reads	are	on	the	
fragment	ends.	We	used	all	reads.	

4. B.	impatiens:	we	specified	the	following	parameters	in	the	config	file:	
CA_PARAMETERS=	cgwErrorRate=0.15	merylMemory=8192	
ovlMemory=4GB.	We	used	all	reads	and	kept	the	parameters	at	their	default	
values.	

MSR‐CA’s	run	times	for	the	assemblies	on	a	48‐core	AMD	Opteron	6134	2.2GHz	
computer	with	256	GB	of	RAM	were:	

1. R.	sphaeroides	–	16	minutes	
2. S.	aureus	–	17	minutes	
3. H.	sapiens	–	20	hours	
4. B.	impatiens	–	52	hours	

Bambus2.		The	current	version	of	Bambus	2	does	not	make	use	of	sequencing	data,	
making	it	fast	but	leading	to	short‐range	inaccuracies	(5bp	<	indels	<	65bp).		It	
includes	source	and	pre‐built	binaries	for	a	Linux‐amd64	to	run	the	Bambus	2	
pipeline	with	CA.	The	pipeline	requires	AMOS	3.0.1	and	CA	6.1.	The	Staphylococcus	
aureus	assembly	also	required	Bowtie	to	be	installed.		
This	recipe	assumes	you	have	installed	these	tools	and	they	are	available	in	your	
path.	Mate‐pair,	“outtie”,	libraries	were	reverse‐complemented.	All	datasets	and	
packages	are	available	from	the	GAGE	Bambus	2	recipe	page	at	
http://gage.cbcb.umd.edu/recipes/bambus2.html	

Staphylococcus	aureus.	Here	are	the	step‐by‐step	instructions	to	reproduce	this	
assembly:	

1.	 Step	1:	Download	tarball	above	and	run	tar xvzf gageBambusPackage.tar.gz 

2.	 Step	2:	Download	data	below	and	run	tar xvzf staph.tar.gz 

3. Step	3:	Run	cd bambus2 

4. Step	4:	Run	fastqToCA -insertsize 180 20 -libraryname frag -innie -type 
sanger -fastq ‘pwd‘/frag_1.cor.fastq,‘pwd‘/frag_2.cor.fastq > 
frag_12.cor.frg 

5.	 Step	5:	Run	sh run.sh 
6.	 Step	6:	Done!	
 
Rhodobacter	sphaeroides.	Here	are	the	step‐by‐step	instructions	to	reproduce	this	



assembly:	

1.	 Step	1:	Download	tarball	above	and	run	tar xvzf gageBambusPackage.tar.gz 

2.	 Step	2:	Download	data	below	and	run tar xvzf rhodo.tar.gz 

3.	 Step	3:	Run	cd bambus2 
4.	 Step	4:	Run	fastqToCA -insertsize 180 20 -libraryname frag -innie -type 

sanger -fastq ‘pwd‘/frag_1.cor.fastq,‘pwd‘/frag_2.cor.fastq > 
frag_12.cor.frg	

5.	 Step	5:	Run	fastqToCA -libraryname short -type sanger -fastq 
‘pwd‘/short_12.cor.ignore > short_12.cor.frg	

6.	 Step	6:	Run	sh run.sh	
7.	 Step	7:	Done!	
	
Human	Chromosome	14.	Here	are	the	step‐by‐step	instructions	to	reproduce	this	
assembly:	

1.	 Step	1:	Download	tarball	above	and	run tar xvzf gageBambusPackage.tar.gz 
2.	 Step	2:	Download	data	below	and	run	tar xvzf human.tar.gz 
3. Step 3: Run cd bambus2 
4.	 Step	4:	Run	fastqToCA -insertsize 180 20 -libraryname frag -innie -type 

sanger -fastq 
‘pwd‘/chr14_fragment_1.cor.fastq,‘pwd‘/chr14_fragment_2.cor.fastq > 
chr14_fragment_12.cor.fastq	

5.	 Step	5:	Run	fastqToCA -type sanger -libraryname lj -fastq 
‘pwd‘/chr14_longjump_12.cor.fastq > chr14_longjump_12.frg	

6.	 Step	6:	Run	fastqToCA -type sanger -libraryname sj -fastq 
‘pwd‘/chr14_shortjump_12.cor.fastq > chr14_shortjump_12.frg 

