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Abstract 

Unveiling functional relationships between various molecular cell phenotypes 
from data using machine learning models is a key promise of multiomics. Existing 
methods either use flexible but hard-to-interpret models or simpler, misspecified mod-
els. VI-VS (Variational Inference for Variable Selection) balances flexibility and inter-
pretability to identify relevant feature relationships in multiomic data. It uses deep 
generative models to identify conditionally dependent features, with false discovery 
rate control. VI-VS is available as an open-source Python package, providing a robust 
solution to identify features more likely representing genuine causal relationships.

Background
Single-cell transcriptomics offers an unprecedented opportunity for probing the func-
tion of individual cells and for characterizing the cellular composition of entire samples, 
thus shedding new light on processes in immunity, development, and pathogenesis of 
various diseases  [1–4]. The emergence of spatial and multiomic technologies further 
adds the ability to simultaneously profile the surface proteome, epigenome, or location 
of each cell, on top of its transcriptome. In addition to providing a more comprehen-
sive view of each cell, these technologies open the way for a better understanding of the 
interplay between molecular or cellular properties. For instance, assessing the depend-
ency between protein abundance on the cell surface and the expression of genes can help 
identify signaling cascades that help propagate extracellular cues and induce a transcrip-
tional response [5]. Identifying associations between gene expression and the cell’s epi-
genetic landscape [2] may further help with our understanding of how gene expression is 
regulated. In spatial transcriptomics, an examination of gene expression patterns across 
tissue localizations may reveal how the microenvironment affects the function of its 
residing cells [6]. All of these opportunities require statistical procedures to help detect 
the most relevant relationships between the observed molecular or cellular features 
(genes, proteins, chromatin regions, cellularity of the microenvironment, and more).
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In single-cell genomics and bulk settings, efforts to detect relationships between such 
features fall into two broad categories. The simplest methods identify marginal associa-
tions, which quantify statistical dependencies between pairs of features without con-
sidering the other observed features. While these were broadly used for studying gene 
co-expression networks  [7–10], marginal associations suffer from key limitations for 
single-cell genomics. Practically any technology in this field is impacted by technical fac-
tors such as batch effects or variation in sequencing depth as well as “nuisance” biologi-
cal factors that are less relevant to the question in hand, e.g., the cell cycle. These factors 
may inflate marginal correlations, resulting in associations that do not carry the intended 
biological meaning [11]. More fundamentally, a marginal correlation between two vari-
ables in any arbitrary system does not imply causation [12, 13]. For instance, two genes 
that are regulated by a common set of transcription factors can be highly correlated 
without being functionally related (Fig.  1A). Even when they are functionally related, 
marginal dependencies may not inform on the proximity of this relationship when two 
highly correlated genes are indirectly linked through a series of mediator genes (Fig. 1B). 
Marginal approaches hence tend to detect many spurious or indirect associations, which 
requires further filtering to identify the most relevant relationships [7, 14, 15].

Conditional associations are a second category of relationships that address these 
issues by accounting for the overall dependency structure of the data when assessing 
the dependency between a pair of variables [16–20]. Specifically, detecting conditional 
dependencies between a response variable Y and individual features in a feature matrix 
X often starts by learning a predictor function, f (X) ≈ Y  , which is then scrutinized to 
identify variables in X that are most associated with Y. The simplest example for this 
approach is the generalized linear model [21, 21–23], in which learned regression coef-
ficients are used to quantify conditional associations. While limited to linear relation-
ships and simple noise models, linear approaches are relatively scalable. In some cases, 
these models come with statistical guarantees for the inferred coefficients and are thus 
easily interpretable. Nonlinear predictors [16, 17] have also been introduced to capture 
more complex relationships, with tree ensembles being the most prevalent approach. 
Ensemble approaches have been demonstrated to reach state-of-the-art performance 
in a variety of tasks such as inference of regulatory interactions between genes  [24]. 
Conditional dependencies provide a more stringent notion of association than 

Fig. 1 Correlated variables may be functionally unrelated. Here, X1, X2, Y are random variables characterizing 
the expression of three genes. A X2 is directly and causally linked to Y and X1 . Here, X1 and Y might be highly 
correlated, but X1 does not causally affect Y. B X1 is directly and causally linked to X2 , and similarly, X2 is 
connected to Y. Here, X1 and Y might be highly correlated, but their association is indirect
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marginal dependencies and are more likely to reflect causal relationships. Indeed, pair-
wise dependencies that persist after conditioning on all other variables imply causal rela-
tionships in cases where the causal direction is known, there are no unobserved causal 
variables, and there is no feedback loops [25]. As such, conditional dependencies are a 
promising avenue for uncovering relevant interactions in single-cell multiomic data.

In practice, however, algorithms for identifying conditional relationships often need 
to compromise on (i) scalability, e.g., requiring heavy pre-processing to ensure that 
inference can be completed in a reasonable timeframe [24], (ii) modeling assumptions, 
using often mis-specified view of the underlying process, e.g., with simplified noise 
models or by assuming linear relationships between variables [26], and, importantly, (iii) 
interpretability and calibration, by relying on heuristics to evaluate which of the inter-
actions under consideration are indeed relevant  [27–29]. Given these challenges, ana-
lyzing dependencies in single multiomics, where millions of measurements (possibly 
from different batches or studies) are available, requires the use of scalable and rigorous 
statistical methods. These methods should be able to handle count data distributions, 
account for technical and biological noise and bias, and allow for nonlinear relationships 
between variables.

To address these three challenges, we introduce VI-VS  (Variational Inference for 
Variable Selection), a general framework for conditional independence testing with mul-
tiomic data. VI-VS is based on the conditional randomization test  (CRT)  [30], which 
quantifies the credibility of pairwise interactions by measuring the effect of exchanging 
observed features with synthetic ones. We demonstrate and theoretically prove that our 
procedure provides a calibrated estimation of the false discovery rate. This is achieved 
without making any assumptions about the distribution of the response variable Y or the 
nature of its interactions with the features in X, such as linearity. VI-VS harnesses the 
distributional expressivity of latent variable models, allowing for a variety of noise mod-
els for X, including count distributions commonly used in single-cell genomics. Finally, 
VI-VS relies on deep neural networks for testing, allowing it to scale to large single-cell 
genomic datasets as well as capture complex nonlinear relationships between variables.

In the following, we demonstrate the accuracy and calibration of VI-VS with several 
simulation and multi-ome case studies. We also showcase that our procedure provides 
a theoretically grounded “wrapper” framework that can take existing algorithms for 
detecting pairwise relationships and use them to output calibrated decisions. We dem-
onstrate this using the popular GENIE-3 algorithm for inference of regulatory networks.

