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Abstract 

The accuracy of machine learning methods is often limited by the amount of train-
ing data that is available. We proposed to improve machine learning training regimes 
by augmenting datasets with synthetically generated samples. We present a method 
for synthesizing gene expression samples and test the system’s capabilities for improv-
ing the accuracy of categorical prediction of cancer subtypes. We developed Synthe-
VAEiser, a variational autoencoder based tool that was trained and tested on over 8000 
cancer samples. We have shown that this technique can be used to augment machine 
learning tasks and increase performance of recognition of underrepresented cohorts.
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Background
Machine learning (ML) has become common in genomics as a means of modeling with 
complex biological data [1, 2]. Across numerous publications from The Cancer Genome 
Atlas (TCGA) [3], bulk RNA-sequencing has been shown as a robust way for defining 
cancer subtypes [4–8]. Bulk RNA-seq based signatures have been translated from basic 
research into FDA approved diagnosis used in the clinic [9, 10]. While this technique 
has found use in more common cancers, issues begin to arise with more rare cancer 
variants. Small sample counts within genomics datasets can impede model performance 
because of the high dimensionality of the feature space and imbalanced classes. In train-
ing performance analysis, we have found that about 120 samples are often needed before 
a machine learning recognizer can achieve best possible performance. For rare cancers, 
the resulting low sample counts of these omics datasets limit the capability of machine 
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learning to improve patient outcomes. In this paper, we show that synthetic sample gen-
eration is one possible mechanism to mitigate these issues.

Synthetic data have been shown to improve the sample efficiency of learning across 
diverse domains such as image processing, physics modeling, and neuroscience [11]. We 
propose to apply data synthesis methods to augmenting transcriptomic data sets and 
improve the performance of a variety of prediction tasks. Neural networks with multi-
ple hidden layers known as deep learning (DL) models combined with transfer learn-
ing techniques have demonstrated utility across a wide range of modeling applications 
within the rapidly evolving field of ML [12]. Generative deep modeling has emerged as 
a route to generate new samples and works by creating representations of complicated, 
high-dimensional probability distributions [13].

A variational autoencoder (VAE) is a feed-forward neural network that approximates a 
function for mapping high dimensional variables into representative, or latent, variables 
of a reduced dimension [14–16]. Continuous normalizing flows and  generative adver-
sarial networks (GANs) are similar generative models to VAEs [17]. VAE training is an 
unsupervised machine learning technique, and is unaware of any outside labels, such as 
cancer subtype, and is only concerned with organizing a low dimensional latent space 
based on the sample data. The defining characteristic of a VAE is stochastic backpropa-
gation [14] which allows the model to overcome the accuracy and scalability challenges 
of modeling high-dimensional data.

The aims of this study were to (1) build a generative model for creating synthetic gene 
expression samples, (2) develop an algorithm for creating synthetic samples based on 
combining these latent representations of multiple parent samples with a labeled data-
set, and (3) integrate this generative modeling framework with a traditional ML classifier 
to robustly quantify the improvement in predictive power from the addition of synthetic 
samples. This will demonstrate that VAEs can be trained on pan-cancer data and use 
that information to extrapolate into new tissue types. In these new cohorts, a minimal 
set of examples can be used to extrapolate a larger training set, and that extended train-
ing set can help to improve the performance of machine learning methods.

Traditional reasons for developing synthetic data sets for genomics and imaging 
include insufficient sample sizes, too many or too few features, disproportionate fea-
ture to sample size ratio, and the class imbalance problem [18]. Methods used to deal 
with class imbalance can be seen as analogous to synthetic sample generation meth-
ods. SMOTE [19] is the canonical method addressing the class imbalance problem. This 
method seeks to improve classifier performance by undersampling the majority class 
and oversampling the minority class. The minority samples are not directly sampled 
with replacement, rather the feature values of two or more samples are recombined with 
the feature value differences multiplied by a random number between zero and one to 
generate novel samples. However, in cases of high feature dimensionality and low sig-
nal-to-noise such as gene expression applications, the performance of SMOTE has been 
shown to both lack robust performance and be classifier dependent [20]. In cancer imag-
ing, synthetic data have advanced to the point where a Synthesis Study Trustworthy Test 
(SynTRUST) has been proposed as a meta-analysis framework to address specific chal-
lenges across research and clinical care [21]. For computer vision tasks, there are a mul-
titude of techniques for data augmentation [22] including skin lesion image synthesis 
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[23]. Generative methods have been shown to be robust across multiple data types, and 
as our research shows, this trend continues with transcriptomic data.

In the area of transcriptomic sample generation, there are previous publications out-
lining the use of GANs to create synthetic mRNA samples and improve prediction tasks 
[24]. These methods utilize noise or alternate omics inputs to generate new synthetic 
samples. Our method differs from these approaches in how the basis for new samples 
are seeded. Rather than utilizing random noise for permuting existing models, our 
model mixes features of multiple samples in latent space before reconstructing a new 
synthetic sample. Importantly, the mixing of features in the low dimensional latent space 
occurs between samples of the same target label. This ensures that each synthetic sample 
is effectively a high dimensional average of similar elements and avoids mixing samples 
from different classes.

