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Abstract 

Spatial transcriptomics is a cutting-edge technique that combines gene expression 
with spatial information, allowing researchers to study molecular patterns within tissue 
architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing 
spatial transcriptomics data focusing on morphological features. IAMSAM accurately 
segments tissue images using the Segment Anything Model, allowing for the semi-
automatic selection of regions of interest based on morphological signatures. Fur-
thermore, IAMSAM provides downstream analysis, such as identifying differentially 
expressed genes, enrichment analysis, and cell type prediction within the selected 
regions. With its simple interface, IAMSAM empowers researchers to explore and inter-
pret heterogeneous tissues in a streamlined manner.

Keywords:  Spatial transcriptomics, Image segmentation, H&E image, Deep learning, 
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Background
Spatial transcriptomics (ST) enables the analysis of gene expression patterns inside tis-
sues while maintaining their spatial context [1]. However, researchers often encounter 
difficulties when working with ST data due to its complexity, high-dimensionality, spatial 
constraints, large data volumes, and the lack of user-friendly tools [1, 2]. For instance, 
clustering spots or cells within one or multiple ST libraries must exhibit spatial continu-
ity for each cluster, which requires the use of a complex algorithm [3]. Furthermore, the 
manual process of identifying genes associated with specific regions, based on domain 
knowledge such as pathologist-labeled annotation, introduces a subjective analytic 
workflow [4, 5]. Integrating the interpretation of tissue image patterns, along with mul-
tidimensional molecular information, allows researchers to gain a deeper understanding 
of the pathophysiology within spatial contexts [6–8]. Therefore, an interactive and user-
friendly interface for ST to analyze tissue images should also be developed to facilitate 
improved communication for basic researchers, clinicians, and bioinformaticians.
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Here, we introduce IAMSAM (Image-based Analysis of Molecular signatures using 
the Segment Anything Model), a user-friendly web-based tool designed to comprehen-
sively analyze ST data, enabling a better understanding of complex tissues by integrating 
images with molecular information. IAMSAM leverages the power of the “Segment-
anything,” a state-of-the-art deep learning model developed by Meta [9], to identify 
regions of interest (ROIs) from tissue images in ST datasets. The SAM model exhib-
its exceptional performance, achieving real-time performance and efficiently utilizing 
computational resources. Moreover, it stands as the first foundation model for general 
image segmentation, providing interactive prompting capabilities. It has been specifi-
cally designed to address the problem of zero-shot image segmentation pre-trained on 
an extensive and diverse dataset consisting of over 1 billion masks derived from 11 mil-
lion images, ensuring its robust performance. We used this model to handle various 
tissue images (e.g., H&E, DAPI, and immunofluorescence images), taking advantage of 
its effectiveness and adaptability to handle different image distributions and workloads 
through zero-shot or few-shot learning. This excellence leads to conducting various 
downstream analyses such as identifying differentially expressed genes (DEGs), enrich-
ment analysis, and cell type prediction of user-selected regions. Moreover, the regions 
can be determined by image patterns rather than gene expression, providing an oppor-
tunity to analyze gene expression patterns and features based on image-based key pat-
terns. In this study, we demonstrated the usage of IAMSAM with publicly available 
ST datasets. With its simple and accessible interface, IAMSAM enables researchers to 
explore and interpret their ST data user-friendly, which can lead to new insights into 
gene expression patterns associated with pathophysiology and potential biomarkers for 
diseases.

Results
Overview of IAMSAM

IAMSAM is a web-based tool designed for analyzing ST data, based on a general-
purpose image segmentation algorithm named “Segment-anything” (Fig.  1). It utilizes 
the SAM for H&E image segmentation, which allows for morphological guidance in 
selecting ROIs for users. IAMSAM offers users with two modes for running the SAM 
algorithm: everything-mode and prompt-mode. In the everything-mode, IAMSAM 
automatically generates segment masks based on morphological features along whole 
tissues. On the other hand, the prompt-mode allows users to draw rectangle boxes, 
which serve as input prompts for the SAM model. Afterwards, users have the option to 
select one or multiple masks for ROI 1 and ROI 2 from the mask lists before proceeding 
with downstream analysis. IAMSAM automatically extracts the gene expression profile 
from the chosen ROIs, identifying not only DEGs between the ROIs but also enriched 
functional terms associated with these DEGs. Furthermore, IAMSAM provides cell type 
estimation of the selected regions, which can help users gain valuable insights into the 
cellular composition and heterogeneity of the tissue.