Results
Variational Inference for Variable Selection

VI-VS is a conditional independence testing framework for single cell genomics. We 
observe, for multiple cells, G features X1, . . .XG , e.g., genes, as well as a response vari-
able Y, e.g., measured protein expression levels, or another type of cellular property. 
This section omits the confounding factor adjustment for simplicity. We refer to the 
“Methods” section for a detailed description of the full algorithm in the presence of 
confounding factors.

Conditional independence tests identify features for which the null hypothesis of con-
ditional independence H0,g : Xg⊥⊥Y | X−g can be rejected. Here, X−g denotes the set 
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of features X1, . . . ,XG excluding Xg . Conditionally dependent features, for which the 
null can be rejected, are associated with the response variable in a way that cannot be 
explained by the other features. This allows for the identification of features that have a 
distinct and significant association with the response variable and are less likely to be the 
consequence of spurious correlations among features.
VI-VS compares observed data statistics with statistics of synthetic data gener-

ated under the null hypothesis of conditional independence  (Fig.  2A). It requires two 
core components: (i) a way to generate synthetic data and (ii) a procedure to compare 
observed with synthetic data. To generate synthetic data, VI-VS employs a generative 
model, more particularly a latent variable model, trained on a subset of the available 
data. The generative model can be seen as a simulator that generates synthetic data in 
the scenario where H0,g holds. More specifically, the generative model produces K syn-
thetic measurements for feature g, X̃ (1)

g , . . . X̃
(K )
g  that are consistent with H0,g . In other 

words, no matter if the observed Xg is conditionally dependent on Y, the synthetic sam-
ples X̃ (k)

g  will be conditionally independent on Y by construction.
The next step is to compare the observed and synthetic data to assess the cred-

ibility of H0,g via importance scores. Importance scores are data statistics that concisely 

Fig. 2 A VI-VS overview. VI-VS identifies conditional dependencies between molecular features X, e.g., genes, 
and a response variable Y of cell properties, e.g., protein expression levels, in single-cell genomics. (1) We 
first randomly split the observed data into a validation and a development set. On the development set, we 
fit a generative model pθ and importance score Tφ , which is a scalar-valued function taking Y and X as inputs 
on the development set. In a simple case, Tφ may correspond to the prediction error of the ordinary least 
squares of Y on X. Here, θ and φ denote the parameters of these models, learned on the development set. 
(2) We compute the importance score of the observed data on the validation set. (3) In parallel, we sample 
K synthetic feature samples for gene g using the trained generative model. We then compute synthetic 
importance scores, computed based on Y and on the modified feature matrix X where the gth column was 
replaced by the synthetic samples. (4) We compare the observed importance score to the distribution of 
synthetic importance scores to compute a p-value. B Power limitation of conditional approaches. Features 
X1, X2, X3, X4 are mildly correlated and form a first cluster. Features X ′1, X

′
2, X

′
3, X

′
4 are strongly correlated and 

form a second cluster. If the target response causally depends on X1 and X ′1 , then a conditional independence 
test may fail to detect X ′1 due to its strong correlations with features of the same cluster. C Illustrative example 
of multi-resolution testing on B in the case where conditional dependencies at assessed at three resolutions 
(res. 3 being the finest at the feature level). VI-VS can detect groups of features that are conditionally 
dependent on the response variable, even if no individual gene can be identified as conditionally dependent, 
as well as individual features, if the sample size allows. For instance, VI-VS could detect, in additional to 
individual feature X1 , that group {X ′1, X

′
2} (marked as a star in the figure) is conditionally dependent on the 

response without being able which of the two features is responsible for the association
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summarize the relationship between the features and the response variable and that we 
can use to compare the observed and synthetic data. A simple example of an importance 
score is the prediction error of a regression model of Y given X, e.g., a neural network or 
a linear model trained on a subset of the observed data. If H0,g were true, then the value 
of feature g should not be informative for predicting the response. In particular, replac-
ing Xg with a synthetic counterpart X̃ (k)

g  in the input of the regression model should 
not significantly change the prediction error. On the other hand, if Xg is conditionally 
dependent on Y, then Xg should be informative for prediction, and the replacement 
operation should lead to a significant increase in the prediction error.

Following this logic, and in the general setting, we let T(X, Y) denote the importance 
computed on the observed data, and T (X̃ (k),Y ) as the one computed from inputs X̃ (k) , 
where Xg was replaced by X̃ (k)

g  . VI-VS compares the observed importance score to the 
histogram of the synthetic importance scores to compute a p-value for H0,g as

Theoretical guarantees The p-values computed by VI-VS are calibrated; in particular, 
they control the false discovery rate  (FDR) at the desired level, regardless of the com-
plexity of the relationship between the response variable and the features. The core 
assumption of VI-VS is that the generative model can describe the statistical relation-
ship between features X1, . . .Xg . While not described in this section, VI-VS adjusts for 
confounding factors, e.g., batch effects, that may affect the relationship between X and Y. 
We refer to the “Methods” section for a detailed description of the full algorithm.

Importantly, any importance score can be used: while poor importance scores will lead 
to low power, the FDR will remain controlled. This property has strong consequences 
for the method’s versatility and validity. First, the relationship between Y and X does not 
need to be understood or modeled properly. For instance, an importance score built on a 
linear model will still provide calibrated p-values when the relationship between Y and X 
is non-linear. Second, importance scores can be built from the output of existing feature 
selection algorithms that do not inherently provide p-values, allowing VI-VS to act as a 
meta-algorithm that makes interpretable decisions on top of these algorithms.

Multi‑resolution approach to feature detection In practice, conditional independence 
tests may not detect many features, e.g., due to limited sample sizes when some features 
are highly correlated. Consider a hypothetical experiment where features form two clus-
ters and the is a function of one feature in each cluster  (Fig.  2B). A conditional inde-
pendence test may fail to detect either of these features if there are strong correlations 
within the clusters  (see, for instance,  [31]). VI-VS includes a multi-resolution testing 
procedure that identifies conditionally dependent feature groups in addition to individ-
ual features to address the power issue of conditional independence tests. This allows for 
the detection of feature groups for which no individual feature can be identified as con-
ditionally dependent on the response variable, allowing to avoid missing relevant asso-
ciations. Figure 2C provides a preview of the output of this approach in the illustrative 
example above.

pg =
1

K + 1
1+

K

k=1

I T (X̃ (k),Y ) ≤ T (X ,Y ) .
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Implementation We implemented VI-VS in a fast and scalable fashion, parallelizing 
synthetic data generation across genes and samples via GPU acceleration  (Additional 
file 1: Algorithm S1). The algorithm is implemented in Jax and is available as a Python 
package at https:// github. com/ Yosef Lab/ VIVS.