When compared to other machine learning methods, deep learning methods are 
viewed as “black boxes” that produce predictions based on uninterpretable methods. 
Many times, especially when thinking about clinically oriented tasks, non-DL machine 
learning methods can provide interpretable models that can be connected to specific 
biological elements. These more interpretable models may be seen favorably for trans-
lational use cases, but may lack the ability to extract additional information from large 
sample populations in the same way that deep learning methods are able. For this study, 
we demonstrated that traditional ML can benefit from the addition of synthetic data 
generated by a VAE. By combining the pan-cancer training set, the VAE model is able to 
learn common patterns seen across multiple cancer types, and use that information to 
enrich a traditional machine learning task, even if that problem is only specific to a sin-
gle cancer type. Because these performance gains are seen in methods, such as random 
forest (RF) based models, that are commonly viewed as being interpretable, the results 
of this technique can be interrogated.

Results
Generative model overview

A new method combining a VAE with a RF classifier and a corresponding software tool 
for sample synthesis was developed for applications in ML applied to gene expression 
data. Our dataset, based on samples from the TCGA, was structured for supervised 
categorical prediction where each sample was labeled with a cancer subtype within 25 
primary tumor types based on gene expression profiles. In total, the 25 different tumor 
types were segmented into 99 molecular subtypes. For example, breast cancer (TCGA 
code BRCA), is subdivided into luminal A, luminal B, basal, and HER2 [25]. A trans-
fer learning framework was applied for training the VAE on a sample set composed 
of all TCGA samples using a tumor sample holdout strategy (Fig.  1A). This involved 
a sequence of training and fine-tuning a VAE and using a RF classifier to compare the 
predictive accuracy of the data modes. The VAE was never trained on or received any 
information about tissue type or cancer subtype. So in the case of the BRCA cohort, 
the trained VAE was not presented with any BRCA samples, but rather learned the pat-
terns from all other available cancer types. Thus in that experiment, BRCA could be 
viewed as a rare cancer that had never been encountered. A VAE model is trained to 
compress gene expression data into a latent space and then decompress a faithful copy of 



Page 4 of 18Karlberg et al. Genome Biology          (2024) 25:309 

the original signal. This encoder/decoder pair is then used to translate data into a “latent 
space” where values can be altered and decompressed back into “normal space” to create 
new samples. For our cross fold experiment, we produced 25 separate encoder/decoder 
pairs that each ignored a single cancer type. The sample generation pipeline was built 
around the Tybalt VAE [26] (Fig.  1B). The corresponding feature engineering pipeline 

B

C

A

Fig. 1  Overview of the synthetic TCGA gene expression sample generation pipeline. A One cancer cohort at 
a time is designated for sample generation and removed from the TCGA sample set. The Tybalt VAE adapted 
from Way and Greene [26] is trained on these TCGA samples and then fine-tuned on 40 samples from the 
designated cohort_n. The remaining samples from cohort_n are used as validation. The latent feature values 
of three randomly selected samples from within each subtype are randomly recombined to form a latent 
sample feature vector which is then decoded with the trained decoder to generate a synthetic sample with 
feature dimensionality restored to that of the 5000 input genes. This latent feature value recombination and 
decoding process is repeated to generate 200 samples per subtype per validation split. The random forest 
classifier is trained five times, each time predicting on the entire held-out validation set to return a subtype 
prediction accuracy with quantified error. The train-validation split point at cohort_n and ensuing processes 
comprise a single experimental replicate which is repeated 25 times per cancer cohort. B Input gene 
expression features and latent dimension of the Tybalt VAE component of the pipeline. C Depiction of the 
three-sample version of the HLVS algorithm operating within each labeled class
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takes the intersection of genes across cancer types and reduces the feature counts with 
mean absolute deviation. Original gene counts varied by primary tumor type are shown 
in Supplemental Table 1.

Using our hybrid DL/traditional ML synthesis and analysis pipeline, we analyzed the 
effect on subtype prediction performance with the RF classifier for 25 cancer types, 
using the cohort holdout strategy, where specific cancers were limited to 40 samples for 
training the RF classifier with all other samples from that cancer type used for perfor-
mance validation. Effectively, our protocol simulated 25 separate rare cancer cases by 
restricting the RF training set to 40 samples. This process was repeated across these 25 
cancer types, generating 200 additional samples per subtype to augment the 40 origi-
nal samples. Thus, the number of synthetic samples generated varied for each primary 
tumor type, varying from 400 for the binary cancers up to 1400 for gastroesophageal 
(GEA) with seven subtypes. Using the validation sets, we measured F1 score perfor-
mance improvement on the prediction of held out samples by a mean of 6.85% and a 
maximum improvement of 13.2% in lung squamous cell carcinoma (LUSC).

The transfer learning strategy involved first training the VAE on the gene expression 
data for approximately 8000 samples from the TCGA dataset, holding out one specific 
cancer type for testing. After the initial training, the VAE was fine-tuned on a subset of 
40 randomly selected samples from the testing cancer type. The rationale for using this 
threshold of 40 samples for fine-tuning and sample generation across the 25 cancers was 
to balance a simulated reduced sample set with diminished accuracy while still having 
enough samples with which to generate quality synthetic samples. Reducing the batch 
size parameter of the VAE when transferring the model from training on a relatively 
large dataset to fine-tuning on a smaller dataset was identified as an important factor in 
learning a model capable of generating samples that improved predictive accuracy.