7.	 Step	7:	Run	sh run.sh 
8.	 Step	8:	Done!	
		
The	main	package	includes	the	pipeline	to	run	CABOG	+	Bambus	2	on	genome	
assemblies.		The	package	has	been	tested	with	AMOS	v3.0.1	and	CA	6.1.	Previous	
versions	will	not	work,	but	later	versions	may	work.	The	code	is	available	under	
src/	and	a	build	is	available	under	bin/.	All	code	is	machine‐independent,	except	for	
the	modified	CA	terminator	program.	It	is	build	for	Linux	64	and	can	be	built	for	
other	platforms	using	the	provided	source	code	+	CA	source.	The	modifications	to	
terminator	are	now	included	in	CA	after	release	6.1			

Detailed	use	instructions:	The	basic	outline	to	run	an	assembly	is:		



 Set	up	inputs		
 Any	paired‐end	(non‐jumping)	illumina	libraries	can	be	input	as	is	using	the	

fastqToCA program	to	generate	a	frg	
 Any	mate‐pair	(jumping)	illumina	libraries	should	be	input	as	an	interleaved	but	

unmated	fastq	file	to	CA	
 For	these	library,	the	pipeline	looks	for	a	file	named	PREFIX.libSizes	which	looks	

like:										
short	2450	4550										

to	specify	the	mate	min	and	max	distance	for	each	library.	
 Run	CA	up	to	unitiggging				

 The	script	relies	on	the	runCA.sh script	to	specify	any	additional	parameters	to	
CA	that	you	would	like	such	as	SGE	settings	or	parallel	settings.		You	may	also	
include	a	CA	spec	file.	A	set	of	CA	parameters	for	execution	on	a	single	machine	
in	parallel	is	included	in	the	recipes	above.	

 The	pipeline	automatically	runs	everything	up	through	unitigging	and	uses	the	
unitig	output	to	select	a	threshold	for	bad	mate	breaking	in	CA				

 Unitigging	and	consensus	is	re‐run	with	the	selected	cutoff.			
 CA	output	is	converted	to	Bambus	2					
 A	user	has	two	options	to	specify	this:	

o First,	they	can	take	CA	directly	and	add	any	mates	for	the	library	specified	

in	the	PREFIX.libSizes file. This	is	the	approach	taken	in	Ecoli	and	
Rhodobacter	as	all	the	reads	can	be	input	to	CA	directly.		

o Secondly,	the	user	can	choose	to	map	the	original	sequences	to	the	unitigs	
(bowtie	is	used).	This	is	the	approach	taken	in	S.	aureus	as	the	jumping	
libraries	are	only	35bp.	CA	6.1	requires	a	minimum	read	length	of	64bp	
and	thus	35bp	reads	cannot	be	input	to	CA	without	making	code	
modifications.			

o The	Bambus	2	pipeline	is	run	using	the	goBambus2	executive					
o This	pipeline	generates	the	final	output	and	fasta	sequences	for	the	

scaffolds	and	contigs	files.					
o Bambus	2	does	not	recall	consensus	so	if	two	unitigs	overlap,	only	of	their	

sequences	will	be	represented	in	the	overlapping	region.				
	

The	main	script	(convertToCA.sh)	with	example	usage	(for	S.	aureus	and	R.	
sphaeroides	respectively):	

convertToCA.sh	0	./	genome	../original	1	utg.fasta	
convertToCA.sh	1	./	genome	0	1	

has	the	following	parameters:		
 0	if	you	want	to	map,	1	if	you	want	to	use	the	existing	CA	assembly	read	

placements		
 the	location	of	the	assembly	where	it	will	use	the	unitigs	from,	if	the	

assembly	doesn’t	exist	in	that	directly,	it	will	try	to	run	the	runCA.sh	
script	there	to	generate	an	assembly		



 the	prefix	for	your	input/output	(so	it	assumes	there	will	be	a	

PREFIX.libSizes, PREFIX.gkpStore,	etc)		
 For	mapping	assemblies,	the	location	of	the	fastq	files	to	map	to	your	data.	

These	are	assumed	to	have	a	<libName>.1.fastq	and	a	<libName>.2.fastq.	
The	prefix	of	the	file	name	determines	the	library	name	to	compute	

pairing.	It	is	expected	that	the	file	PREFIX.libSizes	will	have	an	entry	for	
<libName>.	For	non‐mapping	assemblies,	this	specifies	whether	you	want	
to	use	unitigs	or	contigs	(0	means	unitigs,	1	means	contigs).		

 Whether	you	want	to	run	Bambus	2	or	only	generate	an	AMOS	bank.	1	=	
run,	0	=	do	not	run,	stop	at	bank	generation.		

 Only	for	the	mapping	assembly,	the	suffix	for	the	file	you	want	to	use	for	

the	mapping.	So	utg.fasta	means	it	will	look	for	the	file	named	
PREFIX.utg.fasta	to	map	the	reads	to.	