Experimental setup We used scVI  [32] as the generative model for features, corre-
sponding to gene expression, reimplemented in Jax with its default parameters. Impor-
tance scores were calculated as the prediction errors of regression models of y given x, s, 
either corresponding to a linear model or an MLP. To train these models, we randomly 
split the available data into a 70–30% development-validation split. Both the genera-
tive model and the importance scores were trained on the development split; p-values 
and cell scores were computed on the validation split. Note that the generative model 
and importance scores need only be fit once, upstream of the CRT. In cases where our 
experiments contained multidimensional response variable y, we applied VI-VS sepa-
rately and in parallel to each dimension. In such cases, however, the generative model 
only needs to be trained once (Additional file 1: Supplement D.4).

VI-VS provides calibrated decisions in a semi‑synthetic experiment

We considered a scRNA-seq dataset of 6,855 peripheral blood mono-nuclear cells 
(PBMC) [33] from a healthy human donor, with 500 genes. We generated five synthetic 
response variables, each corresponding to the expression of a surface protein measured 
in the observed cells. The expectations of each response variable were calculated as a 
linear combination of the squared values of mean-centered log count per million (CPM) 
expression levels of 150 randomly selected genes in X. These simulated response vari-
ables were further corrupted by the addition of Gaussian noise. This simulation repre-
sents a case where simple linear assumptions do not hold, but there is still a relatively 
simple model that connects y to a subset of features in X. More details on data genera-
tion can be found in Additional file 1: Supplement A.2.

We compared VI-VS to two baselines. Ordinary least squares  (OLS) is a canonical 
method for conditional independence testing. For OLS, we regressed the response vari-
ables y on X, under linear and Gaussian assumptions, and used a t-test to estimate sig-
nificance of each coefficient. We also considered a simpler (marginal) independence test 
baseline. For each gene g, we regressed y on the expression of g only and used a t-test to 
estimate significance. These two baselines used all available data, i.e., both the develop-
ment and validation splits, to fit the regression models, thus lending a natural advantage 
over the way VI-VS was fit.

We first evaluated the extent of type I error of the different algorithms (Fig. 3A). We 
found that the FDR estimates of the marginal independence test exceeded target levels, 
leading to many false positives. These false positives likely reflect indirect correlations, 
that is, genes that were not used to generate the synthetic response variable but strongly 
correlate with other genes used for data generation.

The OLS performed better but still overestimated the FDR, possibly due to the 
violated linearity assumptions. In addition, likelihood misspecification, i.e., invalid 
Gaussian assumptions on the data, can cause FDR miscalibration for OLS. As an illus-
tration, we repeated the simulation, this time generating the response variable counts 

https://github.com/YosefLab/VIVS
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from a Poisson distribution (Additional file 1: Figure S1), in which case OLS performs 
worse. On the other hand, the application of VI-VS with an MLP for the importance 
score controlled the FDR in both these scenarios. We also evaluated the robustness 
of our approach to key characteristics of the simulated data, including sparsity and 
the number of genes in the assay, and show that our approach compares favorably to 
OLS, and provides consistent FDR control across all parameter settings (Additional 
file  1: Figure  S2). Finally, we confirmed the robustness of VI-VS to the choice of 

Fig. 3 Semi-synthetic experiment. A Comparison of FDR control and power for conditional independence 
testing at the gene level, averaged over five random weights initializations for the models of VI-VS, and 
across the five surface proteins of the dataset. Here, VI-VS uses a neural network with 64 units to compute 
importance scores. Left: FDR control comparison for the CRT, ordinary least squares (OLS) under t-tests, and 
marginal independence tests. Because the marginal test did not control the FDR, it was removed from the 
rest of the experiments. Center: Zoom on the previous figure. Right: Associated TPR. B FDR-TPR curves for 
different importance scores averaged over five random weights initializations for the models of VI-VS and 
across the surface protein of the dataset. Circles, squares, and rectangles respectively represent the models’ 
decisions for target FDR levels of 0.05, 0.1, and 0.2. C Associated held-out mean squared error of the different 
regression models used as importance scores. D Use of VI-VS as a calibration tool for GENIE3. After fitting 
the regression tree ensemble of GENIE3, we used their prediction error as importance scores for VI-VS, 
allowing one to detect conditionally dependent genes with statistical significance. E FDR/TPR levels of 
VI-VS using GENIE3 reconstruction losses as importance scores. In this experiment only, for scalability 
reasons, we considered a total of 100 genes in the experiment. In B and E, dashed lines denote target FDR 
levels



Page 8 of 24Boyeau et al. Genome Biology          (2024) 25:294 

development set size in Additional file 1: Figure S3, where we also suggested strate-
gies to choose the development set size and assess calibration when necessary.

Increased power using more complex importance score functions Using better impor-
tance scores can increase the power of the CRT framework (i.e., lower type II error), 
while still maintaining calibration of the type I error estimates (as stated by Proposi-
tion 1 in the “Methods”  section and  [30]). To illustrate this, we considered a range of 
increasingly complex model choices to compute the importance scores and repeated our 
simulation analysis (Fig. 3B). We found that all importance scores controlled the FDR 
at different levels. For instance, using linear regression with an OLS objective to com-
pute importance scores still controlled the FDR, although this model is a poor predictor 
of the response variable. Conversely, higher-capacity models relying on complex MLP 
architectures led to increased power, indicating that more pertinent importance scores 
may lead to more discoveries. We also found that the models with the best held-out pre-
dictive performance also detected more true positives (Fig. 3C), providing an empirical 
strategy to design importance scores with VI-VS. Therefore, we advise using predictive 
performance as a criterion to select the importance score to use with VI-VS.

Using VI-VS to calibrate existing algorithms for the identification of feature interac‑
tions in single‑cell genomics Our framework can build interpretable decisions on top 
of existing algorithms that lack a scalable or otherwise principled way to define cali-
brated decision rules. An example of such a model is GENIE3, which uses an ensemble 
of regression trees to produce scores that quantify the importance of each gene in pre-
dicting a held-out “response” gene, thus identifying putative interactions between genes. 
These scores were shown to have state-of-art performance in ranking putative interac-
tions from the most to the least relevant. They, unfortunately, do not easily inform which 
interactions should be considered relevant for decision-making. Consequently, we used 
VI-VS to construct interpretable decisions on top of GENIE3. To do so, it sufficed to 
plug in the GENIE3 model as importance score. Specifically, given a response variable 
y, we trained GENIE3 regression trees once using the development part of the data. We 
then used the respective prediction errors on the validation data as importance scores 
for VI-VS  (Fig.  3D; Additional file  1: Supplement  D.5 for details). Application to our 
simulated data demonstrates that this wrapper procedure provides decision rules that 
control the FDR at several levels (Fig. 3E), while still providing large true positive rates. 
The CRT framework can therefore be used to better utilize a large family of algorithms 
in this area, as long as they produce an estimate of interaction “strength” that considers 
all features in X serving as plugin importance score.