H&E image segmentation

Hematoxylin and eosin (H&E) are widely employed to observe tissue structure, distin-
guish different histological features, and are considered a gold standard in the field of 
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histopathology [10]. Most ST platforms, particularly the 10x Visium platform, involve 
the inclusion of H&E staining and tissue imaging steps in the tissue preparation pro-
tocol [11]. This unique feature of the Visium platform allows IAMSAM to utilize the 
H&E image. When users select the samples to analyze on the dropdown menu, the H&E 

Fig. 1  Workflow of IAMSAM. This figure provides an overview of the workflow of IAMSAM. The gene 
expression of ST data is preprocessed through spot filtering, gene filtering, and normalization step. 
The H&E image of the ST data is segmented using the SAM in two different modes: everything-mode 
and prompt-mode. The selected ROIs are then subjected to downstream analysis, which includes DEG 
identification, enrichment analysis, and cell type proportion analysis
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image of the sample appears in the main visualization panel (Fig. 2a). After configuring 
multiple parameters, such as mask confidence threshold, mask opacity, and mask size, 
users can click the “Run SAM” button to make inferences from the SAM. SAM takes 
the H&E slide images as input and creates a binary mask for each morphologically seg-
mented region. IAMSAM visualizes these segment masks on the main visualization 
panel with a distinct palette, offering a user-friendly approach for researchers to analyze 
their ST data. Users can generate SAM masks and specify ROIs in two different modes, 
depending on their requirements or preferences. This approach not only reduces the 
time and effort required for manual annotation but also provides a more objective way 
of identifying morphological features and molecular signatures within the tissue.

Downstream analysis

The following downstream analysis consists of three panels: identifying DEGs (Fig. 2b), 
enrichment analysis (Fig. 2c), and cell type proportion (Fig. 2d). As all the downstream 
plots are interactively made, the various convenient features including auto-scaling, 
manual scaling, zoom-in, zoom-out, capture, and the management of the coordinates 
are supported for each plot.

Fig. 2  Overview of IAMSAM interface panels. a The main visualization panel displays the H&E slides of the 
ST data, along with the corresponding segmentation masks. These masks highlight different ROIs within 
the tissue image, allowing users to visually explore and select specific ROIs. After pressing “Run ST analysis,” 
the downstream analysis panel presents the results of downstream analysis, including (b) DEG analysis, c 
enrichment analysis, and d cell type proportion
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The first panel is the DEG module, which includes both the volcano plot and the box 
plot. The volcano plot represents the log-fold change on the x-axis, where positive values 
indicate up-regulation in the ROIs, and the statistical significance on the y-axis. Users 
can set the “logFC cutoff” and “p-adj cutoff” in the parameter panel (Fig. 2b). Genes that 
meet the criteria of having a fold change value exceeding the FC cutoff and an adjusted 
p-value less than the adjusted p-value cutoff are displayed in purple for ROI 1 and brown 
for ROI 2, while the remaining genes are shown in gray. The box plot, on the other hand, 
focuses on the top 10 genes selected from the up-regulated DEGs within the ROI 1. 
These genes are ranked based on their fold changes, reflecting the relative difference in 
expression levels between the ROI 1 and ROI 2.

