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Abstract 

The rapid advancement of spatial transcriptomics technologies has revolutionized 
our understanding of cell heterogeneity and intricate spatial structures within tissues 
and organs. However, the high dimensionality and noise in spatial transcriptomic data 
present significant challenges for downstream data analyses. Here, we develop Graph-
PCA, an interpretable and quasi-linear dimension reduction algorithm that leverages 
the strengths of graphical regularization and principal component analysis. Compre-
hensive evaluations on simulated and multi-resolution spatial transcriptomic datasets 
generated from various platforms demonstrate the capacity of GraphPCA to enhance 
downstream analysis tasks including spatial domain detection, denoising, and trajec-
tory inference compared to other state-of-the-art methods.
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Background
Spatial transcriptomics (ST) technologies have fundamentally reshaped the current 
research landscapes of cellular and molecular biology, and significantly deepened our 
understanding on cellular heterogeneity, gene expression-cellular microenvironment 
interaction, and spatial specificity of gene expression in complex tissues [1–4]. Unlike 
single cell RNA sequencing (scRNA-seq) which loses spatial information during cell 
dissociation [5–8], ST quantifies expression of single RNA molecules while preserving 
spatial location information through in  situ or spatial barcoding approaches [9]. Cur-
rently, there are two main types of ST techniques depending on the underlying experi-
mental protocols, i.e., imaging-based methods and next-generation sequencing-based 
(NGS-based) technologies. The first type of methods includes in situ hybridization (e.g., 
seqFISH [10, 11], MERFISH [12–14], osmFISH [15]) and in situ sequencing (STARmap 
[16] and FISSEQ [17]). These methods often provide finer cellular positional details 
(in single-cell or even subcellular resolution), but are limited to pre-selected encoding 

*Correspondence:   
xqzheng@shsmu.edu.cn

1 Center for Single-Cell Omics, 
School of Public Health, 
Shanghai Jiao Tong University 
School of Medicine, Shanghai, 
China
2 The Guangxi Key Laboratory 
of Intelligent Precision Medicine, 
Guangxi Zhuang Autonomous 
Region, Nanning, China
3 Institute of Natural 
Sciences, MOE-LSC, School 
of Mathematical Sciences, 
CMA-Shanghai, SJTU-Yale 
Joint Center for Biostatistics 
and Data Science, Shanghai Jiao 
Tong University and Shanghai 
Artificial Intelligence Laboratory, 
Shanghai, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03429-x&domain=pdf


Page 2 of 25Yang et al. Genome Biology          (2024) 25:287 

probes, and thus fail to cover genes on the whole transcriptome scale [18]. The second 
type of techniques encodes location information into transcripts and quantifies both 
gene expression and spatial information through massively parallel sequencing, with 
representative technologies of ST [19], 10X Genomics Visium [20], Slide-seq [21], Slide-
seqV2 [22], and Stereo-seq [23]. All these diverse technologies yield a data matrix that 
records the whole transcriptome expression levels at every spot, cell, or spatial pixel [3].

However, analyzing gene expression profiles obtained from various ST technologies 
faces enormous challenges due to the sparsity, ultra-high dimensionality, and low sig-
nal-to-noise ratio (SNR [24]) of the data matrix. Consequently, dimension reduction 
becomes a necessary preprocessing step to improve SNR and mitigate the curse-of-
dimensionality [24, 25]. It is also a critical step in the analysis of scRNA-seq data, often 
followed by key downstream tasks such as cell type identification [26–28], trajectory 
inference [29–31], and batch effect removal [32–35]. With the rise of ST technologies, 
most researchers directly apply dimension reduction methods developed for bulk or 
scRNA-seq data to ST data (Seurat [36], Scanpy [37], STUtility [38]). However, those 
methods may fall short in terms of the capability of fully exploiting the location infor-
mation in ST data, potentially leading to efficiency loss or even biased and erroneous 
results.

To overcome this limitation, dimension reduction methods crafted specifically for ST 
data have been proposed [39–41]. These methods typically assume that proximal spots 
exhibit similar gene expression patterns, such that the low-dimensional embedding can 
approximately preserve this spatial structure as much as possible. For instance, build-
ing upon the framework of probabilistic PCA, Shang and Zhou proposed SpatialPCA 
[39], which uses a kernel matrix to model the spatial correlation structure across loca-
tions. Also under the probabilistic PCA framework, DR-SC [40] integrates dimension 
reduction and clustering using a two-layer hierarchical Bayesian model, where the low-
dimensional latent variables in it are assumed to follow a Gaussian mixture distribution. 
Both methods utilized computationally intensive iterative procedures, i.e., maximum 
likelihood-based optimization in SpatialPCA and MCMC in DR-SC, to approximate 
the locally optimal solution. There are also some recent approaches using deep learn-
ing algorithms to learn a nonlinear, low-dimensional embedding of the ST data. For 
example, SpaGCN [42] uses graph convolutional network to integrate multi-modal data 
including gene expression, spatial location of spots/cells, and histology data. STAGATE 
[43] obtains spatial representation of spots by a graph attention auto-encoder guided by 
a spatial neighbor network and cell type-aware network. However, deep learning-based 
methods suffer from lack of interpretability, high computational complexity in model 
training, and difficulty in tuning a large number of hyperparameters.

In this study, we develop GraphPCA, a novel graph-constrained, interpretable, and 
quasi-linear dimension-reduction algorithm tailored for ST data. GraphPCA learns the 
low-dimensional representation of ST data based on PCA with minimum reconstruc-
tion error, by incorporating spatial location information as constraints in the recon-
struction step. By increasing the importance of the spatial network constraints, adjacent 
spots in the original dataset are more inclined to be positioned in nearby points in the 
low-dimensional embedding space. More importantly, the computationally efficient 
close-form solution of GraphPCA allows rapid embedding of massive single-cell or even 
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subcellular resolution spatial transcriptomic data generated from techniques including 
Slide-seq and Stereo-seq. Finally, we demonstrate the superiority of GraphPCA over 
competing methods, i.e., PCA, NMF, SpaGCN, BayesSpace [44], DR-SC, SpatialPCA, 
and STAGATE, through comprehensive synthetic experiments and real spatial tran-
scriptomic data with a variety of resolutions, species, and tissue states.