The effect of the quantity of training varied by cancer and could be inferred by the 
shape of the learning curves. In these data, the ratio of sample sizes in the training sets to 
fine-tuning sets was approximately two orders of magnitude and the number of epochs 
utilized in the training phase was observed to be a primary parameter in controlling the 
performance results of the generated synthetic data. This can be approached in absolute 
terms of training and fine-tuning epoch counts as well as from a ratio perspective. To 
investigate these effects, the quantity of TCGA training epochs was varied while holding 
the fine-tuning epochs constant at 150. The proportion of pan-TCGA training epochs to 
fine-tuning epochs on the cohort targeted for sample generation was observed to affect 
model performance asymmetrically across cohorts thus is a key point of consideration 
for generalizing this model to data with other distributional characteristics.

Synthetic sample generation

We tested two methods for synthetic sample generation: Random Noise Latent Vari-
able Samples (RNLVS) and Hybrid Latent Variable Samples (HLVS). For a baseline, we 
deployed RNLVS which modulates samples with random noise in the latent space to cre-
ate synthetic samples that are slightly perturbed from their original parent sample. We 
contrasted that method against HLVS which is designed to generate a synthetic sample 
of a specific subtype. It does this by randomly recombining the latent feature values of 
two or three samples from the same subtype into a novel latent feature vector (Fig. 1C). 
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Both two- and three-sample versions of HLVS were tested. The rationale for using three 
samples was to balance a generalized subtype representation based on a greater number 
of samples with the fact that for cancers with many subtypes, random samplings would 
begin to return one or zero samples of the rare subtypes as test set sizes decreased which 
negated the possibility of latent feature recombination. The decoder component of the 
VAE was then used to project each HLVS vector back into gene expression space. To val-
idate the performance of RNLVS vs. HLVS derived synthetic samples, we tested machine 
learning models derived from cohorts generated using the two methods. We noted a 
marked improvement in performance using HLVS derived samples, as shown in Fig. 2.

For both the RNLVS and the HLVS sample generation methods and for each set of the 
experimental replicates, 200 samples were generated within each subtype for each of 25 
replicates of 40 randomly selected training samples for a total of 5000 synthetic samples 
per subtype per replicate set. The trained decoder contained both pan-TCGA informa-
tion as well as information from all subtypes via the 40 samples selected from within 
the cohort designated for sample generation. This was the result of the transfer learning 
design of the experiment in leveraging the combined learned representation of what a 
molecular cancer subtype is in general, with how molecular subtypes within a primary 
tumor cohort differed from each other.

After the synthetic samples were generated, they were mixed with the original train-
ing samples and then used to train a traditional ML RF classifier to predict on a valida-
tion set to assess performance of the sample generation. Across the 25 cancer subtype 

Fig. 2  Comparison of cancer subtype prediction accuracy improvement between the two RNLVS methods 
and two HLVS methods tested. With feature sets and model parameters fixed across primary cancer types, the 
HLVS methods return synthetic samples that result in greater accuracy improvement for 21 out of 25 cancer 
types
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learning tasks, this resulted in improved classification accuracy for the majority of can-
cers. In our testing, 16 out of 25 cancers returned a statistically significant improved 
subtype prediction raw accuracy at a p value threshold of at least 0.05 as a result of mix-
ing with the original 40 samples all of the 200 synthetic samples per subtype across the 
25 experimental replicates.

Synthetic sample assessment

To quantify and compare the quality of the sample embeddings and generated synthetic 
samples, a Scikit-Learn RF classifier was selected based on its observed performance 
as a traditional ML method [27, 28]. The default hyperparameters of the RF classifier 
were used. Within each cohort and experimental replicate, the RF was first trained 
on the 40 original samples then used to predict on the validation set. This training of 
the RF was repeated on the VAE reconstruction of the same 40 samples once they had 
been encoded then re-coded back to gene expression space at the end of the fine-tuning 
epochs. The RF trained on these re-coded samples was then used to predict on the same 
validation as was used to evaluate the original 40 samples. Finally, this RF training and 
validation scheme was repeated on the pure synthetic and the mixture of the 40 original 
samples with the 200 synthetic samples per subtype. Raw prediction accuracy [Scikit-
Learn metrics] was utilized for these comparisons. For each of these four data phases, 
the RF model was trained on the test set five times and used to predict on the validation 
each time to control for stochasticity in the RF model. The results of these five runs were 
averaged. A comparison of the performance results for two configurations within both 
the HLVS and RNLVS latent feature modification methods across the 25 TCGA can-
cers is shown in Fig. 2. The error shown is standard deviation and the magnitude relates 
to subsampling effects of low sample sizes. This illustrates heterogeneity within cohorts 
and number of subtypes within cohorts.

Once establishing this baseline configuration of the VAE training to attain predictive 
accuracy improvement for the majority of cohorts, learning curves were generated. The 
original and mixed datasets were subsampled in incremental steps with the random for-
est again repeated five times and averaged on each subsample set at each increment size. 
Learning curves for four selected cancers that returned increased raw accuracy from the 
addition of synthetic samples are shown in Fig. 3 with learning curves for the other 21 
cohorts in Supplemental Fig. 1.