In the second panel, IAMSAM performs over-representation analysis (ORA) on the 
DEGs identified in the selected ROIs. The goal of ORA is to assess whether specific 
gene sets or functional categories are overrepresented among the DEGs, indicating their 
potential involvement in specific biological processes or molecular functions. IAMSAM 
offers users a choice of gene sets for enrichment analysis, including three GO (Gene 
Ontology) terms (biological process, cellular component, and molecular function), 
as well as gene sets from MSigDB (Molecular Signatures Database) and KEGG (Kyoto 
Encyclopedia of Genes and Genomes). Users can select the gene sets of interest based 
on their preferences to perform the enrichment analysis. IAMSAM calculates the statis-
tical significance of the enrichment terms and filters them based on adjusted p-values. 
Only the terms that demonstrate statistical significance, with adjusted p-values below 
0.05, are displayed in the form of a bar plot. This visualization allows users to easily iden-
tify the enriched terms and gain insights into the functional annotations associated with 
the DEGs.

For the last panel, IAMSAM provides cell type proportion within the selected ROIs. 
We exploit CellDART [12] to annotate Visium data with reference scRNAseq data by 
default, but users can also choose other cell-type deconvolution algorithms in the pre-
processing step. The proportions of cell types are visualized as a bar chart, displaying the 
differences between ROI 1 and ROI 2 for clarity and simplicity. This concise representa-
tion offers a clear overview of the predominant cell types present in the tissue sample 
and aids in understanding the cellular composition within the spatial context.

Two modes of IAMSAM: everything‑mode and prompt‑mode

In the everything-mode, users can obtain segmented masks for the entire tissue image 
by simply clicking the “Run SAM” button. IAMSAM automatically segments the entire 
image, creating masks that distinguish various morphological features or regions within 
the tissue without requiring any additional prompts.

The “Mask confidence threshold” parameter (Fig.  3a) is a crucial factor for users 
to consider because it determines the threshold value used to decide whether a pre-
dicted object or region in an image is considered a true positive or not. It is described 
as an intersection-over-union (IOU) score in the original literature, which is a met-
ric used to measure the overlap between the predicted segmentation mask and the 
ground truth mask during training [9]. By increasing the threshold value, the model 
becomes more stringent in accepting predicted masks. This means that only masks 
with a higher predicted IOU value, indicating better quality and accuracy, will be 
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included in the final segmentation results. Consequently, the number of selected 
masks may decrease. Conversely, reducing the threshold makes the model more per-
missive in accepting masks, even if their predicted IOU is low. This relaxation of crite-
ria can yield a higher number of masks, including those with potentially lower quality. 
Users should control the balance between the number of masks and their quality in 
the segmentation results, based on their specific requirements and preferences.

Fig. 3  Main characteristics of IAMSAM. This figure introduces the two main modes of operation in IAMSAM: 
everything-mode and prompt-mode. a In the everything-mode, IAMSAM generates segmentation masks 
for the entire tissue images. The mask confidence threshold directly affects the segmentation result, where 
a higher threshold leads to more precise segmentation but fewer selected masks. b In the prompt-mode, 
users can provide prompts to the SAM model by drawing rectangle boxes on the visualization panel using 
the drawing tool provided by Plotly. When users input three rectangle boxes as drawn, IAMSAM returns the 
corresponding ROIs. c By combining the zoom-in interface with the prompt-mode, IAMSAM allows for the 
detailed examination of microscopic histology features, enhancing analysis capabilities. d IAMSAM can also 
process data from platforms like Xenium, following appropriate preprocessing steps. e IAMSAM is applicable 
to various imaging modalities, including fluorescence imaging, thereby expanding its utility in different 
experimental settings
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After the segmentation, masks that do not contain any spots are filtered out, and the 
remaining masks are numbered in descending order based on their respective areas. 
Users can choose the mask number from a dropdown menu to assign masks as ROI 1 or 
ROI 2. Alternatively, they can directly click on the masks in the main visualization panel. 
This feature is enabled through the interactive interface of Plotly [13], which allows users 
to visualize the segmented regions and select the ROIs with ease. For an improved user 
experience, we have also added a feature that allows users to deselect a selected mask by 
simply re-clicking on it. If users want to perform a one-versus-others analysis, they can 
leave ROI 2 empty.