Results
Overview of GraphPCA

Here, we developed GraphPCA, an interpretable and quasi-linear statistical algo-
rithm for dimension reduction of spatial transcriptomics data (Fig.  1a, see “Methods” 
for details). Building upon the flexible PCA framework, GraphPCA enables the low-
dimensional embeddings to effectively preserve location information by leveraging spa-
tial neighborhood structure between spots/cells as graph constraints. The input data for 
GraphPCA includes a gene expression matrix along with spatial coordinates of spots, 
which are utilized to construct a spatial neighborhood graph ( k NN graph by default 
[45]). In contrast to the classical PCA, GraphPCA infers an embedding matrix integrat-
ing both spatial location and gene expression information by solving an optimization 
problem with constraints determined by the constructed spatial neighborhood graph. In 
particular, we incorporated the constraints by introducing a penalty term (Fig. 1a, mid-
dle panel), with penalty strength controlled by a tunable hyperparameter λ. By design, 
the resulted constrained penalized optimization problem has a closed-form solution. 
As a consequence, GraphPCA can process ST data efficiently at vastly different scales. 
The low-dimensional spatial embeddings inferred by GraphPCA can be readily utilized 
for various downstream analysis tasks including spatial domain detection, visualization, 
denoising, and trajectory inference (Fig. 1a, right panel).

Synthetic experiments

To comprehensively evaluate the performance of GraphPCA and other competing 
algorithms, we generated a series of simulated data using scDesign3 [46]. With simu-
lated datasets, one could use curated spatial domain labels as ground truth to evalu-
ate the accuracy of the clustering results. Specifically, we downloaded the anatomical 
structure of mouse brain sagittal from the Allen Brain Atlas [47] as ground truth layer 
labels (Fig.  1b) and used scDesign3 to simulate gene expression data (see “Methods” 
for details). We compared GraphPCA with four popular algorithms for ST dimension 
reduction (PCA, NMF, DR-SC, and SpatialPCA) and three algorithms for spatial domain 
detection (SpaGCN, STAGATE, and BayesSpace). Clustering performance was evalu-
ated using the adjusted Rand index (ARI [48]), normalized mutual information (NMI 
[49]), and homogeneity score (HS [50]).

We first examined the impact of the hyperparameter � on spatial domain detection. 
By increasing � from 0 to 1 with a step size of 0.01 across four synthetic datasets, we 
first observed an overall improvement in ARI as � increases (Fig. 1c). This suggests that 
the integration of proper location information enhances spatial domain detection, with 
a larger graph constraint resulting in smoother and more contiguous clustering output 
(Additional file 1: Figs. S1–2). However, excessively large � leads to the spatial constraints 
dominating the dimension reduction objective and results in deteriorated performance. 
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Based on the empirical observations from the synthetic experiments, we recommend 
choosing � between 0.2 and 0.8 (default 0.3 unless stated otherwise) for tissue samples 
with evident spatial layered structure. Compared to other methods, GraphPCA dem-
onstrates superior performance on the synthetic data (median ARI: 0.784), outper-
forming algorithms considering spatial information such as PCA (median ARI: 0.556) 
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Fig. 1 Workflow of GraphPCA and synthetic experiments validation. a GraphPCA is a novel 
graph-constrained, interpretable, and quasi-linear dimension-reduction method tailored for ST data. It 
begins with input data including gene expression matrix X along with spatial coordinates S of spots. It first 
constructs a spatial neighborhood graph G using the spatial coordinates S and sets the graph constraint 
parameter � to characterize the spatial relationships and dependences in the low-dimensional embedding 
Z. Subsequently, GraphPCA infers the embedding matrix Z by integrating both spatial location S and gene 
expression information X by solving a non-convex optimization problem with graph constraints. The output 
of GraphPCA can be readily utilized for various downstream analysis tasks including spatial domain detection, 
trajectory inference, and denoising. b In simulation, we obtained the anatomical structure of mouse brain 
sagittal from the Allen Brain Atlas as ground truth layer labels and simulated ST data using scDesign3. c 
Clustering accuracies of GraphPCA on simulated datasets across varying values of the graph constraint 
parameter � (x-axis). d Clustering accuracies of different methods on simulated data. Error bars indicate 95% 
confidence intervals across 20 replicates. e The robustness of GraphPCA and other methods under varying 
simulation scenarios including different sequencing depths, noise levels, spot sparsity, and expression 
dropout rates. For each scenario and method, dots represent the mean ARI calculated across 20 replicates
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and NMF (median ARI: 0.185) across all metrics (Fig.  1d, Additional file  1: Fig. S3a). 
Methods incorporating spatial information (DR-SC and SpatialPCA) and deep learning-
based algorithms (SpaGCN and STAGATE) also achieve comparable clustering results, 
but exhibit relatively high variabilities (standard deviations across 4 replicates are 0.040, 
0.053, 0.088, 0.071, and 0.044 for GraphPCA, DR-SC, SpatialPCA, SpaGCN, and STA-
GATE, respectively).

Next, we evaluated the robustness of GraphPCA under varying simulation scenarios 
including different sequencing depths, noise levels, spot sparsity, and expression drop-
out rates (Fig.  1e, Additional file  1: Fig. S3b). For sequencing depths, we down-sam-
pled the simulated count matrix from 100 to 10% of the original depth and found that 
GraphPCA consistently outperformed other competing methods even with only 10% of 
the original sequencing depth (Fig. 1e, first column). By introducing different levels of 
Gaussian white noises with increased standard deviations to the raw data, GraphPCA 
performs consistently well despite the increasing SNR, demonstrating the robustness of 
GraphPCA to noise. In contrast, ST-tailored algorithms such as SpaGCN, DR-SC, and 
BayesSpace eventually fail to cluster cells correctly under low SNRs (Fig. 1e, second col-
umn). For spot sparsity, we randomly removed a fraction of spots to increase sparsity 
of the data (from 10 to 90%) and found that both GraphPCA and BayesSpace sustain 
relatively high performance under all sparsity ratios (Fig. 1e, third column). To examine 
the impact of expression dropout, we randomly set the expressions of a fraction of genes 
(from 10 to 90% of all genes) to 0 and found that GraphPCA still maintains high ARIs 
even at a dropout rate of 60% (Fig. 1e, fourth column). In summary, GraphPCA exhib-
its superior accuracy and robustness in clustering performance across all four scenarios 
compared to competing methods.