	
	
Removal	of	adapter	sequences	
The	Bombus	impatiens	reads	contain	parts	of	the	adapters	used	for	the	3kb	and	8kb	
libraries.			We	removed	these	adaptors	from	the	reads	available	on	the	GAGE	site,	
http://gage.cbcb.umd.edu/data/index.html.		The	adapter	sequences	are:	
3 CGTAATAACTTCGTATAGCATACATTATACGAAGTTATACGA 
3 CGGCATTCCTGCTGAACCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 
5 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCG	
	
Data	sets	used	for	best	results	
For	each	of	the	four	genomes,	we	tried	using	raw	and	corrected	reads	with	each	
assembler,	and	we	chose	the	best	result	to	present	in	the	tables	in	the	main	text.		
Space	does	not	allow	us	to	present	all	the	results,	but	here	we	list	which	data	set	
was	used	for	each	genome	and	each	assembler.	
Staphylococcus	aureus:	
Uncorrected	reads:	Allpaths‐LG,	SGA,	MSR‐CA	
Reads	corrected	by	Quake:	ABySS*	
Reads	corrected	by	Allpaths‐LG:	Bambus2,	SOAPdenovo,	Velvet	
	
Rhodobacter	sphaeroides:	
Uncorrected	reads:	MSR‐CA,	Allpaths‐LG,	SGA	
Reads	corrected	by	Quake:	ABySS*	
Reads	corrected	by	Allpaths‐LG:	Bambus2,	CABOG,	SOAPdenovo,	Velvet	
	
Bombus	impatiens:	
Uncorrected	reads:	none	
Reads	corrected	by	Quake:	CABOG,	MSR‐CA,	SOAPdenovo	
Reads	corrected	by	Allpaths‐LG:	none	
	
Human	chromosome	14:	
Uncorrected	reads:	Allpaths‐LG,	MSR‐CA,	SGA	



Reads	corrected	by	Quake:	ABySS*,	CABOG,	Velvet	
Reads	corrected	by	Allpaths‐LG:	Bambus2,	SOAPdenovo	
	
*Note	added	in	revision:	we	discovered	a	bug	in	the	paired‐end	version	of	ABySS,	
abyss‐pe,	that	prevented	it	from	using	the	Allpaths‐LG	corrections.		After	fixing	this	
bug	in	our	version	of	the	code,	we	ran	ABySS	again	using	a	variety	of	word	sizes	k.		
With	k=63,	abyss‐pe	was	able	to	produce	substantially	larger	contigs	and	scaffolds	
than	with	uncorrected	reads	or	with	the	Quake‐corrected	reads.		We	did	not	
evaluate	these	assemblies	for	correctness,	but	in	an	effort	to	present	a	more	
complete	picture	we	include	these	results	in	Supplementary	Table	3.	
	
Assembly	Correctness		
	
Supplementary	Table	1	details	the	full	results	of	the	correctness	analysis.	These	
figures	are	taken	directly	from	either	the	“.report”	or	“.diff”	output	generated	by	
dnadiff.		The	table	entries	are	defined	as	follows.		Unaligned	references	bases	are	
reference	sequences	that	did	not	align	to	any	contig;	these	are	most	commonly	
sequencing	gaps.	Unaligned	assembly	bases	are	contig	sequences	that	did	not	align	
to	the	reference	genome;	these	could	be	low	quality	or	contaminant	sequence	
included	in	the	assembly.		Duplicated	bases	are	sequences	that	occurred	more	times	
in	the	assembly	than	in	the	reference	genome.		(These	can	be	caused	by	“bubbles”	in	
the	assembly	graph,	which	represent	either	sequencing	errors	or	haplotype	
polymorphisms.		When	haplotype	differences	occur,	most	assemblers	will	pick	one	
haplotype	to	output,	but	sometimes	both	haplotypes	get	inserted	in	error.)		
Compressed	bases	are	sequences	that	occurred	more	times	in	the	reference	than	in	
the	assembly:	these	are	usually	collapsed	repeats.		“Bad	trim”	tallies	the	bases	at	the	
beginning	or	end	of	contigs	that	did	not	align	to	the	reference.	Average	identity	and	
SNPs	were	computed	on	the	one‐to‐one	aligned	segments,	ignoring	duplicated	bases.	
Insertions	and	deletions	(indels)	occurring	in	stretches	of	less	than	5	bp	and	greater	
than	5	bp	were	computed	separately,	in	order	to	differentiate	between	point‐like	
indels	and	larger‐scale	indels.	
	