After all ROIs have been chosen, users can run downstream analysis on the ROIs with 
the “Run ST Analysis” button. By enabling users to select the masks of interest through 
a simple click, IAMSAM streamlines the analysis of ST data and allows researchers to 
quickly identify relevant cell types and gene expression patterns in their samples.

IAMSAM offers another mode called prompt-mode, which provides users with the 
flexibility to manually define the desired segments using rectangle boxes. This mode uti-
lizes the prompt-input method of the original SAM algorithm, allowing users to specify 
boxes in the image that correspond to the objects they want to segment. Before running 
SAM, users can easily draw rectangles on the main visualization panel using the default 
rectangle drawing tool (Fig. 3b). Users can also conveniently track the number of boxes 
added and have the button to reset if any mistakes are made. Since box prompts are 
available in advance before running SAM, IAMSAM can run SAM in a batched manner, 
generating corresponding masks for multiple boxes simultaneously. If needed, users can 
utilize the zoom feature provided by Plotly when selecting ROIs in the prompt-mode. 
Upon clicking “Run SAM”, one or more masks are interpreted as the user’s areas of inter-
est, and subsequent downstream analysis is performed in the same way as the every-
thing-mode (Additional file 1: Fig. S1).

Versatility and expanded capabilities of IAMSAM

To uncover microscopic histological features, the prompt-mode in IAMSAM can 
be particularly powerful, especially when used with magnification. When apply-
ing IAMSAM to human prostate cancer Visium data, we demonstrated its capability 
to identify and select microvessels as ROIs using the prompt-mode and the zoom-
in interface (Fig.  3c, Additional file  1: Fig. S2). Zooming in on specific tissue areas 
helped identify microvessels, which may not be readily apparent on a larger scale. 
Furthermore, our analysis revealed that pan-endothelial cell markers, such as CAV1 
(log FC = 3.21, − log10 P-adj = 2.93), CAV2 (log FC = 2.14, − log10 P-adj = 1.56), and 
CAVIN1 (log FC = 1.50, − log10 P-adj = 1.94), were up-regulated within the ROIs. In 
line with these findings, a GO term related to “focal adhesion,” specific to endothelial 
cells, was enriched, indicating the involvement of endothelial cells in these ROIs [14]. 
We also validated these microvessel areas with pathologists to ensure the accuracy of 
our identification.

Although IAMSAM is designed for analyzing Visium data, it can also process image-
based ST technologies like Xenium and MERSCOPE if proper preprocessing steps are 
executed. Expanding IAMSAM to include image-based ST data allows for a broader 
range of applications and greater flexibility in analyzing different types of ST datasets. 
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We demonstrated the capability of IAMSAM to analyze Xenium data using the publicly 
available Xenium human colon cancer dataset. If a post-Xenium H&E image is availa-
ble, users can preprocess Xenium data with affine transformation and resizing (Fig. 3d, 
Additional file 1: Fig. S3). This expansion enhances the versatility of IAMSAM, making 
it a powerful tool for integrating and analyzing ST data from various sources. Lastly, we 
explored the application of IAMSAM with an optical image different from H&E stain-
ing (Fig. 3e). We utilized a combined image of three distinct color channels correspond-
ing to DAPI (4′,6-diamidino-2-phenylindole), anti-GFAP, and anti-NeuN staining. In 
this case, the successful identification of the dentate gyrus (DG) structure demonstrated 
the versatility and feasibility of IAMSAM in handling different imaging modalities. This 
finding further solidifies SAM as a general image segmentation algorithm that can be 
applied across various experimental setups. This feature highlights the broad applicabil-
ity of IAMSAM and its potential to provide valuable information from diverse imaging 
modalities that spatially correspond to ST data [15].