To characterize the similarity of the gene expression value distributions within the 
respective subtype label categories for the synthetic samples with the original samples 
from which they were generated, maximum mean discrepancy (MMD) was calculated 
for each pairwise combination of samples within three cancer types representing a range 
of subtype counts shown in Fig. 4A. A scatter plot of 2D UMAP dimensionality reduc-
tion was applied to visualize clustering of samples by subtype with mixing of original 
and synthetic data (Fig. 4B). If the distance between the expression value distributions 
of the original and synthetic samples is minimal, it would be expected that original and 
synthetic samples would cluster randomly within each subtype, with subtype status driv-
ing the clustering. Affirmingly, when applied to a mixed set of the original and synthetic 
samples, this clustering shows general separation of samples consistent by subtype as 
illustrated in Fig.  4C. Clustering of synthetic samples within a given subtype may be 
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driven by the synthetic gene expression vectors being based on combinations of latent 
values from real samples resulting in synthetic samples being a non-linear interpolation 
of real samples. Although some degree of clustering by synthetic and original sample 
status is observed, despite this limitation, there is still an improvement in subtype pre-
dictive accuracy with either the pure synthetic or mixed data sets. A full survey covering 
another 22 TCGA cancer types can be found in Supplemental Fig. 2.

An additional quantitative inspection of the original and re-coded gene expres-
sion values was conducted with a root mean squared deviation (RMSD) comparison. 
rmsd = mean((predictions − targets)2).

For each of the 40 samples in each experimental replicate, RMSD was calculated 
across the 5000 genes for the original and re-coded versions of the values. One thousand 
RMSD values, 40 samples times 25 replicates, for each cohort are shown in Fig. 5.

Recursive feature elimination, a statistical feature selection algorithm, was applied 
to identify specific gene features of importance within the original, re-coded, and syn-
thetic samples. For three selected primary tumor types, BRCA, LUAD, and PRAD, 

A B

C D

Fig. 3  Learning curve comparisons of individual cancers; predictive accuracy as a function of sample size 
aggregated across 25 experimental replicates. Original sample sets in blue showing subsampled accuracy 
growth up the 40 sample training threshold. Continuation of learning curves at larger sample counts with 
subsampling mixed original/synthetic sample sets in orange. A Breast invasive carcinoma learning curve, 
relatively smooth improvement in predictive accuracy with addition of synthetic samples up to a peak 
at approximately 150 samples. B Pancreatic adenocarcinoma, with 76 original samples shows a gradual 
improvement in predictive accuracy observed past 100 samples. C Performance improvement behavior of 
adding synthetic samples for kidney renal papillary cell carcinoma with 76 original samples, third smallest 
cohort. D Learning curve for colorectal adenocarcinoma, with more challenging to predict subtypes showing 
plateau in improved performance at around 50% accuracy
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the intersections of features selected across the three data phases are presented in 
Fig.  6A. Consistency in the specific features selected from each phase of the data 
would be expected in the case of consistency in the gene expression values across 
the data phases. For these three cancers, this pattern of consistency was observed—in 
BRCA, 71 features were commonly selected across all three phases of the data com-
pared with 39, 17, and 16 features commonly selected across the pairwise combina-
tions of the data phases. Eighty-four and 66 features were commonly selected across 
all data phases for LUAD and PRAD, respectively, with lower numbers again observed 
for any pairwise combinations of data phases. This observation indicates biological 
consistency of the synthetic data with the original samples. Permutation-based fea-
ture importance scores were calculated within each of the three data phases for each 
of these three cancers for these selected features shown in Fig. 6B. The gene FOXA1 

TCGA synthetic gene expression sample evaluations 

Breast invasive carcinoma

Prostate adenocarcinoma

Lung adenocarcinoma

A
CB

Fig. 4  A MMD statistics for each pair of cancer subtypes within each primary cancer type comparing the 
difference of gene distributions with samples split by subtype vs. samples split by original/synthetic. B Scatter 
plots of 2D UMAP projections showing interspersed clustering of original and synthetic samples separated 
by cancer type. C Cluster maps showing propensity of samples to cluster by subtype with interspersion of 
synthetic and original samples within each subtype. Color bars on left in pink and light blue show original or 
synthetic sample status and saturated color bars on right show subtype sample status
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scored in the top three of the most important features for BRCA across all data phases 
and SEPT9 scored in the top three across all phases for PRAD.

For further validation of the VAE-based genomic samples, we tested the algorithm 
on single-cell data, by using oligodendroglioma intra-tumor heterogeneity gene 
expression data obtained from the Broad Single Cell Portal [25]. To create two dis-
tinct cohorts, this data was filtered for malignant and Microglia/Macrophage cell 
labels which were the analog to the cancer subtype labels in the original experiments. 
The Microglia/Macrophage class was down-sampled to 250 samples to approxi-
mately match the 235 samples in the malignant class. Filtering samples with missing 
expression values from this set yielded a prepared set of 418 samples with 235 sam-
ples of the Microglia/Macrophage class and 183 samples of the malignant class. The 
23,686 raw gene features were reduced to the 5000 gene features with the same great-
est mean absolute deviation method utilized in the original experiments. The data 
was randomly split into a pre-training set of 268 samples and a fine-tuning set of 150 
samples for input to the VAE sample generation tool in its same configuration from 
the original experiments. The generated data were evaluated against the original data 

Fig. 5  Correlation of gene expression RMSD with the difference in prediction accuracy by primary cancer 
cohort. The gene expression RMSD is the average root mean squared deviation across each sample’s 5000 
gene expression values input to the VAE with the corresponding re-coded values of encoding and decoding 
these input values. The y-axis, delta accuracy is the change in average subtype predictive accuracy across the 
25 replicates of 40 input samples vs. the average of the predictions at 140 and 160 sample size mixed sample 
sets of the original 40 samples and synthetic samples within each experimental replicate



Page 11 of 18Karlberg et al. Genome Biology          (2024) 25:309 	

with UMAP clustering (Supplemental Fig. 3), showing synthetic and original single-
cell samples clustering by cell type and not clustering by real or synthetic status.

