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Main text
A recent paper [1] reported that two popular differential expression analysis (DEA) 
tools, DESeq2 and edgeR, suffered from high false positive rates due to the violation of 
the negative binomial model assumption for real RNA-Seq data. The authors recom-
mended the classical Wilcoxon rank-sum test for more robust differential expression 
analysis, at least, for large datasets. Their evaluation is rigorous and comprehensive, 
and the findings are thought-provoking. However, DESeq2 and edgeR have been the 
dominant DEA tools for almost a decade and it may not be easy to replace them with 
Wilcoxon rank-sum test in the near future. Compared to Wilcoxon rank-sum test, 
DESeq2 and edgeR are more interpretable and flexible. The coefficients obtained by 
these tools can be intuitively interpreted as log fold changes and covariate adjustment 
is natural in their framework. We thus wonder whether some preprocessing of the 
RNA-Seq data could improve the model fit of DESeq2/edgeR so that they can still 
be applied for DEA. As the authors showed that the main reason for the poor model 
fit for DESeq2/edgeR is the existence of outliers, and we also showed previously that 
the type I error inflation of DESeq2/edgeR could be substantially reduced by outlier 
replacement in microbiome data [2], we hypothesize that the type I error inflation 
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A recent study found severely inflated type I error rates for DESeq2 and edgeR, two 
dominant tools used for differential expression analysis of RNA-seq data. Here, we 
show that by properly addressing the outliers in the RNA-Seq data using winsorization, 
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is comparable to Wilcoxon rank-sum test for large datasets. Therefore, as an alternative 
to Wilcoxon rank-sum test, they may still be applied for differential expression analysis 
of large RNA-Seq datasets.
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of DESeq2/edgeR can also be controlled for RNA-Seq data using winsorization, an 
outlier replacement strategy that sets all outliers to a specified percentile of the data.

We thus tested the hypothesis using the same 13 population-level RNA-Seq data-
sets from the original study [1]. To apply winsorization, we first normalized the count 
data by dividing the DESeq2 size factors (estimateSizeFactors function in R package 
“DESeq2”), and then for each gene, we replaced those normalized counts exceeding 
the α th percentile with the α th percentile ( α = 93, 95, 97) . Finally, the winsorized 
normalized counts were multiplied by the size factors and rounded to the nearest 
whole number to produce winsorized counts. The winsorized count data were then 
used as the input to DESeq2/edgeR to obtain the p-values, followed by false discov-
ery rate (FDR) control (Benjamini–Hochberg Procedure). We used the FDR cut-
off of 5% to declare differentially expressed genes (DEG). We first studied the false 
positive control for DESeq2/edgeR after winsorization. As expected, winsorization 
greatly reduced the number of DEGs on the permuted datasets (Fig. 1A) and the per-
centage of permuted datasets with any positive findings (Fig.  1B). More aggressive 
winsorization resulted in better false positive control. With 93rd percentile winsori-
zation, edgeR and DESeq2 identified on average 99.8% and 98.2% fewer DEG on the 
permuted datasets, respectively (Fig.  1A, edgeR range: 99.4–100%; DESeq2 range: 
40.8–99.8%). The percentage of permuted datasets with any positive findings was also 
greatly reduced (Fig. 1B), and edgeR substantially outperformed DESeq2 in this meas-
ure. Under the null, the percentage of permuted datasets with any positive findings 

Fig. 1 The effect of winsorization on false positive control of edgeR and DESeq2 based on permuted 
datasets. Different winsorization percentiles (93%, 95%, and 97%) were compared to no winsorization. Results 
were based on the averages from the 1,000 permuted datasets for the 13 population-level datasets. An 
FDR cutoff of 0.05 was used to identify DEGs. After winsorization, the average number of false DEGs on the 
permuted datasets (A) and the percentage of permuted datasets with any false findings (B) were significantly 
reduced. Each jittered point represents a dataset. The blue dotted line represents the 5% target FDR
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can be interpreted as the empirical FDR. edgeR was thus able to control the FDR near 
the target level of 5% when the data were winsorized at the 93rd percentile.

We next studied the number of DEGs identified by DESeq2/edgeR on the non-
permuted datasets after winsorization, comparing to the results based on the Wil-
coxon rank-sum test, the recommended method by the original paper. We want to 
see whether the reduction in false positives is at the expense of power. We found that 
DESeq2 and edgeR were able to identify most of the DEGs detected by Wilcoxon 
rank-sum test after winsorization (Fig.  2A). DESeq2 had higher power than edgeR, 
however, the increased power could also be explained by its less efficient false posi-
tive control. We also compared the total numbers of DEGs identified by edgeR on the 
winsorized datasets to the numbers of DEGs by Wilcoxon. We found that edgeR had 
similar power as Wilcoxon rank-sum test using 93rd percentile winsorization, where 
edgeR could control the FDR close to the target level (Fig. 2B).

In summary, we demonstrated that the false positive rate for DESeq2/edgeR could 
be extensively reduced by winsorization. Compared to DESeq2, edgeR had better 
false positive control on the winsorized datasets. Thus, edgeR may still be used to per-
form DEA on large RNA-Seq datasets after winsorization. Based on the permutation 
results on real datasets, we recommend 95th percentile winsorization, which gener-
ally controls the FDR and retains most of the power. However, to rigorously select the 
percentile, the users may consider permuting the datasets many times and selecting 
the percentile that controls the number of false positives as we have done in Fig. 1.
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Fig. 2 Comparison of the detected DEGs by edgeR and DESeq2 on the winsorized datasets to Wilcoxon 
rank-sum test. Different winsorization percentiles (93%, 95%, and 97%) were compared. An FDR cutoff of 0.05 
was used to identify DEGs. A Percentage of DEGs detected by Wilcoxon rank-sum test also detected by edgeR 
and DESeq2 on winsorized datasets. B The ratio of the number of DEGs detected by edgeR on winsorized 
datasets to the number of DEGs by Wilcoxon rank-sum test. Each jittered point represents a dataset
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