Human dorsolateral prefrontal cortex data by Visium

We next assessed the clustering performance of GraphPCA against competing meth-
ods using real ST data with expert pathological annotations. These datasets encompass 
various sequencing technologies, resolutions, species, and tissue states. We first evalu-
ated GraphPCA on the human dorsolateral prefrontal cortex data (DLPFC) obtained 
from the 10X Visium platform [51]. This dataset comprises twelve tissue sections from 
three adult donors, with a median depth of 291 million reads per sample. Each tissue 
section has a median of 3844 spots (Additional file  1: Table  S1), and on average 1734 
genes are recorded per spot. As an example, the slice 151673 assays 3639 spots across 
33,538 genes, and each spot is annotated into one of six neuronal layers or white matter. 
We compared GraphPCA with other methods, using the true number of spatial domains 
and the same 3000 spatially variable genes (SVGs) identified by SPARK [52] as input.

As expected, dimension reduction algorithms that do not consider spatial information, 
i.e., PCA and NMF, fail to distinguish distinct layers of cortex, thus resulting in poor 
clustering accuracies (PCA: ARI 0.290, NMF: ARI 0.235) (Fig.  2a). Although incorpo-
rating additional histological imaging data as input, SpaGCN fails to accurately recover 
cortical layers 3–6. BayesSpace does not capture the boundary between white matter 
and layer 6 correctly. DR-SC identifies cortical layers that roughly match manual annota-
tions in shape but display discrepancies in thickness, and a few spots adjacent to white 
matter are erroneously identified as layer 1 (Fig. 2a). In contrast, GraphPCA, STAGATE, 
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and SpatialPCA effectively delineate cortical layers and accurately recover layer bounda-
ries. GraphPCA achieves superior performance among compared methods, as indicated 
by higher ARI, NMI, and HS scores (0.536, 0.689, and 0.706, respectively), which nearly 
double those by space-unaware methods (PCA: ARI 0.290, NMI 0.452, HS 0.456; NMF: 
ARI 0.235, NMI 0.292, HS 0.287). Sensitivity analysis indicates that GraphPCA obtains 
stable spatial domain detection accuracy over varying numbers of SVGs for DLPFC data 
(Additional file  1: Fig. S4). While STAGATE (ARI 0.576) and SpatialPCA (ARI 0.561) 
obtain slightly higher ARI, they are significantly more time-consuming due to employ-
ing the iterative optimization procedures (Fig.  2c). More importantly, GraphPCA has 
the distinct advantage of providing an analytic solution, making it more interpretable 
and robust compared to deep learning-based algorithms like SpaGCN and STAGATE. 
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Similar results are also observed in other sections of the DLPFC data (Fig. 2b, Additional 
file 1: Fig. S5).

We then performed UMAP visualization of low-dimensional embeddings generated 
by each method. It is shown that different spatial domains inferred by GraphPCA are 
clearly separated, with their relative orders and global arrangements aligned well with 
histological images (Fig. 2d, Additional file 1: Fig. S6). This observation suggests that the 
GraphPCA approach effectively captures the local structure and relative positioning of 
the cells in the embedding space, which helps provide valuable insights into the spatial 
organization of the tissue. In contrast, spots associated with different layers are inter-
mixed in UMAP by methods without explicitly considering spatial constraints (Fig. 2d, 
Additional file 1: Fig. S6). We next examined the impact of the number of principle com-
ponents (PCs) on the clustering accuracy. Since GraphPCA provides a globally optimal 
solution without relying on iterative procedures and random initial values, it exhibits 
more stable clustering results across different numbers of PCs in terms of both ARI and 
McFadden-adjusted pseudo-R2 (Fig.  2e, Additional file  1: Fig. S7). In contrast, NMF, 
SpaGCN, STAGATE, DR-SC, and SpatialPCA exhibit larger variabilities in clustering 
accuracies, indicating their high sensitivity to the embedding dimension and param-
eter initialization. Additionally, the seven spatial domains identified by GraphPCA are 
enriched with layer-specific marker genes reported previously [51] (Fig. 2f, Additional 
file 1: Fig. S8). We also performed gene set enrichment analysis (GSEA) to identify sig-
nificant pathways that are highly enriched in each layer based on these layer-specific 
genes. The enriched pathways include neuron projection, cytoplasmic translation, and 
synapse-related, which represent common and crucial transcriptional programs under-
lying cortical development and maturation (Additional file  1: Fig. S9). Further analy-
sis on the top PCs by GraphPCA reveals associations with spatial expression patterns 
of white matter, layer 3, and layer 4 (Additional file  1: Fig. S10a). The top 5 weighted 
genes by absolute values in each PC exhibit consistent spatial patterns, validating that 
the extracted patterns represent co-expression modules in corresponding regions (Addi-
tional file  1: Fig. S10b–d). Trajectory analysis by GraphPCA identifies an inward-out-
ward spatial trajectory from white matter to cortical layers (Fig. 2g, Additional file 1: Fig. 
S11a), which agrees with previous studies that new neurons are generated in the ven-
tricular zone and migrate outwards along radial glial fibers to integrate into existing lay-
ers [53, 54]. In contrast, the trajectory patterns produced by PCA, SpaGCN, STAGATE, 
and DR-SC appear to be random, failing to capture coordinated spatial-gene expression 
relationships (Additional file 1: Fig. S11b, c).