Multi‑resolution testing as a way to increase power The limited true positive rate in 
our simulation results can be explained to some extent by gene correlations that could 
not be resolved because of the limited size of the data. We next tested whether mul-
tiresolution could mitigate this. To this end, we applied our hierarchical procedure with 
different gene cluster granularities (here, 200 clusters, 300 clusters, or a per-gene analy-
sis; Fig. 4A). We generally observed that the detections were consistent across the dif-
ferent resolutions, i.e., if a group of genes was identified at a given resolution, groups 
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containing these genes were detected at coarser resolutions. Testing at multiple resolu-
tions is useful to identify clusters of genes that were not detected at the gene level due 
to sample size limitations. Clusters 5 and 6 are such examples, illustrating cases where 
relevant genes might not be detected at the gene level, but could detected at coarser 
resolutions.

For a more quantitative evaluation of the merits of multi-resolution testing, we com-
puted FDR and power, where a selected group of genes was considered true positive if it 
contained at least one gene that was a true positive (at the gene level) and false positive 
otherwise (Fig. 4B). Our results show that testing at coarser resolutions, i.e., grouping 
genes together, yielded more discoveries while maintaining calibrated FDR. More gen-
erally, multi-resolution testing provides more insight into the statistical relationships 
between genes and responses. When a coarse gene group is detected, the identification 
of finer-grained gene groups can be used to identify the individual genes that are respon-
sible for the association [34]. Tying individual genes with coarser gene groups can also 
help identify and annotate genes with additional sources of information [35].

VI-VS identifies causal interactions in perturb‑seq data

We also considered a perturbational screen assay [36] to assess the relevance of VI-VS 
in identifying causal gene-gene interactions in single-cell genomics. As they can iden-
tify true causal interactions between genes, perturbational assays constitute a natural 
choice to benchmark the different models to produce causal candidates. To benchmark 

Fig. 4 A Examples of gene groups identified by VI-VS in the semi-synthetic experiment. Clusters 1 and 2 
show examples where all genes affecting the surface protein expression in the simulation are detected at the 
gene level. Clusters 3 and 4 show examples where some of the genes are not detected at the gene level but 
are detected at coarser resolutions. Clusters 5 and 6 show examples where none of the genes are detected 
at the gene level but are detected at coarser resolutions. B FDR (left) and power (right) for VI-VS applied at 
different resolutions. When testing at the group level, a group of genes was considered a true positive if it 
contained at least one gene that was a true positive at the gene level
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our approach, we restricted the analysis to the ten target genes with the largest num-
ber of guides. We first identified for each target gene true positive genes as differentially 
expressed genes using a t-test comparing gene expression between cells with and with-
out guide RNA. We then fit the different models on unperturbed cells using the meas-
ured target gene expression as the response variable.

Figure  5 shows the estimated FDR and TPR for the different models evaluating the 
match between t-test of perturbed and unperturbed cells and genes significant predic-
tive genes estimated by the different models. As expected, the marginal approach had 
the highest TPR, but also the highest FDR. VI-VS obtained a significantly lower FDR 
than both OLS and the marginal approach  (70% for VI-VS; 95% for OLS). In other 
words, almost a third of the associations identified by VI-VS were true positives, which 
is a major increase over the other models. The improved precision of VI-VS did not 
affect its power. VI-VS identified a similar number of true positives as OLS but from a 
smaller pool of detected associations (Additional file 1: Figure S4). In other words, our 
approach produced a smaller set of associations with high precision, which contained a 
similar number of true positives as the larger set of associations produced by OLS. The 
superiority of VI-VS over OLS for causal candidate identification was further supported 
by significantly higher F1 scores (Additional file 1: Figure S4).

VI-VS identifies links between surface proteins and gene expression programs 

with CITE‑seq

Next, we considered a CITE-seq dataset of PBMCs, obtained from eight healthy 
human donors  [37]. We applied VI-VS at the single gene level, as well as the OLS 
baseline to a subset of this data with a total of 50,000 cells, 2000 genes, and 224 sur-
face proteins (Fig.  6A). Notably, this dataset includes information from 13 batches, 
which could be accommodated by VI-VS due to the batch correction capacity built 
into its generative model  [32]. Application of OLS to this case study (using an FDR 
cutoff of 10%) returned a very large number of associations for all 224 proteins (Addi-
tional file  1: Figure  S5A). In contrast, VI-VS (with the same target FDR) only pre-
dicted associations for 51 of the proteins, with a smaller number of interactions per 

Fig. 5 Perturb-seq experiment. Left: FDR and Right: TPR for the different models for the identification of 
causal interactions identified from the perturbational assay estimated from the ten target genes with the 
largest number of guides in the assay (target FDR level: α = 0.1 ). A star (*) indicates a significant difference 
between the metrics based on a paired t-test with a significance level of 0.05; nc indicates that the difference 
is not significant
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protein  (52 interactions on average, compared to 140 interactions with OLS). To 
understand this, we first considered the set of proteins that had no associations with 
VI-VS. Using TotalVI [38], we estimated for each protein the percentage of cells that 
plausibly express it on their surface (accounting for background signal, which is often 
observed in protein quantification with CITE-seq). We found that those proteins with 
no detection by VI-VS tend to have a much lower signal, compared to the ones that 
have been associated with gene expression (Additional file 1: Figure S5B). Conversely, 
the OLS analysis identified associations for proteins that are likely not well captured 
or not expressed in these settings. OLS detected numerous associations (21, 41, 121, 
and 123 gene-protein pairs respectively) for four negative control proteins  (Rat-
IgG1-1, Rat-IgG2b, Rat-IgG1-2, and Rat-IgG2c) that are not expressed by human 
cells. In contrast, VI-VS detected none of these associations.