Characterizing spatial tumor heterogeneity in a breast cancer sample using IAMSAM

To demonstrate an example of IAMSAM to discover the finding by integrating ST 
with morphological features, we inspected cancer heterogeneity within a Human 
breast cancer block A Sect. 1.1 dataset. We selected two ROIs (Fig. 4a–d) based on 
distinct morphological features observed in the dataset as an automatic method for 
delineating morphologically characteristic regions based on IAMSAM. Notably, 
ROI1 is identified as an invasive region, while ROI2 is classified as a ductal carcinoma 
in  situ (DCIS) portion according to the pathological annotation of the previous lit-
erature [16]. The IAMSAM analysis identified ROI 1 as primarily characterized by 
immune-related processes compared to ROI 2. Differential gene expression analysis 
identified top genes such as PLA2G2A, GPR143, LINC00052, UNC5C, and PLA2G2D 
as significantly upregulated in ROI 1 compared to ROI 2 (Fig. 4e). Enrichment anal-
ysis revealed terms such as MHC protein complex, cellular response to interferon-
gamma, and cytokine-mediated signaling pathway (Fig.  4f ). These enrichments 
suggest a significant presence of immune cell infiltration and activity within ROI 1. 
The cell type proportion analysis further supported this, showing a high presence of 
immune cells such as monocytes/macrophages and CD4 T-cells (Fig. 4i). These find-
ings align with the characteristics of invasive ductal carcinoma (IDC), where immune 
interactions are progressed compared with DCIS [17, 18]. In contrast to ROI 1, genes 
such as CEACAM1, TGFBR1, ZNF737, and PLK2 were significantly upregulated in 
ROI 2 (Fig. 4g). The enriched GO terms for ROI 2 included epidermis development, 
cell-substrate junction assembly, and hemidesmosome assembly, which are indica-
tive of epithelial processes and cell adhesion (Fig. 4h). The cell type proportion analy-
sis revealed a predominance of epithelial cells and malignant cells, consistent with 
the features of the tumor core where malignant cells are predominant and exhibit 
strong epithelial characteristics (Fig.  4i). This result aligns with previous histologi-
cal annotations [16], which identified ROI2 as the tumor region of DCIS and ROI1 as 
the invasive region of breast cancer. Beyond identifying distinct molecular and cel-
lular characteristics within ROIs, IAMSAM can extend its utility by integrating with 
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advanced bioinformatics tools for further analyses. For example, users can employ 
tools such as stLearn [5] to analyze cell–cell communication within ROIs selected by 
IAMSAM. This integration allows for the identification of top-scored ligand-receptor 
pairs for each ROI, providing insights into the molecular interactions within specific 
tissue regions (Additional file 1: Fig. S4 b). Additionally, ROIs can be inspected using 
compositional frameworks like TACCO [19], calculating distances from the ROI and 
illustrating changes in cell type deconvolution along these distances (Additional file 1: 
Fig. S4 c–d). This compatibility facilitates seamless integration with other tools, ena-
bling more comprehensive and advanced analyses for researchers.

Fig. 4  Analysis of cancer heterogeneity in human breast cancer using IAMSAM. a H&E-stained image of 
the human breast cancer block A Sect. 1.1 dataset, showing the selected ROIs. b Close-up image of ROI 1, 
highlighting distinct morphological features. c Close-up image of ROI 2, highlighting distinct morphological 
features. d IAMSAM analysis showing the identified ROIs based on distinct morphological features. e Box 
plot showing the top 10 high fold change DEGs in ROI 1 compared to ROI 2. f Bar plot of the top enriched 
GO terms (adjusted p-value < 0.05) in ROI 1. g Box plot showing the top 10 high fold change DEGs in ROI 
2 compared to ROI 1. h Bar plot of the top enriched GO terms (adjusted p-value < 0.05) in ROI 2. i Cell type 
proportion analysis showing the distribution of cell types within ROI 1 and ROI 2
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Workflow advantages of IAMSAM over traditional methods in analyzing spatial 

heterogeneity

The workflow of IAMSAM in analyzing the spatial morphological heterogeneity sur-
passes that of traditional methods, as illustrated in Fig. 5. Traditional methods involve 
a manual and time-consuming workflow, requiring multiple steps and tools. Typically, 
for Visium data, a loupe file is examined using Loupe Browser, where ROIs are manually 
drawn from scratch (Fig. 5a). This manual process is time-consuming and highly depend-
ent on the analyst’s skill and consistency, leading to variability and reproducibility issues 
due to human error and subjective judgment. IAMSAM addresses this gap by automat-
ing the identification of ROIs using advanced image processing techniques that leverage 
morphological features (Fig. 5b). The use of box prompting in IAMSAM simplifies the 
process and ensures consistency, allowing multiple inspections of various regions. This 
automation eliminates the need for manual intervention, significantly reducing the time 
required for ROI identification and improving reproducibility. Additionally, traditional 
workflows often involve multiple disjointed steps and tools, such as exporting barcode 