Discussion
In order to test the robustness of our method, we benchmarked the recognition of can-
cer subtypes as defined by the TCGA cohort. Because each tissue type has extremely 
different dynamics, and the subtypes within each of these cancers are defined by differ-
ent rules, this allowed us to perform robust benchmarking in translation, by removing 
entire cancer types from the original training set. Additionally, the dataset has cohorts 
of extremely different sample sizes, with groups with 995, such as the case of breast 
invasive carcinoma (BRCA) and as few as 74 in the case of mesothelioma (MESO) and 
uveal melanoma (UVM). In our tests with the TCGA dataset, the sample size limitation 
is most pronounced in cancers with rare subtypes such as bladder urothelial carcinoma 
(BLCA) or kidney renal papillary cell carcinoma (KIRP), primary tumors with subtypes 
containing less than 10 samples. Using a leave-tissue out cross fold strategy, every cancer 
type was tested as if it was a rare cancer type. Our method to increase sample sizes of 
rare, molecularly defined subtypes to solve the class imbalance problem could be of par-
ticular utility for feature sets reduced to the number of samples required to train accu-
rate models.

Augmenting datasets with synthetic samples created with the HLVS methods outper-
formed the RNLVS derived samples in 20 out of 25 of the specific machine learning tasks 
tested. The three-sample and two-sample variations of the HLVS method performed 
comparably well with average predictive improvement over the original samples of 
3.64% ± 0.04% and 3.67 ± 0.04% percentage points, respectively. Although random noise 

Feature frequency and feature importances across data phases and data types 
A B

Fig. 6  A Intersections of features across original, re-coded, and synthetic samples. B Feature importance 
scores calculated with Scikit-Learn Permutation Importance algorithm for features selected three or more 
times across the 25 experimental replicates
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methods combined with generative modeling improved performance for the majority of 
tested cancers, the performance gains were greater across most cancers with the combi-
nation of generative modeling and HLVS methods.

This study sought to leverage the representation learning capabilities of generative 
modeling with the interpretability of traditional ML to develop a method for transcrip-
tomic sample generation. The software tool developed can be directly applied to super-
vised categorical prediction tasks with gene expression data sets and potentially adapted 
to other transcriptomic based ML tasks including regression. This was an improvement 
on previous methods in robustness for this type of genomics prediction task character-
ized by a large ratio of features to samples. By using transfer learning techniques to train 
a model on data related to the fine-tuning data and final prediction domain, the model 
is less prone to overfitting. The training method utilized in this study was to include all 
of the TCGA cohorts, except the cancer type designated for testing, to prepare the VAE 
for fine-tuning. The RMSD statistics characterizing the reconstruction values between 
the best-fit cancer, BRCA, and poorest-fit cancer, THYM, showed that the mean of every 
tested cancer was within the error of every tested cancer. This demonstrates generaliz-
ability of a transfer learning strategy where fewer epochs are used for training than fine-
tuning and the batch size is reduced in the fine-tuning from the training.

In the benchmarking seen in Fig.  2,  the cancer types that received no  performance 
improvement, namely SKCM and TGCT, is likely due to issues beyond  sample genera-
tion. The subtypes in skin cutaneous melanoma (SKCM) were originally defined using 
mutation markers. Training ML models on gene expression fails to capture that original 
information used for defining the subtyping, and instead relies on gene expression val-
ues that happen to be correlated with the subtype, rather than elements with direct bio-
logical implications. Similarly testicular germ cell cancer (TGCT) subtypes are largely 
defined by DNA methylation and miRNA [29]. In these cases, boosting the population of 
gene expression data will do very little to better illuminate the underlying biology.

To quantify the similarity of the synthetic and original data, maximum mean dis-
crepancy (MMD), a nonparametric distance statistic that is robust in comparing sam-
ple groups comprising different distributions [30], was calculated for each subclass pair 
within three primary cancer types of differing numbers of subtypes. For all subclass pair 
comparisons, the distance between subclasses was significantly greater than the dis-
tance between the original and synthetic samples as shown in Fig. 4A. This observation 
is reinforced with UMAP clustering behavior shown in Fig. 4B, where original and syn-
thetic samples cluster uniformly within each cancer subtype. The sample cluster map of 
gene expression value experiments, seen in Fig. 4C, also showed aggregation of samples 
within subtypes of mixed synthetic and original data.

The feature selection experiments reveal a greater intersection of features across the 
original, re-coded, and synthetic samples than within any pairwise combination of these 
three phases as shown in Fig. 6A. This observation is validating of both the model encod-
ing and the synthetic data.

The feature importance scores indicate reduced error associated with the synthetic 
data compared with the original and re-coded feature importance scores as shown 
in Fig.  6B. This effect is driven by improved statistical power of synthetic data sets 
and the solving of the class imbalance problem with 200 synthetic samples per cancer 
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subtype vs. 40 total original samples within each replicate. This demonstrates the 
potential utility of the method to improve confidence in biomarker target identifica-
tion for rare cancer subtypes.

Conclusions
This work demonstrates that generative models based on neural networks can be com-
bined with traditional ML as an effective means to generate synthetic gene expression 
samples. This allows for information from other tissue and cancer types to provide priors 
for learning patterns in a new cohort. Rare cancers, which traditionally see much lower 
rates of collection and sequencing, can benefit from augmenting their dataset. Addition-
ally, non-DL machine learning methods, traditionally seen as more trustworthy or easier 
to interpret than DL models, can still benefit from these methods.