To further compare the validity of the associations made by VI-VS and OLS, we 
used StringDB [39] to evaluate the a priori support for each interaction. Specifically, 
we assigned StringDB’s protein-protein “combined score” to each protein-gene pair. 
This combined score is a composite measure that integrates the scores of protein-
protein associations computed across several modalities. We first compared the 
distribution of these scores for predicted gene-protein interactions across all pro-
teins  (Fig.  6B). We found that the scores of the interactions predicted by VI-VS 

Fig. 6 CiteSeq experiment. A UMAP of the dataset. B Distribution of stringDB scores of gene-protein 
discoveries made by VI-VS and least-squares (higher is better). C, D cell scores (averaged per cell-type) for 
the CD86-HLA and CD48-2b4 gene-protein pairs detected by VI-VS. High scores identify cells where the 
dependency is most expressed. E Visualization of VI-VS detections at several resolutions for surface protein 
CD25 and T cells. Each filled rectangle characterizes a gene group detected as significant by VI-VS when 
testing for conditional independence at several resolutions (K ∈ {100, 250, 500} and at gene level). Genes in 
red correspond to genes contained in Interleukin-2 Family Signaling R-HSA-451927 or Interleukin-2 Signaling 
R-HSA-9020558 pathways. F Agreement of the predictions with the Reactome pathway database, focusing on 
T cells for three surface proteins. Top: Number of predicted genes contained in each pathway, and bottom: 
proportion of predicted genes contained in each pathway over the total number of detections. The following 
pathways were considered: Interleukin-7 Signaling R-HSA-1266695 for CD127, Interleukin-2 Family Signaling 
R-HSA-451927 and Interleukin-2 Signaling R-HSA-9020558 for CD25, and TCR Signaling R-HSA-202403 for TCR-2. 
For E and F, models were fit on T cells only
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were significantly higher than the ones identified by OLS (Kolmogorov-Smirnov test, 
P ≤ 10−6 ). A similar trend was observed when comparing these scores for proteins 
for which both methods made predictions  (Kolmogorov-Smirnov test, P ≤ 0.05 ). 
This, combined with the fact that OLS detected associations for several negative con-
trol proteins, suggests that OLS is likely misspecified and may return many false posi-
tives. Conversely, VI-VS provides a more conservative and accurate way to identify 
biologically meaningful associations.

Locating protein‑gene associations to the relevant cell subsets A core feature of VI-
VS is the ability to not only identify the association of genes with the response variable 
but also highlight the set of cells in which this interaction is more likely to be relevant. 
As a first example of this, we consider an association detected between MS4A1 (encod-
ing the B cell marker CD20) and the HLA-DR receptor. Using the cell-specific impor-
tance scores from Equation 7 of the “Methods” section, we identified B cells as the most 
relevant cells for this association  (Fig.  6C). This agrees with previous findings on the 
physical and functional association between CD20 and MHC-II in activated B cells [40] 
and the use of these two molecules as joint targets for combination therapy in lympho-
mas [41]. VI-VS also identified an association between the presentation of CD48 on the 
cell membrane and the expression of 2B4, which encodes the activating NK cell recep-
tor CD244. The cell-specific importance scores suggest that this dependency is primarily 
driven by natural killer (NK) cells (Fig. 6D). This result agrees with reports on the func-
tional association between CD48 and CD244 in NK cells, where direct binding of these 
molecules is important to drive the surface expression and phosphorylation of CD244 in 
NK cells, consequently affecting their effector function [42].

When the practitioner has prior knowledge about the cell types of interest for the anal-
ysis, it is advantageous to fit the model only on these specific cells rather than the entire 
dataset. This choice reduces the computational cost of the algorithm and yields clean 
type-specific associations, eliminating the need for post-processing based on cell-spe-
cific importance scores. To illustrate how VI-VS can unveil biologically relevant associ-
ations at multiple resolutions, we searched for associations between genes and proteins 
in T cells specified before testing. We focused on the CD25 surface protein (IL2RA) and 
identified conditionally dependent genes and gene groups at different resolutions. For a 
coarse resolution (K = 100 ), VI-VS detected 26 groups of genes, seven of which con-
tained genes known to be involved in the regulation of IL2RA [43], which we visualized 
in Fig. 6E. In addition to IL2RA and IL2RB, detections at the gene level included CCR5, 
which encodes a chemokine receptor that influences IL2 production in T cells [44]. Test-
ing at several resolutions simultaneously identified causal genes that were not detected 
at the gene level, presumably due to sample size limitations or strong correlations. For 
instance, STAT3 and STAT5B, two transcription factors involved in the regulation of 
IL2RA, were not detected by VI-VS at the gene level but detected at a coarser resolu-
tion. STAT3 promotes T cell survival and is known to inhibit T cell proliferation and IL2 
production [45]. The activation of STAT5B by IL2 cytokines is a critical signaling path-
way associated with regulatory T cell differentiation and function [46]. We generalized 
this analysis to other proteins and compared the number of detected genes contained in 
known pathways for VI-VS and OLS more quantitatively (Fig. 6F). VI-VS detections at 
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coarser resolutions detected more overlapping genes contained in pathways, while tests 
at finer resolutions provided more precise gene-level associations and overall more over-
lapping genes than OLS.

An important observation is that contrary to marginal approaches, VI-VS automati-
cally controls for cell-type variation. A gene and a protein may be marginally depend-
ent if they are expressed by the same cell types, even if they do not correlate within 
these types. Additional file 1: Figure S6 compares, for every gene, significance scores for 
its association with the surface protein CD4, using a marginal test and VI-VS with a 
significance score of DE between CD4+ T cells and the rest of the cells. The marginal 
approach has a very strong correlation with the cell-type variation, while VI-VS does 
not. Consequently, a marginal test for gene-protein association may reflect cell-type var-
iation rather than molecular interactions. Conversely, since gene expression data from 
all genes except one are sufficient to identify cell types, VI-VS conditions the variation 
between cell types and finds associations that are not explained by cell-type variation.

VI-VS identifies spatially dependent gene expression programs in lymphocytes using ST

We showcased how VI-VS can be applied for spatial transcriptomic (ST) analyses. In 
particular, we studied an ST dataset consisting of one lung biopsy from a non-small cell 
lung cancer (NSCLC) patient, containing 960 genes and 200,000 cells, sequenced using 
the CosMx platform [47] and segmented with Baysor [48] In this case, our objective was 
to link gene expression to spatial contexts that reflect cell localization in the tissue or its 
proximity to other cells.