Fig. 5  Comparative performance analysis of traditional method and IAMSAM method. a Traditional method 
involves manual drawing of ROIs in Loupe Browser, exporting barcode data, and performing downstream 
bioinformatic analysis using R or Python. This process is manual, time-consuming, and involves multiple steps 
and tools. b IAMSAM method utilizes a preprocessing script to create an AnnData file, followed by automated 
ROI identification and downstream analysis within the IAMSAM framework. This method leverages 
morphological features, is streamlined and automated, reducing manual effort and increasing reproducibility
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tables, matching with matrix data, and performing separate downstream analyses using 
R or Python. This fragmentation is inefficient and prone to errors, as each step requires 
separated code, increasing the overall processing time and introducing potential points 
of failure. IAMSAM addresses this gap by providing a seamless, end-to-end workflow 
that integrates data preprocessing, ROI identification, and downstream analysis within 
a single platform. This streamlined workflow highlights the efficiency and accuracy of 
IAMSAM, making it a superior alternative to traditional methods for inspecting mor-
phological heterogeneity and spatial patterns of the tissue, especially in tumor het-
erogeneity. The reduction in analysis time and manual intervention not only enhances 
productivity but also improves the consistency and reliability of the results, making 
IAMSAM an invaluable tool for cancer research.

Discussion
Integrating SAM into ST libraries has shown great promise as a new workflow to 
enhance the interpretation of image-based characteristics in ST data analysis, leading 
to a more comprehensive molecular interpretation. This integration allows for accu-
rate segmentation of histologically distinct structures and produces segments that align 
closely with gene expression clusters. By bridging the gap between histological features 
and molecular information, IAMSAM enables a comprehensive analysis of ST data. One 
of the strengths of IAMSAM lies in its user-friendly nature. This application has the 
potential to facilitate ST research by providing real-time and interactive tools for acquir-
ing gene signatures from ST libraries. By lowering the barriers to entry in the field of ST, 
IAMSAM enables researchers to explore and analyze spatially resolved transcriptomic 
data more effectively.

While IAMSAM offers powerful analysis capabilities, users must consider several fac-
tors to utilize the tool effectively. First, it is crucial to select the proper mode when using 
IAMSAM. Our observations indicate that specific tissues may be better suited for the 
prompt-mode in IAMSAM, as this mode allows for capturing subtle and local differ-
ences that the everything-mode may overlook. As demonstrated by several use cases, we 
have significantly improved the segmentation performance by introducing an interactive 
function to IAMSAM. Second, users must select the proper preprocessing methods for 
analyzing their own data. Although IAMSAM provides example tutorials for preproc-
essing starting from the raw data, researchers should carefully consider variables like 
tissue type, species, and other pertinent characteristics. This decision guarantees reli-
able and precise downstream analysis. Despite the numerous advantages of IAMSAM in 
identifying meaningful regions of interest within ST data, some limitations warrant fur-
ther discussion and future improvement. Firstly, IAMSAM currently does not support 
processing of multiple images. One of the primary motivations for computer-assisted 
ROI selection is to ensure reproducibility across different fields of view and datasets. 
However, the segmentation process with SAM could be varied in multiple images due 
to batch effects of images. This limitation underscores the need for developing and inte-
grating unified processing capabilities of segmentation to enhance efficiency, especially 
in large-scale studies. In this regard, the stability of SAM’s segmentation results may be 
influenced by variations in H&E staining intensity. Differences in staining intensity can 
impact the accuracy of segmentation, potentially leading to inconsistent results. Future 
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improvements for IAMSAM should focus on enhancing the tool’s robustness to accom-
modate such variations. This could involve the implementation of normalization tech-
niques or adaptive algorithms that adjust to staining intensity changes, ensuring more 
reliable segmentation outcomes. Exploring the impact of varying image dimensions and 
the number of images on segmentation performance can be a future direction for the 
applicability of this tool. Future developments should aim to assess and optimize the 
performance across a range of image sizes and dataset volumes.