Mouse medial prefrontal cortex data by STARmap

Next, we applied GraphPCA to the high-resolution image-based ST data, specifically the 
mouse medial prefrontal cortex (mPFC) data generated by STARmap [16]. This data-
set consists of 1049 cells measured across 166 genes, providing single-cell resolution for 
each spot. The mPFC is a vital cognitive control region that potentially involved in anxi-
ety and fear regulation in human and mouse, and previous studies have divided into four 
laminar domains, i.e., L1, L2/3, L5, and L6 (Fig. 3a). We downloaded cell-type annota-
tion of each spot from the original paper [16] and domain-level annotation in [55] as 
ground truth to evaluate clustering performance (Fig. 3b, g).
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We first performed dimension reduction on the expression data and examined 
their ability to recover the spatial domain structure. As anticipated, GraphPCA 
accurately identifies four spatial domains, closely matching the ground truth and 
achieving the highest clustering scores (ARI: 0.886; NMI: 0.85; HS: 0.848) (Fig. 3c, d, 
Additional file 1: Fig. S12). The high performance of our method is consistent across 
different numbers of input low-dimensional components, as evidenced by ARI 
and McFadden-adjusted pseudo-R2 metrics (Additional file  1: Fig. S12d). In con-
trast, clustering results reveal that PCA, NMF, SpaGCN, BayesSpace, and Spatial-
PCA struggle to effectively distinguish cortical layers L2/3 and L5, while incorrectly 
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under default parameters. g Annotated cell type labels for the mPFC data are available from the original 
study. h Barplots illustrating cell type clustering ARI by different methods on the mPFC data. i Spatial 
composition of cell types identified by different methods. Excitatory neurons: eL2/3, L5-1, eL5-2, eL5-3, eL6-1, 
and eL6-2; inhibitory neurons: Reln, VIP, SST, NPY, and Lhx6; Oligo: oligodendrocytes; Smc: smooth muscle 
cells; Astro: astrocytes; Endo: endothelia cells; Mixed: group of cells expressing marker genes associated with 
multiple cell types; and Unidentified: cells with no clear marker gene expression. j Cell type identification 
results by GraphPCA and other methods. Top: barplots displaying the number of cell types identified by each 
method. Bottom: heatmap showing correlations between estimated cell type proportions from each method 
and the ground truth
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identifying layer L1 as a discrete structure in space. Although DR-SC yields relatively 
compact clusters, it fails to identify L2/3 (Fig.  3e). STAGATE misidentified a few 
spots of layer L6 as layers L1 and L5 (Additional file 1: Fig. S12a). The precise layer 
detected by GraphPCA allows us to identify layer-specific marker genes. We then 
performed differential gene expression analysis and revealed known layer marker 
genes including Bgn (L1), Cux2 (L2/3), Tcerg1l (L5), and Pcp4 (L6) (Additional file 1: 
Fig. S13). Furthermore, GraphPCA takes the least runtime, even surpassing PCA, 
making it highly scalable for the incoming large-scale data (Additional file  1: Fig. 
S12c). Finally, trajectory inference using top PCs obtained from different dimension 
reduction methods indicates that GraphPCA correctly identifies a path from L1 to 
L6, aligned well with known cortical development, while other methods fail to do so 
(Fig. 3f, Additional file 1: Fig. S14).

We next performed cell type clustering on the same dataset, in which every cell is 
annotated as one of the 15 types including excitatory neurons: eL2/3, L5-1, eL5-2, 
eL5-3, eL6-1, and eL6-2; inhibitory neurons: Reln, VIP, SST, NPY, and Lhx6; Oligo: 
oligodendrocytes; Smc: smooth muscle cells; Astro: astrocytes; and Endo: endothelia 
cells (Fig. 3g). We compared GraphPCA with two popular cell type clustering meth-
ods for scRNA data (Seurat [36] and SC3 [56]) and two methods designed for single-
cell resolution ST data (BASS [55] and FICT [57]). To obtain the clustering results in 
cellular level, we reduced the graph regularization strength of GraphPCA to increase 
the clustering resolution ( � = 0.2, parameter settings for different datasets and anal-
ysis tasks are listed as Additional file 1: Table S2). GraphPCA achieves the best clus-
tering performance (ARI: 0.436), surpassing other methods (Seurat: 0.29; SC3: 0.225; 
BASS: 0.414; and FICT: 0.245) when the true number of cell types is specified in 
the subsequent K-means clustering (Fig. 3h). Similar conclusions can be drawn when 
evaluated by NMI and HS (Additional file 1: Fig. S15b).

Then, we analyzed the spatial distribution of cell types identified by various meth-
ods (Fig. 3i). GraphPCA successfully detects the known enriched cell types in their 
corresponding layers, such as Smc and Endo cells in L1, eL2/3 cells in L2/3, eL5-3 
and L5-1 cells in L5, and eL6-1 and eL6-2 cells in L6. It accurately distinguishes the 
excitatory neurons at layer 6 (eL6) into two subtypes (eL6a and eL6b) and identi-
fies inhibitory neurons VIP and its subtype Lhx6 with clear marker gene expression. 
Overall, GraphPCA identifies the highest number of correct cell types, while other 
methods produce multiple unidentified cell clusters without known marker genes, 
or mixed cell clusters with ambiguous marker gene expressions (Fig. 3j, Additional 
file 1: Figs. S16–23). In summary, the embeddings derived by GraphPCA effectively 
capture cell-identity differences at both domain and cell-type levels (Additional 
file 1: Figs. S24, 25).

We next extended the application to other NGS-based ST technologies with sub-
cellular resolution. Based on the Slide-seq data of mouse cerebellum [21] and Slide-
seqV2 data of mouse hippocampus [22], GraphPCA demonstrates superior clarity 
and continuity in representing the Purkinje layer in the cerebellum data (Additional 
file  1: Fig. S26). For the hippocampus data comprising expression of 23,264 genes 
in 53,208 spots, GraphPCA clearly represents the hippocampus, dentate gyrus, and 
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CA1 and CA3 layers, which are not clearly defined by other methods (Additional 
file 1: Fig. S27).

Murine liver data by 10X Visium

To validate the performance of GraphPCA on more complex tissues, we next applied 
it to the murine liver data generated by 10X Visium [58], which consists of 1293 cells 
measured across 31,053 genes. The murine liver is a heterogeneous tissue composed of 
hexagonal lobules that are radially polarized by blood flow and morphogens [59, 60]. As 
blood flows directionally toward the central vein, hepatocytes take up oxygen and nutri-
ents, metabolize hormones, and create a gradient along the periportal-pericentral axis 
known as “liver zonation” [60–62] (Fig.  4a). According to the zonation annotation by 
Guilliams et al. [58], the murine liver lobule can be divided into four zones, i.e., central 
vein, mid zone, periportal zone, and portal vein (Fig. 4b).