Characterizing spatial differential expression patterns for T cells We first aimed to 
identify differences in gene signature between T cells located in the tumor and lymphoid 
aggregates  (Fig.  7A). We trained the considered models on these cells using a binary 
response variable indicating the cell location  (y = 1 for tumor cells, 0 for lymphoid 
aggregate cells); the importance score used by VI-VS was modified to the log-likelihood 
of a neural network binary classification model. We first compared the number of genes 
predicted by VI-VS to simple parametric and nonparametric differential expression 
tests (Additional file 1: Table S2). The latter approaches detected almost all genes in the 
dataset. As the number of cells increases, negligible differences in gene expression are 
likely to be detected as significant, even after multiplicity correction. This is a known 
problem for point null hypothesis tests applied to single cells  [49, 50], which would 
require further filtering of the results to obtain a reasonable number of discoveries that 
can be interpreted. In contrast, VI-VS detected a much smaller number of genes at the 
gene level. Indeed, only five genes were detected by VI-VS at the gene level, including 
ITGAE and IL7R (Fig. 7B). ITGAE, encoding CD103, is a canonical marker of tissue-res-
ident memory CD8+ T cells (Trm). Its expression characterizes T cell infiltration in the 
tumor microenvironment (TME) [51]. This result highlights that tissue-resident mem-
ory T cells preferentially infiltrate the tumor. IL7R is a general marker for memory CD4 
T cells. The multiresolution approach detected a larger set of genes known to capture 
known tumor-specific T cell signatures. ITGAE is associated with a group of genes that 
have a cytotoxic function in CD8 cytotoxic T cells (CTSW, GNLY, NKG7, PRF1, GZMB, 
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KLRK1) up-regulated in the tumor, identifying resident CD8 T cells in the tumor to have 
a highly cytotoxic and activated phenotype. IL7R on the contrary shows up in a mod-
ule with CCR7 and KLF2, genes that mark central-memory CD4 T cells. This module 
therefore identifies central-memory CD4 T cells to be enriched outside of the tumor. 
These genes were mainly located in spatial clusters of lymphocytes which we identified 
as lymphoid aggregates. In general, the genes and modules detected reflect a diverse set 
of biological processes varying across lymphoid aggregates and tumor regions.

Identifying T cell genes associated with tumor proximity Last, we character-
ized the associations between gene expression and tumor proximity by defining y 
as the local density of tumor cells surrounding T cells. The first step was to define 
the range of tumor proximity we considered relevant. To do so, we constructed sev-
eral responses y, corresponding to the predicted tumor density for each T cell pre-
dicted by a Gaussian kernel density estimator of different bandwidths, taking values in 
h ∈ [10µm, 50µm, 100µm, 200µm, 500µm, 1000µm] . Of these, only h = 500µm and 
h = 1000µm detected associations at the gene resolution, suggesting that gene expres-
sion interactions with immediate and close tumor cells are more difficult to detect and 
would require more data to reach significance. We focused on the discoveries made by 

Fig. 7 ST T cells experiment. A Tissue segmentation into lymph nodes and tumor regions. B Identified spatial 
DE genes by VI-VS in T cells, along with spatial LFCs (positive values denote gene upregulation in lymph 
nodes compared to tumors) against the significance scores of VI-VS. C Local density of tumor cells in the 
tissue. Density is estimated using kernel density estimation (bandwidth of 500 µm). D Identified T cell genes 
conditionally associated with local density of tumor cells, along with marginal Spearman scores between 
gene expression and local tumor density
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VI-VS for h = 500µm  (Fig.  7C), and visualized the detections, corresponding to six 
gene groups (Fig. 7D). Our approach provided a significant number of genes related to 
T cell function in the tumor microenvironment, including HSP90AA1, ETS1, CXCR4, 
RGS1, and FYN, all detected at the gene level. HSP90AA1, for instance, encodes a heat 
shock protein, whose overexpression correlates with tumor progression and a poor 
prognosis in NSCLC [52, 53], and has been shown to correlate with an exhausted pheno-
type of CD8 T cells in tumors [54]. CXCR4 encodes a chemokine receptor whose expres-
sion is associated with the formation of lymphoid follicles that we detected outside of 
the tumor [55]. TGFBR2 is associated with this gene at the module level and has been 
shown to induce the residency of T cells in lymphoid tissue [56]. A correlation of RGS1 
with T cell exhaustion has been observed in various cancers, including NSCLC [57]. We 
emphasize here that the location of T cells outside of the tumor is related to specific 
chemokine signals, specific cell states, and markers of exhaustion, whereas the location 
inside the tumor is related to an increase in heat shock protein signatures associated 
with T cell exhaustion and cellular stress. These results suggest that VI-VS is flexible 
to be applied to continuous descriptions of spatial localization and then helps to dissect 
function without prior knowledge of important tissue niches.

Discussion
Detecting conditional dependencies requires more data than identifying marginal 
dependencies [58]. This requirement may cause conditional approaches to miss poten-
tially relevant associations due to limited statistical power. To address this risk, we pro-
posed a multiresolution testing procedure. This procedure not only identifies individual 
genes with conditionally dependent features but also recognizes feature groups that may 
contain them, providing a comprehensive characterization of the statistical dependen-
cies between features and responses. We highlight throughout the manuscript that these 
modules can help in identifying the functional role of an identified molecule and thereby 
help in interpreting the results.

In the general case, VI-VS discoveries have no guarantees to be functional. Feed-
back loops prevalent in molecular interactions, cell communication, or unobserved 
molecular species are just a few examples of phenomena that lead to spurious discov-
eries. However, certain multiomic setups already offer promising avenues for identify-
ing causal relationships with VI-VS. Identifying reproducible and robust discoveries 
across biogically diverse environments could help mitigate the effect of unobserved 
confounders [59, 60].

Making no assumption on the distribution of the response, our approach can readily be 
applied to other multiomic setups. A first application could be the identification of gene 
associations with metabolites  [61]. VI-VS could also be applied more broadly to spatial 
transcriptomics to create complex characterizations of cell phenotypes and their environ-
ments. It could, for instance, pinpoint genes involved in receptor-ligand interactions [62] 
or in determining cellular morphologies [63]. VI-VS is also relevant for the identification 
of potential transcription factor binding sites, using paired gene expression and chroma-
tin accessibility data. A major advantage of VI-VS in this scenario is its ability to identify 
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broader regulatory regions associated with gene expression, even when there is not enough 
data to pinpoint individual peaks.

The primary assumption underpinning VI-VS is the availability of a valid generative 
model of the feature data. The generative model should be capable of generating synthetic 
data that is statistically indistinguishable from the observed data. The generative model 
considered in this manuscript has undergone rigorous stress-testing for single-cell RNA 
data generation and imputation  [64–66]. To show that VI-VS is not tied to this choice, 
however, we also showed that VI-VS also produced calibrated p-values using an alternative 
generative model for single-cell RNA-seq data (Additional file 1: Table S1). Other types of 
features may require the use of a generative model that better approximates the data gener-
ating process. For instance, chromatin accessibility data may require the use of a generative 
model that property account for ATAC-seq sparsity [67, 68] to ensure that VI-VS p-values 
remain valid. As illustrated in this work, more expressive importance scores, on the other 
hand, do not affect calibration but can improve power.