Although IAMSAM has its limitations, it is true that the spatial context of single-cell 
omics studies can provide further insights into biology. Integrating this spatial infor-
mation with diverse tissue images holds particular value, as it enhances the interpret-
ability of the data [6]. In this regard, exploring the implications of visually discernible 
histological characteristics, such as dense cancerous areas or stroma-rich regions on 
images, becomes crucial. The critical role of IAMSAM is to elucidate the molecular 
characteristics associated with these distinctive image regions and determine which 
cells exhibit such image-specific characteristics through the integration of ST data and 
image data analysis. In essence, this approach allows for a comprehensive understand-
ing of the molecular attributes underlying visually distinctive patterns in the images and 
the specific cellular contributions to these patterns. Moreover, ST analysis effectively 
reveals heterogeneity based on tissue image characteristics, extending beyond a mere 
assessment of cellular composition. IAMSAM presents a workflow that explains visually 
identifiable image features with molecular information, offering a new direction for ST 
analysis.

Conclusions
IAMSAM is a user-friendly web-based tool designed to analyze ST data. The tool uti-
lizes the SAM algorithm to segment H&E images of Visium data and performs statistical 
analysis to identify DEGs and their corresponding GO terms for each segmented region. 
With its simple and accessible interface, IAMSAM makes it easy for researchers to ana-
lyze and interpret their ST data. IAMSAM will be a valuable resource for researchers in 
the field of ST.

Methods
Dataset and preprocessing

We used four publicly accessible ST datasets, as shown in Fig. 4, to illustrate the utility of 
IAMSAM. These datasets were chosen to represent a variety of tissues and experimen-
tal setups, allowing for a thorough assessment of IAMSAM’s capabilities. We employed 
the Scanpy package [20] to perform initial data manipulation steps for preprocessing. 
Specifically, spots containing fewer than 200 transcripts were excluded from the fea-
ture matrix. Subsequently, a default log-normalization process was applied to each spot, 
facilitating the normalization and scaling of gene expression values across the dataset. 
For calculating cell type proportions, we used the CellDART [12] methods with default 
parameters. Additionally, the pixel coordinates in the ST images were adjusted by multi-
plying them with the scale factor to align the image coordinates with the corresponding 
spot positions in the dataset. The image was then cropped to focus on the tissue area, 
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excluding fiducial spots, while minimizing the padding around the image. This cropped 
image was used as input for SAM.

Segment Anything Model

IAMSAM uses the SAM to segment tissue images derived from ST data. SAM enables 
users to define ROIs effortlessly by detecting morphologically distinct regions within 
the images. SAM consists of three components: an image encoder, a prompt encoder, 
and a mask decoder. The image encoder uses a pre-trained Vision Transformer (ViT) 
adapted to handle high-resolution inputs [21, 22]. This encoder runs once per image 
and can be applied before prompting the model. It encodes the input image into a high-
dimensional vector that is then used as input for the mask decoder. The prompt encoder 
considers two types of prompts: sparse (points, boxes, text) and dense (masks). Sparse 
prompts include points and boxes, which are represented by positional encodings that 
are summed with learned embeddings for each prompt type [23].

In contrast, text prompts are handled differently compared to other sparse prompts. 
Instead of using positional encodings, text prompts are embedded using the CLIP 
framework [24]. Dense prompts, which include masks, are embedded using convolu-
tions and summed elementwise with the image embedding. The mask decoder maps the 
image embedding, prompt embeddings, and an output token to a mask. This component 
employs a modified Transformer decoder block and a dynamic mask prediction head 
[25]. The decoder block uses prompt self-attention and cross-attention in two directions 
(prompt-to-image embedding and vice-versa) to update all embeddings. After running 
two blocks, the image embedding is upsampled, and an MLP maps the output token to a 
dynamic linear classifier, which computes the mask foreground probability at each image 
location. To address ambiguity in the prompt, the model is modified to predict multiple 
output masks for a single prompt, with each mask having a confidence score (estimated 
IoU) assigned to it.