A	“misjoin”	is	any	event	where	two	sequences	are	joined	together	in	the	assembly	in	
a	manner	that	is	inconsistent	with	the	reference.		These	were	tallied	for	inversion	
events,	relocations,	and	translocations.		Inversions	(Inv)	are	a	switch	between	
strands	(and	orientation).		Relocations	(Reloc)	connect	distant	segments	from	the	
same	chromosome.		Translocations	(Transloc)	connect	segments	from	different	
chromosomes;	note	that	because	the	human	assembly	only	involved	1	chromosome,	
translocations	were	not	possible.	The	number	and	type	of	mis‐joins	are	computed	
by	inspecting	the	relative	ordering	of	aligned	segments	on	the	reference	and	contig.		
For	example,	suppose	three	local	alignments	{a,b,c}	have	been	identified	between	a	
contig	and	the	reference.	When	ordered	by	contig	start	coordinate,	from	lowest	to	
highest,	they	are	ordered	{a,b,c}.	However,	when	ordered	by	reference	start	
coordinate,	they	are	ordered	{a,c,b}.	The	fact	that	b	and	c	have	been	interchanged	in	
the	reference	ordering	indicates	a	relocation	event.		By	traversing	the	aligned	



segments	in	sorted	order	of	their	contig	start	position	and	noting	any	
inconsistencies	in	the	reference	ordering,	dnadiff	is	able	to	detect	and	categorize	
mis‐joined	contigs.	For	simplicity,	each	junction	point	is	tallied	individually,	so	an	
internal	inversion	will	be	counted	as	two	inversion	misjoins	(one	for	the	5’	and	one	
for	the	3’	end),	while	an	inversion	at	the	end	of	a	contig	will	count	as	just	one	
misjoin.		Additionally,	no	weighting	is	applied	to	the	misjoins,	so	a	large	segmental	
rearrangement	is	treated	the	same	as	a	small	one.	An	alternative	scoring	scheme	
might	assign	different	penalties	for	different	mis‐assembly	types,	but	we	did	not	
explore	that	here.	Supplementary	Figure	2	shows	an	example	dotplot	for	many	of	
the	common	alignment	types	used	here	to	categorize	mis‐assemblies.	
	
The	indel	profiles	in	Figure	1	are	computed	as	follows:	Let	(a1,a2)	and	(b1,b2)	be	two	
adjacent	sequence	segments	in	the	reference	genome,	where	a1	and	a2	are	the	start	
and	end	of	segment	a,	respectively.	Let	(a1’,a2’)	and	(b1’,b2’)	be	the	corresponding	
and	collinear	segments	in	the	assembly.	The	distance	between	the	two	segments	in	
the	reference	is	measured	as	D=(b1–a2+1)	and	in	the	query	D’=(b1’–a2’+1).	It	follows	
that	the	size	of	the	indel	is	measured	as	the	difference	between	these	two	distances	
I=|D‐D’|.	A	negative	distance	D	or	D’	indicates	overlapping	alignment	segments	
caused	by	repetitive	sequence	on	the	ends	of	each	alignment.	A	positive	value	for	I	
indicates	extra	bases	in	the	reference,	and	a	negative	value	for	I	indicates	extra	
bases	in	the	assembly.	See	Supplementary	Figure	2	for	graphical	depictions.	
	
To	compute	scaffold	correctness	statistics,	we	left	contigs	intact	(because	their	
errors	were	computed	separately)	and	looked	at	breakpoints	between	them.	
Scaffolds	were	split	whenever	at	least	a	single	N	was	encountered	and	numbered	
sequentially	in	increasing	order.	That	is,	a	scaffold	X	with	two	gaps	(indicated	by	Ns)	
will	generate	scaffolds	X_1,	X_2,	and	X_3.	The	split	scaffolds	were	mapped	to	the	
reference	using	nucmer	(‐‐maxmatch	‐l	30	‐D	5	‐banded).	Matches	were	filtered	and	
any	match	below	95%	identity	was	removed.	Any	match	that	overlapped	another	
match	by	over	95%	was	also	removed.		Finally,	show‐tiling	(‐c	‐l	1	‐i	0	‐V	0)	was	run	
to	generate	a	tiling	of	split	scaffolds	on	the	reference.		Three	types	of	errors	were	
tabulated	and	scaffolds	broken	at	each.		The	first,	an	indel,	occurs	when	a	piece	of	a	
scaffold	is	missing	from	the	mapping	(X_1	followed	by	X_3	in	the	above	example).	
Missing	X_2	was	not	counted	as	an	error	if	X_2's	length	was	less	than	200bp	or	if	the	
gap	between	X_1	and	X_3	was	within	1000bp	of	X_2's	length.	The	second	type	of	
errors	is	a	translocation.	This	occurs	when	pieces	of	a	single	scaffold	map	to	
multiple	reference	chromosomes.		The	third	error	types	is	an	inversion.		The	
inversion	occurs	whenever	a	piece	of	a	scaffold	(one	or	more	contigs)	changes	
strands	within	a	single	scaffold.	Finally,	we	counted	the	average	absolute	difference	
between	the	scaffold	gap	estimate	(number	of	Ns)	versus	the	true	gap	sizes	within	
each	assembly.	
	