Methods
Data provenance and feature engineering

The data utilized for developing this sample generation method and software tools 
were derived from a TCGA-based curated dataset from the Tumor Molecular Pathol-
ogy working group and can be downloaded from the NCI’s Genomic Data Com-
mons [31] [https://​gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​CCG-​TMP-​2022]. These 
data files were tabular comprising 8009 samples across 25 primary tumor types and 
99 subtypes. The gene expression features utilized in this study were down-selected 
via mean absolute deviation to the 5000 most differentially expressed features per 
the original Tybalt method [26]. The raw expression values were normalized with 
the Scikit-Learn MinMaxScaler function within each cohort and within each fea-
ture. Four of the cancers utilized in this study have only two subtypes making them 
a binary supervised classification problem whereas the remaining cancers are multi-
class with three to seven subtypes per primary tumor type.

Generative modeling framework

The sample generation model (Fig. 1) was built around a variational autoencoder (VAE) 
adapted from [26]. A latent feature dimension of 250 was used for all experiments and 
all experiments used 150 epochs for model fine-tuning. One cohort at a time was des-
ignated for generating synthetic samples and removed from the combined TCGA set. 
The VAE was then trained on all of the remaining TCGA samples for 1, 2, 3, 4, 10, 20, or 
30 epochs. The batch size was set at 50 for each of these initial TCGA trainings. From 
the cohort selected for sample generation, a training set of 40 samples was randomly 
selected without replacement. The remaining samples were used as a validation set of 
size nv = n − 40. The various epoch-count and feature set versions of the TCGA-trained 
VAE were then each fine-tuned for 150 epochs at batch size of 10 on the 40 samples 
within each replicate. A learning rate of 0.0005 was used for both the TCGA training and 
fine-tuning steps. This framework is represented symbolically in Algorithm 1.

https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022
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 Algorithm 1. Categorically labeled synthetic sample generation from the latent feature vectors of a variational 
autoencoder, VAE
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The initial validation split of 40 fine-tuning samples within the cohort designated 
for sample generation defined each experimental replicate. Within each replicate, the 
samples not selected into the set of 40 for fine-tuning are designated as the validation 
set such that the number of validation samples varies by cohort because each cancer 
cohort contains a different number of total samples. Results for 25 replicates were 
produced for each cohort. Replicates returning less than three (or two in the alternate 
HLVS version) samples for any subtype within the random 40 cohort samples were 
rejected because this was the sampling threshold for the latent feature recombination 
algorithm, described below.

The training/validation split constituted an experimental replicate and was repeated 
25 times for each cohort. If a training set contained less than three samples within a 
subtype, the sampling was repeated up to 50 times attempting to obtain at least three 
samples per subtype. The replicate was omitted if three (or two) samples were not 
obtained over these 50 repeats. The latent feature object was subset by subtype. Three 
samples at a time were chosen without replacement and sent to a function where 
the latent feature values from these three samples were randomly recombined into 
a novel latent feature vector. Two hundred synthetic samples were generated within 
each subtype for each primary tumor type. This 200 synthetic subtype sample by 150 
synthetic latent feature object was returned to the original 5000 dimension feature 
space using the trained VAE decoder.

To evaluate the HLVS results, a set of experimental control results were generated 
with RNLVS derived from Gaussian noise injection. The effectiveness of Gaussian 
noise injection has been mathematically described for multi-layer perceptron neural 
networks in terms of the heat kernel and Taylor expansions [32]. This form of noise 
injection was implemented in the present study with sigma values of 0.1 and 0.2 for 
the Gaussian function applied to corresponding sets of latent feature values with a 
zero-floor or rectification operation to prevent negative expression values.

Within each experimental replicate, the 40 training samples were used to train a 
Scikit-Learn random forest model with default hyperparameters. This random for-
est was trained on the original training samples of the data then was used to predict 
on the validation set as to establish a baseline accuracy score with which to compare 
with the synthetic samples. The process of training the random forest and predicting 
on the validation set was repeated for the re-coded, synthetic, and mixed sample sets 
denoted by the green, red, and orange arrows, respectively, in Fig. 1. The mixed sam-
ple set was the generated synthetic sample set blended with the original 40 training 
samples.

The imbalanced class problem was eliminated by adding 200 synthetic samples to 
each class. The result was that subtypes with relatively few samples were augmented 
with proportionally more synthetic samples.
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For the comparisons of the distributions of the original and synthetic samples 
within the cancer subtype class pairs shown in Fig. 4A, the MMD formula utilized is 
given in Algorithm 2.

 Algorithm 2. Compute MMD

The UMAP clusterings of original with synthetic samples within each intended can-
cer subclass shown in Fig. 4B were done by subsampling the pool of generated sam-
ples within each subtype the same number of synthetic samples as unique original 
samples in the aggregated input across the 25 experimental replicates. This unified set 
of balanced counts of original and synthetic samples within each subtype for each pri-
mary tumor type was input to the UMAP dimensionality reduction algorithm for sub-
sequent scatter plotting. The clustering algorithm was the default “average” method 
implemented in the Scipy dependency of the Seaborn Clustermap function [33].