We first performed dimension reduction and spatial domain detection using dif-
ferent methods on the murine liver data. GraphPCA accurately identifies each zone 
along the lobular axis in the correct sequential order: portal vein, periportal zone, 
mid zone, and central vein (Fig. 4c). However, other space-aware methods struggle 
to identify the portal vein within the periportal zone (Fig. 4d, Additional file 1: Fig. 
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S28a). For instance, STAGATE and SpatialPCA misclassify the portal zone as part 
of the periportal zone, while BayesSpace produces overly smoothed results, leading 
to the emergence of two dominant clusters and failing to recognize the characteris-
tic zones of the hepatic lobule. Overall, GraphPCA achieves the highest clustering 
performance (ARI: 0.622), which is at least 10% higher than those by other meth-
ods (PCA: 0.504; NMF: 0.027; SpaGCN: 0.413; STAGATE: 0.382; BayesSpace: 0.204; 
DR-SC: 0.22; and SpatialPCA: 0.207) (Fig. 4e).

Then, we selected the distinct zonal layers of the hepatic lobule in the tissue 
regions that were accurately detected by GraphPCA and performed differential 
expression analysis to identify zonation marker genes (Fig. 4f, Additional file 1: Fig. 
S29). The identified layers by GraphPCA are enriched with known marker genes 
(portal vein: Gpx3, Tmsb10, Gsn; central vein: Cyp2e1, Mup17, Mgst1) [59]. In par-
ticular, Gpx3 is an antioxidant enzyme that plays a crucial role in protecting cells 
from oxidative stress by reducing hydrogen peroxide and lipid peroxides [63–65]. 
Cyp2e1 is a member of the cytochrome P450 family involved in xenobiotic metabo-
lism [66–68]. We noticed that Cyp2e1, Mup17, and Mgst1 are not detectable near 
annotated portal veins, whereas Cyp2f2, Alb, and Spp1 show high expression levels 
near the portal vein, with no signals in the central vein. Additionally, we visualized 
the spatial expression of zonation marker genes identified by GraphPCA for each 
zone (Fig.  4g), revealing a pronounced expression gradient along the lobular axis, 
consistent with a previous study [59].

We next performed GSEA to identify significant pathways that are significantly 
enriched in each layer based on these layer-specific genes (Additional file  1: Fig. 
S30). Pathway analysis of the portal vein marker genes reveals the strongest enrich-
ment in genes associated with the process of “collagen-containing extracellular 
matrix.” This pathway not only provides essential physical scaffolding for cellular 
constituents but also initiates crucial biochemical and biomechanical cues neces-
sary for tissue morphogenesis, differentiation, and homeostasis [69, 70]. Pathways 
related to antigen processing and presentation, specifically the “MHC class II pro-
tein complex” and “multivesicular body,” are also highly enriched within the portal 
vein, highlighting their role in influencing immune recognition and response [71]. 
In contrast, pathways “peroxisomes” and “microbodies” are associated with the cen-
tral vein, underscoring their importance in maintaining the metabolic functions of 
hepatic tissue [72].

Finally, we performed trajectory inference by using top PCs obtained from differ-
ent dimension reduction methods to identify one trajectory per method from portal 
vein to central vein (Fig. 4h, Additional file 1: Fig. S31). Specifically, GraphPCA cap-
tures the well-known spatial pattern of hepatocyte differentiation along the lobular 
axis [59, 73, 74]. As hepatocytes differentiate from the portal vein, they are gradually 
exposed to higher levels of oxygen, nutrients, and metabolites, creating a differentia-
tion gradient that reflects the physiological maturation of hepatocytes in response 
to blood flow [60, 61, 74–76]. In contrast, the trajectories inferred from other space-
aware methods appear to be random, with pseudo-time values intermingled across 
layers (Additional file 1: Fig. S31).
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Taken together, the low-dimensional representation obtained from GraphPCA is 
accurate and robust in analyzing heterogeneous murine liver sample, enabling the 
exploration of transcriptional and functional heterogeneity across zones along the 
lobular axis between the portal and central veins.

Denoising gene expression profiles for deciphering gene spatial patterns

Leveraging the interpretability inherent in the PCA-based framework, GraphPCA is also 
capable of reconstructing the gene expression matrix from low-dimensional embeddings 
and projection vectors, thereby achieving denoising of the original expression data (see 
“Methods” for details). In this part, we aimed to unveil intrinsic spatial gene expression 
patterns in denoised DLPFC data using GraphPCA.

We conducted a comparative analysis involving GraphPCA and Sprod, state-of-the-art 
denoising methods for ST data. Specifically, we examined layer-marker genes of six corti-
cal layers in sample 151673, as selected by Maynard et al. [51], and analyzed their spatial 
expression patterns before and after denoising by two methods (Fig. 5a). For both methods, 
the spatial expression of each layer-marker gene is revealed, with high expression regions 
matching the corresponding layers compared with raw data. Notably, in GraphPCA-
denoised data, LAMP5 and NTNG2, marker genes for temporal and visual cortices, respec-
tively, exhibit differential expression between layers 5 and 6, which is obscured in the raw 
data. While Sprod also recovers these spatial patterns, gene expression signals are subtle, 
lacking sufficient differential expression between layers. We further assessed the quality 
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of the denoised data by two methods, as well as the raw data, measured by quantitative 
metrics including log fold change and log adjusted p values of known layer marker genes. 
GraphPCA achieves better performance compared to Sprod as indicated by higher log fold 
changes and negative log adjusted p values (Additional file 1: Fig. S32). In summary, Graph-
PCA improves the detection of spatial patterns and inter-layer expression differences of 
layer-marker genes (Fig. 5b), demonstrating its utility in denoising and elucidating intrinsic 
spatial gene expression patterns.