	
	 	



Supplementary	Tables	
	
[Supplementary	Table	1	provided	as	a	separate	file]	
	
Supplementary	Table	2.	Assemblies	of	Rhodobacter	sphaeroides	using	different	
combinations	of	paired‐end	libraries	as	input	to	the	assemblers.		Shown	are	the	
number	of	contigs	larger	than	200	bp	and	the	N50	size,	in	kilobases	(Kb),	for	each	
assembly.		Allpaths‐LG	could	not	be	run	on	any	combination	except	the	180bp+3Kb	
pairing,	because	it	requires	at	least	one	library	of	overlapping	reads	and	one	library	
of	longer‐distance	linking	reads.		Note	that	N50	values	are	uncorrected,	and	as	
shown	in	Table	3,	the	true	N50	sizes	are	much	lower	in	some	instances;	e.g.,	
SOAPdenovo	has	a	corrected	N50	of	14.3	kb	(rather	than	131.7	kb)	for	assembly	
with	the	180‐bp	and	3‐kb	libraries.	
Assembler	 Libraries	used	for	assembly	

1	library	
180	bp	

2	libraries	
180	+	210	bp	

2	libraries	
180	+	3	kb	

2	libraries	
210	+	3	kb	

	 Num	 N50	 Num	 N50	 Num N50 Num	 N50	
ABySS	 2,238	 3.4	 1,268	 7.3	 1915 5.9 4,222	 1.2	
Allpaths‐LG	 ‐	 ‐	 ‐	 ‐	 204 42.5 ‐	 ‐	
Bambus2	 760	 8.5	 760	 8.5	 177 93.2 1,598	 12.0	
CABOG	 612	 9.0	 518	 9.9	 322 20.2 1,093	 2.1	
MSR‐CA	 550	 13.9	 190	 43.8	 395 22.1 1,292	 6.0	
SGA	 2,802	 2.1	 1,256	 6.9	 3067 4.5 3,411	 1.3	
SOAPdenovo	 856	 10.1	 528	 19.6	 204 131.7 4,780	 0.8	
Velvet	 873	 9.6	 701	 12.6	 583 15.7 1,242	 5.9	
	
Supplementary	Table	3.		After	fixing	a	bug	in	the	paired‐end	module,	ABySS	was	
able	to	use	Allpaths‐LG	corrected	reads.		This	fix	combined	with	a	much	longer	k‐
mer	length	for	its	de	Bruijn	graph	produced	much	larger	contigs	and	scaffolds,	as	
shown	here.	
ABySS	update	 Original:	Quake‐corrected	

reads,	k=31	
Updated:	Allpaths‐corrected	
reads,	k=63	

Contig	N50	 Scaffold	N50	 Contig	N50	 Scaffold	N50	
S.	aureus	 29.2	kb	 32.5	kb	 129	kb	 170	kb	
R.	sphaeroides	 5.9	kb	 8.9	kb	 19.7	kb	 50.8	kb	
Human	chr	14	 2.0	kb	 2.1	kb	 14.7	kb	 18.4	kb	
	
	
Supplementary	Figure	legends	
	
Supplementary	Figure	1:	Average	depth	of	coverage	for	human	chromosome	14	in	
the	read	data	used	in	this	study.		Coverage	is	computed	by	calculating	the	coverage	
in	50	Kb	non‐overlapping	intervals.		As	the	plot	illustrates,	there	were	no	large	gaps	
in	coverage	across	the	chromosome.		Note	that	this	alignment	is	relative	to	the	
finished	part	of	Hs14,	which	does	not	include	the	centromeric	gap.	



	
Supplementary	Figure	2:	A	taxonomy	of	common	dot	plot	motifs	representing	
insertions,	deletions,	inversions,	and	relocations	that	can	be	identified	through	
inspection	of	Nucmer	alignments.	
	