Technical data variations, such as differences in sample preparation and sequencing 
technologies, pose significant challenges for large-scale multiomic analysis  [69, 70]. VI-
VS effectively addresses this issue by conditioning on these nuisance factors. In single-cell 
studies, nonparametric tests, particularly the Conditional Randomization Test (CRT), have 
demonstrated the ability to produce calibrated significance scores in the presence of techni-
cal factors [71]. The generative models used by VI-VS are capable of capturing multiple 
nonlinear technical effects [72], enabling robust discoveries even in complex settings [73]. 
Therefore, we propose VI-VS as a general framework to produce calibrated significance 
scores of conditional associations in complex settings via integration of large datasets across 
multiple batches.

Conclusions
VI-VS is a comprehensive framework for identifying potential functional relationships 
among molecular species in single-cell multiomics. It employs a nonparametric test for 
conditional independence, a concept that provides a more stringent notion of association 
than marginal tests. Unlike parametric tests, which require to posit a predefined relation-
ship between features and the response, VI-VS does not require this relationship to be 
known. This makes VI-VS a versatile tool that remains valid even when the relationship 
between features and the response is unknown, promising to uncover novel insights into 
molecular and cellular interactions arising from multiomic measurements.
VI-VS can be employed as a meta-algorithm to make the discoveries of existing methods 

more interpretable by constructing importance scores from their predictions. In this work, 
we calibrated GENIE3 discoveries via VI-VS  but other models could be used instead. VI-
VS is not as a replacement to such methods but rather as a wrapper algorithm that enables 
a principled and interpretable way to identify conditional dependencies with FDR control.

Methods
As an input, VI-VS receives a matrix of features X ∈ R

N×G and a vector, represent-
ing a response variable y ∈ R

N where G is the number of features and N is the number 
of cells. We also assume that observed nuisance factors S ∈ R

N×T , e.g., batch assign-
ments, sequencing depths, or cell cycle events, affect these experiments and need to be 
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accounted for. Our goal is to detect features in X that are associated with the response 
variable y while controlling for the nuisance factors.

In the following, we assume that X consists of observed molecular expressions of G 
genes in N cells, although the method is general and applies to other modalities. The 
choice of y varies depending on the assay considered and the problem of interest. Spe-
cifically, y can characterize molecular quantities, such as protein counts in CITE-seq 
experiments or chromatin accessibility in ATAC-seq data. It can also represent other, 
more abstract cell-level properties, e.g., characterizing the tissue environment of a cell in 
spatial transcriptomic assays. y may also correspond to a singled-out gene of interest, for 
which we wish to identify the interacting genes.

When referring to observations from an individual cell, we will employ lowercase let-
ters, reserving uppercase letters for the entire array of observations. In addition, xg ∈ N 
and x−g ∈ N

G−1 will respectively denote gene expressions for gene g and the vector 
of remaining genes. When needed, superscripts will index cells, such that xn denotes 
the gene expression vector [xn1 , . . . , x

n
G]

T of cell n. When A is a set of features, xA will 
denote the vector of features contained in A. We make the assumption that the samples 
(xn, yn, sn) are independent and identically distributed (i.i.d.).

Conditional randomization tests for single‑cell genomics

To detect genes in X that are associated with the response variable y, VI-VS employs 
a conditional independence test, which estimates, for each gene, the plausibility of the 
null:

We rely on the conditional randomization test  (CRT) approach  [30] to test these 
hypotheses. The premise of CRT is that while it is difficult to directly assess how the 
distribution of the response variable y depends on X, it is easier to describe how the 
features of X depend on each other. VI-VS requires two ingredients: a generative model 
for X to capture the dependencies between features and an importance score to evaluate 
their association with y.

Importance score The importance score is a function T : X ,Y , S → R , which summa-
rizes the observed data. To make decisions, the CRT compares this summary T(X, Y, S), 
with T (X̃ ,Y , S) , where X̃ denotes partially synthetic data in which one or few of the fea-
tures are replaced with values that are generated with the generative model. Here, we 
propose to learn the importance scores from the data. In particular, we consider impor-
tance scores corresponding to the prediction error of a regression model of Y on X and s,

where (yn, xn, sn) respectively denote responses, gene expression, and nuisance factors 
for cell n. Here, pφ(yn | xn, sn) is a likelihood for y based on a model pφ trained on held-
out data. For instance, pφ may be based on a linear regression or more complex models 
such as random forest or a multi-layer perceptron (MLP). Importantly, this predictive 

(1)H0,g : xg⊥⊥y | x−g , s.

(2)Tφ(X ,Y , S) =
1

N

N
∑

n=1

− log pφ(y
n | xn, sn),
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model does not need to perfectly capture the conditional distribution of y given x, s. The 
CRT will indeed control the false positive rate irrespective of the choice of the predictor 
model and its assumptions on the nature of the interaction between x and y or on the 
distribution of y [30]. However, the more adequate the model, the more powerful we can 
expect the test to be.

Generative model The other required component is a generative model pθ that (i) can 
be used to sample synthetic expression profiles for a given gene and (ii) does not depend 
on the response variable y. Due to their scalability, ability to capture nonlinear effects, 
and flexible likelihood assumptions, latent variable models are a useful choice to model 
gene expression in this context. In these models, an unobserved low-dimensional vari-
able z is assumed to capture the state of each cell and provide a concise summary of the 
biological variation among cells. We assume that the model factorizes, for each individ-
ual cell and under i.i.d. assumptions, as

where p(z) is the latent variable prior, and p(xg | z, s) is the likelihood for gene g. We 
rely on variational autoencoders  (VAEs) to define the latent variable model. In this 
model, the prior is usually the standard normal, and the posterior distribution is approx-
imated using a variational approach, with the approximation parameterized by neural 
networks  [32, 74, 75]. Assuming access to such a model, testing H0,g requires replac-
ing the measurements for the feature g, with synthetic measurements that are condi-
tionally independent of y. To this end, we use the generative model to obtain K vectors 
X̃
(k)
g , k ≤ K  , containing synthetic counts for gene g for all the cells in a manner inde-

pendent of y. Here, superscripts in parentheses denote Monte Carlo samples. We then 
construct the overall gene expression for which gene g was randomized, as

With these two components, a p-value for H0,g with the CRT corresponds to the pro-
portion of random trials in which the importance score, when gene g is replaced with 
synthetic data, is not worse than the score obtained with the original data. It writes as

Valid inference for CRTs with latent variable models

Given a latent variable model, an intuitive way to generate synthetic samples X̃g is by inde-
pendent draws from the Gibbs distribution:

(3)p(x, z | s) = p(z)





G
�

g=1

p(xg | z, s)



,

(4)X̃(k) :=

[

X1 . . .Xg−1, X̃
(k)
g ,Xg+1, . . .XG

]T
, 1 ≤ k ≤ K .