Integrating multiple ST datasets improves the performance of downstream analyses

As illustrated in previous sections, analysis based on single ST datasets can be inaccu-
rate due to the high level of noise. In addition to denoising, another alternative strategy to 
enhance the signal is integrating multiple slices from the same sample or tissue type [55, 
77]. To enable this function, we further designed GraphPCA_multi, a multi-sample exten-
sion of GraphPCA through aggregating multiple spatial neighborhood graphs and expres-
sion profiles into one matrix. The low-dimensional embedding per sample can be derived 
by optimizing the overall objective function across all samples (see “Methods” for details).

To validate the capability of our multi-sample integration model, we applied GraphPCA_
multi to aggregate slice 151674 with three adjacent sections (slices 151673, 151675, 151676) 
and re-detected spatial domains using the joint embeddings. Clustering performance for 
slice 151674 significantly improves (ARI increased from 0.38 to 0.54), and the deteriorated 
pattern of layers 3 and 4 in single-slice estimation is recovered (Fig. 6a). Taking all sam-
ples, GraphPCA_multi outperforms single-sample analysis in terms of ARI (Fig. 6b) and 
surpasses state-of-the-art ST data integrating tools, BASSMult (a multi-sample version 
of BASS [55]) and STAligner [77] for most samples (Fig. 6c, Additional file 1: Fig. S33). In 
addition, GraphPCA_multi also achieves the lowest running time while exhibiting lower 
variance across DLPFC slices compared to BASSMult.

Next, we examined the performance of GraphPCA_multi in integrating samples from the 
same tissue type, not necessarily adjacent slides or from the same sample. To achieve this, 
besides the BZ5 sample used in pervious analyses, we obtained two additional tissue sec-
tions BZ9 and BZ14 generated by STARmap from different mice. Cells in all sections are 
annotated into four cortical layers (L1, L2/3, L5, and L6) according to the original publi-
cation [16]. As observed, GraphPCA_multi achieves superior spatial domain identification 
versus BASSMult and STAligner across all three sections. In detail, the four layers identified 
by GraphPCA_multi closely match the manual annotation in terms of tissue boundaries 
and thickness (Fig. 6d). In UMAP visualization using the top PCs from GraphPCA_multi, 
three tissue sections are evenly mixed (Fig. 6e), while different layers are clearly separated 
(Fig. 6f), indicating its potential in batch effect removal. Notably, this segregation accords 
with the functional similarity of adjacent layers and developmental trajectories. Similar to 
the DLPFC, the captured trajectory pattern reflected the developmental process of cor-
tical layers, transitioning from existing layers to newer ones (from L1 to L6). In contrast, 
STAligner arranges cells in concentric clusters rather than matching organ developmental 
trajectory (Fig. 6f). These results validate the efficiency of GraphPCA_multi in integrating 
multiple samples to enable more accurate biological discovery.
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Discussion
In this study, we presented GraphPCA, a novel dimension-reduction method tailored 
for ST data by combining the strengths of graphical constraint and PCA-based frame-
work. By leveraging the graphical constraint, GraphPCA ensures that projections of 
adjacent spots are closer in the low-dimensional space. Each embedding dimension is 
highly associated with specific spatial gene expression patterns, enabling the gene-com-
ponent projection matrix to reflect the differential spatial distribution of co-expressed 
gene modules. Through extensive simulations and validations on real datasets, we 
demonstrated that the low-dimensional embeddings by GraphPCA can enhance per-
formance of downstream analyses including spatial domain detection, trajectory infer-
ence, and denoising. The model flexibility of GraphPCA allows us to easily extend it for 
multi-sample integration, which further improves clustering accuracy by incorporat-
ing gene expression information from other slices. Importantly, the closed-form solu-
tion exploited in GraphPCA ensures great computational efficiency compared to deep 
learning-based approaches, madding it easily scalable to the escalating throughput of 
emerging spatial transcriptomic assays (e.g., Stereo-seq, Slide-seqV2) that involve tens of 
thousands of spots.

The hyperparameter � in GraphPCA balances the relative importance of reconstruc-
tion error in dimensionality reduction and the spatial constraints, and thus a proper 
value of � is critical. When � = 0, GraphPCA reduces to the typical PCA; as � increases, 
GraphPCA embeddings incorporate more spatial information, but excessively large � 
may lead to less informative embeddings dominated by the spatial constraints. There-
fore, we thus suggest that users try different values of � to evaluate the consistency of 
the clustering results, and carefully check if the results are biologically plausible with 
background knowledge in downstream data analyses. In practical applications, it is also 
helpful to generate multiple embeddings across a range of � and integrate all outcomes 
to improve robustness for downstream analyses. Other than spatial locations, the spot 
similarity network based on gene expression or H&E image has not been incorporated. 
In theory, we could impose different � to adjust for other spatial-related constraints, in 
such case, our model still has a closed-form solution (see “Methods” for details). The 
preliminary result indicates that integrating both spatial location and gene expression 
data provides a modest clustering performance boost over the spatial position-only 
model on the mPFC data (Additional file 1: Fig. S34).

The construction of spot neighborhood graph is another pivotal factor determining the 
quality of the low-dimensional embedding. We primarily considered k-nearest neighbor 
( k NN) graphs based on the Euclidean distance, while the GraphPCA package also pro-
vides various other metrics to construct spatial neighborhood graph of spots/cells based 
on spatial coordinate information (e.g., circular-neighborhood graph (CG), Delaunay tri-
angulation graph (DTG) [78], and shared nearest neighbor graph (SNN) [79], see “Meth-
ods” for details). For 10X Genomics Visium and Stereo-seq that exhibit grid-like spot 
arrangement patterns, these spatial graph construction methods can be made equiva-
lent when setting tuning parameters to certain values. But for single-cell resolution ST 
techniques such as STARmap and MERFISH, different methods may produce differ-
ent spatial neighborhood graphs and thus different low-dimensional embeddings. We 
also tested different spatial graph construction methods as well as their corresponding 
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hyperparameters on the performance of our method based on 10X Genomics Visium 
and single-cell resolution STARmap data (Additional file 1: Fig. S35). We could observe 
a clear improvement in clustering accuracies as the connectivity of spatial graphs 
increased (more neighbors in k NN and SNN and larger radius in circular-neighborhood 
graph), which suggests the important contribution of graphical constraints in enabling 
accurate spatial domain detection. However, excessively large spatial graphs can also be 
detrimental, as they may produce over-smoothed domain detection results (Additional 
file 1: Fig. S36).