The feature importance algorithm utilized was Scikit-Learn Permutation Impor-
tance and was run on each of the 25 experimental replicates within the original gene 
expression data, the reconstructed expression data, and the synthetic sample expres-
sion data. Ten features were selected from each replicate within each data phase. The 
intersections of every combination of selected features were identified and binned for 
plotting in the UpSet plot.

Software tool requirements:

•	 TensorFlow 2.10
•	 Python 3.9
•	 Scikit-Learn 1.1.3

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​024-​03431-3.

 Additional file 1: Table S1. Summary of curated TCGA genomic input data. The data source was the NCI’s Genomic 
Data Analysis Network Tumor Molecular Pathology Analysis Working Group.
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 Additional file 2: Fig. S1. Learning curves showing predictive accuracy as a function of sample size for the 21 cancer 
cohort test sets in addition to the four cancers presented in Fig. 3. Subsampling of original samples in blue showing 
growth in accuracy up to the 40 total test samples. Continuation of accuracy response to increased sample sizes by 
means of adding synthetic samples shown in orange.

 Additional file 3: Fig. S2. MMD, UMAP, and cluster maps showing similarities and differences of samples by original or 
synthetic status with cancer subtype status; 22 of 25 cancers studied not presented in main Fig. 4

 Additional file 4: Fig. S3. Application of VAE-based genomic sample generation method to scRNA-seq data obtained 
from the Broad’s Single Cell Portal. Inset shows single cell sample scores of stemness and differentiation; yellow box 
denotes region of samples with class (cell type) separation selected for sample generation.

 Additional file 5. Review history.

Peer review information
 Kevin Pang and Andrew Cosgrove were the primary editors of this article and managed its editorial process and peer 
review in collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 5.

Authors’ contributions
KE and BK developed the hypotheses, designed the experiments, and wrote the manuscript; KE, RK, and BK developed 
the generative VAE model; BK wrote the code, executed the experiments, and created the figures; KE, JL, MP, LB, and JG 
consulted on the scientific and technical aspects through the development iterations.

Funding
Support from the National Cancer Institute and Oregon Health and Science University’s Knight Cancer Institute is grate-
fully acknowledged, including NIH Bridge2AI grant 1U54HG012517, NCI GDAN 5U24CA264007, and NIH 1S10OD034224.

Data availability
The software tool, SyntheVAEiser, is available at https://​github.​com/​ohsu-​comp-​bio/​synth​eVAEi​ser [34] and https://​doi.​
org/​10.​5281/​zenodo.​13948​571 [35] under the Apache 2.0 license.

Declarations

Ethics approval and consent to participate
N/A.

Competing interests
N/A.

Received: 11 October 2023   Accepted: 30 October 2024

References
	1.	 Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16:321–32.
	2.	 Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 

2022;23:40–55.
	3.	 Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. 

Contemp Oncol. 2015;19:A68–77.
	4.	 Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive 

lobular breast cancer. Cell. 2015;163:506–19.
	5.	 Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 

2015;517:576–82.
	6.	 Roh W, Geffen Y, Cha H, Miller M, Anand S, Kim J, et al. High-resolution profiling of lung adenocarcinoma identifies 

expression subtypes with specific biomarkers and clinically relevant vulnerabilities. Cancer Res. 2022;82:3917–31.
	7.	 Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 

2011;474:609–15.
	8.	 Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characteri-

zation of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31:181–93.
	9.	 Picornell AC, Echavarria I, Alvarez E, López-Tarruella S, Jerez Y, Hoadley K, et al. Breast cancer PAM50 signature: 

correlation and concordance between RNA-Seq and digital multiplexed gene expression technologies in a triple 
negative breast cancer series. BMC Genomics. 2019;20:452.

	10.	 Jensen M-B, Lænkholm A-V, Balslev E, Buckingham W, Ferree S, Glavicic V, et al. The Prosigna 50-gene profile and 
responsiveness to adjuvant anthracycline-based chemotherapy in high-risk breast cancer patients. NPJ Breast 
Cancer. 2020;6:7.

https://github.com/ohsu-comp-bio/syntheVAEiser
https://doi.org/10.5281/zenodo.13948571
https://doi.org/10.5281/zenodo.13948571


Page 18 of 18Karlberg et al. Genome Biology          (2024) 25:309 

	11.	 de Melo CM, Torralba A, Guibas L, DiCarlo J, Chellappa R, Hodgins J. Next-generation deep learning based on simu-
lators and synthetic data. Trends Cogn Sci. 2022;26:174–87.

	12.	 Hosna A, Merry E, Gyalmo J, Alom Z, Aung Z, Azim MA. Transfer learning: a friendly introduction. J Big Data. 
2022;9:102.

	13.	 Ruthotto L, Haber E. An introduction to deep generative modeling. GAMM-Mitt. 2021;44. Available from: https://​
onlin​elibr​ary.​wiley.​com/​doi/​10.​1002/​gamm.​20210​0008.

	14.	 Rezende DJ, Mohamed S, Wierstra D. Stochastic backpropagation and approximate inference in deep generative 
models. arXiv [stat.ML]. 2014. Available from: http://​arxiv.​org/​abs/​1401.​4082.

	15.	 Kingma DP, Salimans T, Welling M. Variational dropout and the local reparameterization trick. arXiv [stat.ML]. 2015. 
Available from: http://​arxiv.​org/​abs/​1506.​02557.

	16.	 Kingma DP, Welling M. Auto-encoding variational Bayes. arXiv [stat.ML]. 2013. Available from: http://​arxiv.​org/​abs/​
1312.​6114v​11.