(5)pg =
1

K + 1

(

1+

K
∑

k=1

I

(

T (X̃(k),Y , S) ≤ T (X,Y , S)
)

)

.

x̃ng ∼ pθ (x
n
g | xn−g , s) =

∫

p(xg | z)p(z | x
n
−g , s)dz.



Page 19 of 24Boyeau et al. Genome Biology          (2024) 25:294  

This choice, however, requires sampling from p(z | x−g , s) . In the context of VAEs, this 
requires training a separate model for every feature g, which is in most cases computa-
tionally prohibitive. Instead, VI-VS provides a fast and valid sampling alternative that 
still provides valid p-values. This is done by drawing fixed posterior sample of z. Here, 
for each cell n, we first sample one particle from z̄ ∼ q(z | xn) where q is the encoder 
network of the VAE. We then rely on the decoder network of the VAE to obtain syn-
thetic samples:

Note that in both cases the generative model does not have access to the value of y 
during sampling, The samples X̃(k) therefore reflect a hypothetical reality in which xg and 
y are conditionally independent. In Proposition  1 we demonstrate that both sampling 
schemes provide valid p-values for the CRT (proof in Additional file 1).

Proposition 1 (Valid sampling distributions for CRTs with latent variable models). 
Assume a latent variable model pθ (x, z | s) , factorizing as (3). Let X̃g = [x̃1g , . . . x̃

N
g ]

T be 
a vector of synthetic gene expression profiles generated using the latent variable model 
for gene g obtained using either of the two sampling schemes described above. Then, the 
p-values pg in Equation (5) have a distribution that stochastically dominates the uniform 
distribution when the null hypothesis H0,g holds. That is, pg is a valid p-value.

The entire procedure can therefore be summarized as follows:

Algorithm 1 Conditional randomization tests with VI-VS

VI-VS further corrects the obtained p-values pg using the Benjamini-Hochberg pro-
cedure [76] to control the false discovery rate (FDR), described in Additional file 1: Sup-
plement C1.

Cell‑specific scores Equation (5) quantifies the significance of the association between 
gene g and protein p; it does not, however, inform on which cell subpopulations may 
be most responsible for this association. For this purpose, we introduce the cell-specific 
score,

(6)x̃(k)g

iid
∼ pθ (xg | z = z̄, s), k ≤ K .

(7)sg (x, y, s) :=
1

K

[

K
∑

k=1

T (x̃(k), y, s)

]

− T (x, y, s),
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where x̃(k) denotes a randomized sample for the CRT. In other words, positive scores will 
highlight that randomizing the gene g in cell x increases the predictive loss, which may 
mean that this gene plays a relevant role in the prediction y for the considered cell.

Multi‑resolution hypothesis testing

Conditional dependence is a more stringent statistical notion than marginal depend-
ence. Consequently, applying conditional independence tests at the gene level may not 
yield many significant genes. This could be due to several factors, such as limited sample 
sizes or strong correlations between genes that make it challenging to reject the condi-
tional null.

In scenarios with small sample sizes it might prove challenging to detect a true positive 
gene if it heavily correlates with other genes in its cluster. However, it is easier to detect 
that one or more genes in the cluster are conditionally associated with the response, 
even if we cannot definitively identify which genes are responsible.

Therefore, following an approach introduced for genome-wide association studies [77], 
we test for conditional independence at multiple resolutions, ranging from broad groups 
of genes to the individual gene-level resolution, to avoid overlooking genes of interest.

To further illustrate how VI-VS behaves as correlation between features increases, we 
devised a simple simulation study, where a synthetic response Y is conditionally depend-
ent with one feature g, which itself correlates with another feature g ′ (Additional file 1: 
Figure  S7). Briefly, as the correlation between features increases, it is not possible to 
detect the conditionally dependent relationship between Y and g anymore. However, at a 
coarser resolution, the group of genes g and g ′ is still detected as conditionally depend-
ent with Y.

We will now explain how we (i) group genes together and (ii) test for conditional inde-
pendence of a group of genes.

Determining relevant clusters of genes Our goal is to group together features associated 
with the same biological functions. We assume that high correlations between features 
may indicate that they are associated with the same biological function. Consequently, 
we cluster genes based on their empirical correlation matrix. Any gene clustering algo-
rithm can be used in principle, e.g., [78]. We propose using a fast hierarchical clustering 
approach that is scalable to large datasets. This approach performs agglomerative clus-
tering based on the gene-by-gene empirical correlation matrix computed on the nor-
malized gene expression of the generative model, e.g., scVI [32]. More details about this 
procedure can be found in Additional file 1: Supplement D.2. At a specified resolution K, 
the clustering provides a partition M of all genes into K groups of genes A1, . . . ,AK .

Group conditional independence Next, we aim to determine whether a cluster of genes 
is significant. To formalize this, let A ∈ M denote a group of genes. We are interested in 
interactions of the form

(8)H
M
0,A : xA⊥⊥y | xAC ,
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where xA , xAC denote the gene expression vectors for the genes in sets A and its com-
plement AC , respectively. We test this null hypothesis using the same procedure as 
described above, with more details provided in Additional file  1: Supplement  D.2 and 
illustrated in Additional file 1: Figure S8. Specifically, we can test Eq. 8 by sampling from 
the same distribution as in Algorithm 1.

Faster inference using parallel computing

We implemented VI-VS in a fast and scalable way that is available as an open-source 
Python package. The scalability of this solution relies on two components. Our imple-
mentation first relies on parallel computing and just-in-time compilation components 
of Jax to speed up the inference, allowing us to efficiently compute the p-values for all 
genes. This practical choice offered a twofold speedup compared to a Pytorch back-
end (Additional file 1: Figure S9). The second key component is the fact that we have set 
up our algorithm to avoid fitting a model for each Monte Carlo sample, and instead, we 
only have to perform a forward pass of the pre-fit feature statistic. This computational 
ingredient improves the run time by orders of magnitude, thus improving scalability.
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