Conclusions
In conclusion, we proposed an interpretable and quasi-linear dimension reduction algo-
rithm, GraphPCA, that efficiently captures the biological signal from ST data. This scal-
able and extensible framework facilitates the learning of low-dimensional embeddings 
while integrating gene expression with spatial location, thereby enabling various down-
stream analyses. Through combining graph representation learning and the PCA frame-
work, GraphPCA retains the advantage of linear embedding while capturing nonlinear 
spatial information underlying the tissue architecture. In the future, we plan to explore 
the adaptability of GraphPCA to other spatial techniques, such as the emergent spatially 
resolved proteomics, epigenomic, and metabolomic data, with the potential to unveil 
novel biological insights into the spatial orchestration of these crucial omics layers.

Methods
Data preprocessing

GraphPCA takes the gene expression matrix and spatial coordinate information from 
spatial transcriptomics data as input. Let X be an n×m gene expression matrix, where 
xij denotes the expression of the j th gene on the i th spot, i = 1, · · · , n , j = 1, · · · ,m . 
The spatial coordinates of individual spots are denoted as S = (s1, . . . , sn)

⊺, si ∈ R2/R3 . 
Before performing GraphPCA, we assumed that the gene expression counts have already 
been preprocessed with analytic Pearson residuals proposed by Lause et  al. [80] and 
further scaled for each gene to have zero mean and unit standard deviation. Then, we 
selected the top 3000 spatial variable genes using SPARK package.

Construction of spatial neighborhood graph

Under the assumption that spots in close spatial proximity often exhibit similar gene 
expression patterns, we constructed a sparse spatial neighborhood graph to capture the 
complex spatial interactions based on the spatial coordinate information S . By default, 
an undirected graph is built by employing the k-nearest neighbor ( kNN) algorithm 
based on Euclidean distance, where k is the number of neighbors. Then, a sparse adja-
cent matrix A based on kNN graph can be calculated as:

where N (i) represents the set of neighbors of spot i . To characterize distinct spatial 
distributions of spots across datasets, GraphPCA also accommodates other spatial 

Aij =
1, j ∈ N (i),
0, otherwise,
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neighborhood graph construction approaches such as SNN graph, circular-neighbor-
hood graph, and Delaunay triangulation [81].

Simulation design

We conducted a series of simulations to comprehensively evaluate the performance of 
GraphPCA and other dimension reduction and spatial domain detection algorithms. 
To achieve this, we downloaded mouse brain sagittal datasets from 10X Genomics and 
obtained the anatomical structure of the mouse brain sagittal from the Allen Brain Atlas 
as ground truth layer labels.

We utilized scDesign3, a multi-omics data simulator based on the generalized additive 
model for location, scale, and shape (GAMLSS), to generate the simulated gene expres-
sion matrix. scDesign3 models the joint distribution of multiple genes using the mar-
ginal distributions of individual genes, enabling precise capture of data properties and 
gene expression heterogeneity. In detail, we selected the top 3000 SVGs for each real 
dataset by SPARK and then generated simulated data by scDesign3 using the filtered 
gene expression matrix and layer labels as inputs, with the Gaussian process smoother 
parameter K = 300. Based on the simulated data, we established four scenarios to evalu-
ate the robustness of GraphPCA and other dimension reduction algorithms with vary-
ing sequencing depths, noise levels, spot sparsity, and expression dropout rates. Spatial 
domain detection performance of each method was then evaluated using adjusted Rand 
index (ARI), normalized mutual information (NMI), and homogeneity score (HS).

GraphPCA model

The GraphPCA model aims to reduce the dimensionality of the gene expression data 
X while incorporating graph regularization constraints on the low-dimensional embed-
ding. We first recalled the classical PCA, which strives to find a k-dimensional projec-
tions Z ∈ Rn×k , which minimizes the reconstruction error of gene expression matrix X . 
The variational formulation of PCA is given as follows:

where W  is an orthonormal eigenvector matrix. This is an optimization problem that 
can be addressed via the Lagrange multiplier method. The analytical solution to the 
optimization problem is Z = XW  , where W  represents the top k eigenvectors of X⊺X , 
where k is the dimensionality of Z . To ensure the low-dimensional embeddings retain 
spot location information, a natural idea is to impose graph-based constraints so that 
physically proximate spots have similar projections. Therefore, we considered the fol-
lowing objective function:

where � is a hyperparameter that balances reconstruction error and the smoothness 
of the projections over the graph. When � = 0 , the GraphPCA degenerates to classical 
PCA. We noted that the first term along with the constraint, corresponds to the objec-
tive of the standard PCA, and the second term is a graph regularization that encourages 

(1)min
Z,W

||X − ZW ⊺||22, s.t.W
⊺W = I ,

(2)min
Z,W

||X − ZW ⊺||22 +
1

2
�

∑
{i,j∈A}

Aij||Zi − Zj||
2
2, s.t.W

⊺W = I ,
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nearby spot pairs in the graph to have similar projections. The above objective function 
can be rewritten as

where L = D − A is the Laplacian matrix of the spatial neighborhood graph, and D is 
the diagonal matrix of graph A . Similar to PCA, the objective function is also non-con-
vex, but we could still derive an analytical solution via the Lagrange multiplier method 
to solve the Z and W  (see Additional file 1: Supplementary Material for details). Let J  
denote the objective function as given in Eq. (3). We can derive the optimal solution by 
setting the derivative of J  with respect to Z to be zero. Since.

Thus, the derivative equals to zero if and only if Z∗ = (I + �L)−1XW  . To simplify the 
notation, we denoted

which is a symmetric and positive definite matrix. Then, we substituted Z in objective J  
with Z∗ = KXW  and reduced the optimization problem as

Equation (4) is equivalent to

It is easy to show that the matrix X⊺KX is symmetric and positive semi-definite. The 
optimal solution W ∗ of Eq.  (4) is the combination of eigenvectors, associated with the 
largest k eigenvalues of the graph-revised covariance matrix X⊺KX . X corresponding 
to the top k eigenvalues. It is noteworthy that the solution to GraphPCA can be inter-
preted as a ridge regularization of the classical PCA, regularized by the Laplacian matrix 
L . Thanks to this closed-form solution, GraphPCA is easy to implement and generates 
low-dimensional representations in linear time, enhancing integration performance into 
downstream analyses. As GraphPCA essentially imposes a graph prior on projections, it 
can be extended to dimensionality reduction tasks for any data with an underlying graph 
structure.