	17.	 Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF. Generative models for molecular discovery: recent advances and 
challenges. Wiley Interdiscip Rev Comput Mol Sci. 2022;12. Available from: https://​onlin​elibr​ary.​wiley.​com/​doi/​10.​
1002/​wcms.​1608.

	18.	 Kokol P, Kokol M, Zagoranski S. Machine learning on small size samples: a synthetic knowledge synthesis. Sci Prog. 
2022;105: 368504211029777.

	19.	 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. JAIR. 
2002;16:321–57.

	20.	 Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics. 2013;14: 106.
	21.	 Osuala R, Kushibar K, Garrucho L, Linardos A, Szafranowska Z, Klein S, et al. Data synthesis and adversarial networks: 

a review and meta-analysis in cancer imaging. Med Image Anal. 2023;84: 102704.
	22.	 Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data. 

2019;6:1–48.
	23.	 Baur C, Albarqouni S, Navab N. MelanoGANs: high resolution skin lesion synthesis with GANs. arXiv [cs.CV]. 2018. 

Available from: http://​arxiv.​org/​abs/​1804.​04338.
	24.	 Ahmed KT, Sun J, Cheng S, Yong J, Zhang W. Multi-omics data integration by generative adversarial network. Bioin-

formatics. 2021;38:179–86.
	25.	 Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based 

on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7. https://​doi.​org/​10.​1200/​JCO.​2008.​18.​1370.
	26.	 Way GP, Greene CS. Extracting a biologically relevant latent space from cancer transcriptomes with variational 

autoencoders. Pac Symp Biocomput. 2018;23:80–91.
	27.	 Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. In: Proceedings of the 

23rd international conference on machine learning. New York: Association for Computing Machinery; 2006. p. 
161–8.

	28.	 Kim AA, Rachid Zaim S, Subbian V. Assessing reproducibility and veracity across machine learning techniques in 
biomedicine: a case study using TCGA data. Int J Med Inform. 2020;141: 104148.

	29.	 Shen H, Shih J, Hollern DP, Wang L, Bowlby R, Tickoo SK, et al. Integrated molecular characterization of testicular 
germ cell tumors. Cell Rep. 2018;23:3392–406.

	30.	 Gretton A, Borgwardt KM, Rasch MJ. A kernel two-sample test. J Mach. 2012. Available from: https://​www.​jmlr.​org/​
papers/​volum​e13/​grett​on12a/​grett​on12a.​pdf?​ref=​https://​githu​bhelp.​com.

	31.	 Kyle Ellrott, Christopher K. Wong, Christina Yau, Mauro A. A. Castro, Jordan A. Lee, Brian J. Karlberg, Jasleen K. Grewal, 
Vincenzo Lagani, Bahar Tercan, Verena Friedl, Toshinori Hinoue, Vladislav Uzunangelov, Lindsay Westlake, Xavier 
Loinaz, Ina Felau, Peggy I. Wang, Anab Kemal, Samantha J. Caesar-Johnson, Ilya Shmulevich, Alexander J. Lazar, 
Ioannis Tsamardinos, Katherine A. Hoadley, The Cancer Genome Atlas Analysis Network, A. Gordon Robertson, Theo 
A. Knijnenburg, Christopher C. Benz, Joshua M. Stuart, Jean C. Zenklusen, Andrew D. Cherniack, Peter W. Laird. TCGA 
cancer subtype assignment of patient samples using compact feature sets. Available from: https://​gdc.​cancer.​gov/​
about-​data/​publi​catio​ns/​CCG-​TMP-​2022. Cited 2024 Oct 24.

	32.	 Grandvalet Y, Canu S, Boucheron S. Noise injection: theoretical prospects. Neural Comput. 1997;9:1093–108.
	33.	 Müllner D. Modern hierarchical, agglomerative clustering algorithms. arXiv [stat.ML]. 2011. Available from: http://​

arxiv.​org/​abs/​1109.​2378.
	34.	 Karlberg B, Kirchgässner R, Lee J, Peterkort M, Beckman L, Goecks J, Ellrott K. SyntheVAEiser Github; 2024. Available 

from: https://​github.​com/​ohsu-​comp-​bio/​synth​eVAEi​ser.
	35.	 Karlberg B, Kirchgässner R, Lee J, Peterkort M, Beckman L, Goecks J, Ellrott K. SyntheVAEiser Zenodo; 2024. Available 

from: https://​zenodo.​org/​doi/​10.​5281/​zenodo.​13948​571.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100008
https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100008
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1506.02557
http://arxiv.org/abs/1312.6114v11
http://arxiv.org/abs/1312.6114v11
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1608
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1608
http://arxiv.org/abs/1804.04338
https://doi.org/10.1200/JCO.2008.18.1370
https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf?ref=https://githubhelp.com
https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022
https://gdc.cancer.gov/about-data/publications/CCG-TMP-2022
http://arxiv.org/abs/1109.2378
http://arxiv.org/abs/1109.2378
https://github.com/ohsu-comp-bio/syntheVAEiser
https://zenodo.org/doi/10.5281/zenodo.13948571

	SyntheVAEiser: augmenting traditional machine learning methods with VAE-based gene expression sample generation for improved cancer subtype predictions
	Abstract 
	Background
	Results
	Generative model overview
	Synthetic sample generation
	Synthetic sample assessment

	Discussion
	Conclusions
	Methods
	Data provenance and feature engineering
	Generative modeling framework

	References