Two‑modes of IAMSAM: everything‑mode and prompt‑mode

As SAM can perform ROI segmentation incorporating manual prompts and auto-
matic prompting, IAMSAM offers two main modes of operation: everything-mode and 
prompt-mode. In the everything-mode, the model performs image segmentation with-
out any manual input from the user. It takes the input image and automatically gener-
ates masks for all different objects in the image. IAMSAM project segmentation masks 
on the tissue image with a distinct colormap, enabling users to select ROI conveniently. 
When the user clicks on a mask, IAMSAM captures the coordinates of the click event 
and adds the corresponding mask to the list of selected regions.

On the other hand, the prompt-mode allows the user to provide additional informa-
tion about the model. Users can draw multiple rectangles on the main visualization panel 
with “modeBarButtons.drawrect,” the drawing tool in Plotly, by default. IAMSAM tracks 
the coordinates of rectangles and uses those as box prompts given to the SAM model. 
The model then generates the segmentation masks based on those input prompts, treat-
ing these masks as ROIs for further analysis.
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Mask filtering in the everything‑mode

A mask filtering step was applied to remove unnecessary masks that do not contain 
any spots before visualizing the masks on the main visualization panel. Since the SAM 
model generates masks for the entire tissue image in the everything-mode, some 
masks may not have ST spots. To address this, a proportion-based filtering approach 
was implemented to retain only the masks that contain ST spots. The proportion of 
co-location between each mask and the spot coordinates was calculated by examin-
ing the overlap of mask pixels with the spot coordinates. If the calculated proportion 
is below 0.01, indicating a mask does not contain sufficient spots, the corresponding 
mask is removed from the segmentation list. This filtering process ensured that only 
masks containing ST spots were retained for further analysis.

Downstream analysis

We utilized various tools and packages to extract meaningful insights from the ST 
data in the downstream analysis step. To identify DEGs, we employed the “sc.tl.rank_
genes_groups” function in Scanpy, employing the Wilcoxon method. This analysis 
allows for the calculation of statistical significance and enables the identification of 
genes that exhibit significant differences in expression between conditions or cell 
types. Users have the flexibility to modify the cutoff values for adjusted p-value and 
log fold changes, enabling manual DEG definition. We specifically focus on displaying 
the top 10 genes with the biggest fold changes for the box plots representing DEGs. 
Enrichment analysis uses the “enrichr” function from the GSEApy package [26]. Cell 
type proportions of ROI 1 and ROI 2 that were calculated in the preprocessing step 
are shown as barplot. All visualizations in IAMSAM are created using the Plotly 
package.

User interface and web application

IAMSAM is built as a Dash application, leveraging its powerful framework for cre-
ating interactive web-based data visualization and analysis tools [13]. The Dash 
framework, built on top of Flask, Plotly, and React, provides a highly customizable 
and responsive user interface. The user interface of IAMSAM is designed to provide 
a seamless and intuitive experience for researchers analyzing ST data. The main com-
ponents of the user interface include a visualization panel with a dropdown menu 
to select samples to analyze, parameter panels that affect the SAM model and analy-
sis result, and downstream analysis panels. IAMSAM offers two main modes, every-
thing-mode, and prompt-mode, accessible through a tab menu. This allows users to 
easily navigate between the modes. Being a web application, IAMSAM takes advan-
tage of various interactive features to enhance user interaction and data exploration. 
Users can dynamically adjust parameters, such as fold change and p-value cutoff, to 
customize the analysis results. The visualizations, such as volcano plots and box plots, 
are interactive and allow users to zoom in, zoom out, and capture specific ROI for 
further examination.
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