GraphPCA_multi model

We also developed a multi-sample integration extension called GraphPCA_multi. Sup-
pose a spatial transcriptomics study measures L  tissue slices. We followed the same 
preprocessing procedures as GraphPCA, taking the intersection of the SVGs of all the 
input slices. For each slice l = 1, · · ·, L , we constructed a spatial neighborhood graph 
 Al, with l = 1, · · ·, L , respectively. Then, we assembled these graphs into a large block 
diagonal matrix

(3)min
Z,W

||X − ZW ⊺||22 + �tr(Z⊺LZ), s.t.W ⊺W = I ,

∂J

∂Z
= −2XW + 2Z + 2�LZ

K = (I + �L)−1
,

(4)min
W

||X − KXWW ⊺||22 + �tr(W ⊺X⊺K⊺LKXW ), s.t.W ⊺W = I .

min
W

tr
(
−W ⊺X⊺KXW

)
, s.t.W ⊺W = I .
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where Amulti represents the integrated spot neighborhood graph. Then, we concatenated 
the gene expression matrices from all slices to form the input to GraphPCA_multi. 
Therefore, GraphPCA_multi imposes within-sample smoothness constraints through 
the block diagonal Laplacian matrix while identifying shared and distinct latent patterns 
across the multi-slice dataset.

Denoising process

The core principle of the PCA-based framework for denoising lies in the observation 
that noise typically resides in the lower eigenvalues, while the signal is concentrated 
in the higher eigenvalues. In the context of GraphPCA, the incorporation of spatial 
information allows for an enhanced embedding that retains the structural character-
istics of the data. This embedding can effectively reconstruct the original gene expres-
sion matrix, thereby achieving denoising. In detail, the denoised gene expression 
matrix X̃  is computed as the product of the embedding matrix Z and the projection 
matrix W  . This approach not only filters out noise but also preserves significant bio-
logical signals inherent in ST data.

Downstream analyses

Clustering

We employed the K-means clustering algorithm to detecting spatial domains based 
on low-dimensional embedding obtained from GraphPCA, PCA, and NMF. Other 
methods used default embedded clustering algorithms, e.g., SpatialPCA uses a Walk-
trap algorithm and Louvain algorithm. For fair comparison, the true number of spa-
tial domains was provided to all algorithms. We noted the radius hyperparameter r in 
DR-SC, defining the neighborhood radius, strongly influences embedding and clus-
tering quality. Therefore, we generated a range of DR-SC embeddings ( r from 5 to 
100) and chose the best performing for comparisons as the oracle DR-SC version.

Differential gene expression analysis and spatial domain annotation

We employed the Wilcoxon test implemented in the sc.tl.rank_genes_groups func-
tion of the Scanpy package to identify differentially expressed genes for each spatial 
domain with a 1% FDR threshold (Benjamin-Hochberg adjustment). Then, spatial 
domains are annotated by marker genes and comparing expression spatial patterns 
against manual annotations.

Trajectory inference

After obtaining the clustering labels, we employed the Slingshot algorithm, the tra-
jectory inference algorithm in scRNA data analysis [82], on the low-dimensional 

Amulti = diag(A1,A2, · · · ,AL),
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embeddings to depict the spatial trajectory among locations on the tissue, setting 
white matter and layer 1 as start clusters for DLPFC and mPFC, respectively.

Gene enrichment analysis

We performed gene set enrichment analysis (GSEA [83]) on the top 100 differentially 
expressed genes sorted by adjusted p values using enrichGO function in the cluster-
Profiler [84] package, showing the top 30 enriched pathways. Gene sets are down-
loaded from the Molecular Signatures Database (MSigDB [85, 86], Broad Institute) 
including C2 (KEGG [87]) and C5 (GO BP: biological process, GO CC: cellular com-
ponent, GO MF: molecular function).

Clustering performance evaluation metrics

We adopted four different metrics, i.e., adjusted Rand index (ARI), normalized mutual 
information (NMI), homogeneity score (HS), and McFadden-adjusted pseudo-R2 [88], 
to measure clustering performance of different methods in spatial domain detection. 
Specifically,

(1) Adjusted Rand index (ARI)

Given two sets of clustering labels, the ARI is calculated as:

where nij is the number of spots overlapped by cluster i and cluster j . ni and nj are the 
number of spots in cluster i and j , respectively.

(2) Normalized mutual information (NMI)

NMI is calculated as:

where pij =
nij
n  , pi = ni

n  , and pj =
nj
n .

(3) Homogeneity score (HS)

The homogeneity score measures the homogeneity or purity within each cluster of the 
clustering results, calculated as:

ARI =

∑
i,j

(nij
2

)
−

(∑
i

(ni
2

)∑
j

(nj
2

))
/
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2

)

1
2
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2

)
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2
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where C represents the ground truth. K  represents the cluster labels predicted by the 
algorithm. H(C|K ) is the conditional entropy of the class distribution given cluster labels 
averaged over clusters, weighted by cluster size:

where nc,k is the size of cluster c spots assigned to cluster k , nk is the size of spots in clus-
ter k , and n is the total size of spots. H(C) is the entropy of the class distribution:

The homogeneity score ranges from 0 to 1, where HS = 1 indicates complete homoge-
neity, that each cluster only contains spots of a single class.

(4) McFadden-adjusted pseudo-R2 

The McFadden-adjusted pseudo-R2 first constructs a multinomial regression model 
using low-dimensional features as predictors and the true spatial domains as the out-
come, and then calculates the log-likelihood ratios between the regression model and 
the null model, where no predictors are used. Within the regression model, we calcu-
lated the McFadden-adjusted pseudo-R2 to assess the predictive capacity of the predictor 
variables in projecting the ground truth. A higher pseudo-R2 indicates that the method 
can effectively extract informative output for predicting the true spatial domains.
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