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Abstract 

Background:  Inhomogeneous patterns of chromatin-chromatin contacts 
within 10–100-kb-sized regions of the genome are a generic feature of chromatin 
spatial organization. These features, termed topologically associating domains (TADs), 
have led to the loop extrusion factor (LEF) model. Currently, our ability to model TADs 
relies on the observation that in vertebrates TAD boundaries are correlated with DNA 
sequences that bind CTCF, which therefore is inferred to block loop extrusion. How-
ever, although TADs feature prominently in their Hi-C maps, non-vertebrate eukaryotes 
either do not express CTCF or show few TAD boundaries that correlate with CTCF sites. 
In all of these organisms, the counterparts of CTCF remain unknown, frustrating com-
parisons between Hi-C data and simulations.

Results:  To extend the LEF model across the tree of life, here, we propose the con-
served-current loop extrusion (CCLE) model that interprets loop-extruding cohesin 
as a nearly conserved probability current. From cohesin ChIP-seq data alone, we derive 
a position-dependent loop extrusion rate, allowing for a modified paradigm for loop 
extrusion, that goes beyond solely localized barriers to also include loop extrusion rates 
that vary continuously. We show that CCLE accurately predicts the TAD-scale Hi-C maps 
of interphase Schizosaccharomyces pombe, as well as those of meiotic and mitotic Sac-
charomyces cerevisiae, demonstrating its utility in organisms lacking CTCF.

Conclusions:  The success of CCLE in yeasts suggests that loop extrusion by cohesin 
is indeed the primary mechanism underlying TADs in these systems. CCLE allows us 
to obtain loop extrusion parameters such as the LEF density and processivity, which 
compare well to independent estimates.

Background
Our knowledge of chromatin architecture has been transformed by sequencing-based 
chromatin-capture (Hi-C) techniques, which provide quantitative metrics of relative 
population-averaged contact probability between all pairs of genomic loci [1–10]. Hi-C 
data, typically presented as a contact map, together with theory and modeling have led to 
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a new understanding of chromatin organization, based on three coexisting mechanisms 
that operate on largely different length scales: (1) on several-megabase scales, “check-
erboard patterns” in Hi-C maps, encompassing distant contacts on the same chromo-
some and contacts on different chromosomes, have led to a block co-polymer-inspired 
picture of chromatin compartments, comprised of several types of epigenetically distin-
guished heterochromatin and euchromatin, which each exhibits preferential affinity for 
like-regions [11–24]. (2) At smaller length scales―tens of kilobases―overlapping 
squares of high contact probability within definite regions of the same chromosome, 
termed topologically associating domains (TADs), have led to the loop extrusion factor 
(LEF) model [25–33], in which LEFs first bind to the chromatin polymer, and then initi-
ate ATP-dependent loop extrusion by moving their two anchor points away from each 
other. Loop extrusion at an anchor stalls when the anchor encounters either another 
anchor or a so-called boundary element (BE). LEFs can also dissociate from chromatin. 
These processes collectively give rise to a dynamic steady-state of chromatin loops, in 
turn leading to TADs in Hi-C maps [26, 27, 30, 34]. (3) At few kilobase scales, high-reso-
lution Hi-C experiments reveal patterns of contacts [35, 36] that can be explained based 
on nucleosomal structures [37–39].

Depletion of cohesin, a member of the structural maintenance of chromosomes (SMC) 
complex family, leads to the disappearance both of TADs and of their accompanying 
enhanced contact probabilities across a variety of species, including human  [40, 41], 
fission yeast  [6], and budding yeast  [42], thus identifying cohesin as the predominant 
LEF. Bolstering cohesin’s LEF identity, single-molecule experiments show that cohesin 
possesses ATP-dependent loop extrusion activity on DNA in  vitro  [43–46]. In verte-
brates, the locations of TAD boundaries show a strong correlation with binding sites of 
the DNA-binding protein, CTCF [47, 48], while depletion of CTCF, causes loss of most 
TAD boundaries [41, 47]. These observations suggest that CTCF is the most important 
BE in vertebrates. Indeed, loop extrusion simulations using boundary elements, whose 
locations are defined by peaks in the CTCF chromatin immunoprecipitation sequencing 
(ChIP-seq) signal, are able to recapitulate many aspects of experimental vertebrate Hi-C 
maps [26, 27, 30, 34].

However, although TADs feature prominently in Hi-C maps across the tree of life, 
many non-vertebrate organisms either do not express CTCF orthologs, including yeasts 
(Schizosaccharomyces pombe and Saccharomyces cerevisiae  [49]), plants (Arabidopsis 
thaliana  [50] and Oryza sativa  [51]), and Caenorhabditis elegans  [52], or show only a 
limited number of TAD boundaries that correlate with CTCF binding sites, as in the 
case of Drosophila melanogaster  [53]. In all of these organisms, even if the LEF model 
is applicable, which remains uncertain, the identities of the boundary elements are 
unknown, frustrating quantitative comparisons between Hi-C data and simulations.

With the goal of modeling TADs across the tree of life beyond vertebrates, here, we 
introduce a novel, physics-based version of the LEF model, named the conserved-cur-
rent loop extrusion (CCLE) model, that should be applicable in any organism, in which 
loop extrusion is a major driver of TAD formation. Specifically, by interpreting loop-
extruding LEFs as a probability current, that is approximately conserved at steady-
state, we derive a position-dependent loop extrusion rate, using cohesin ChIP-seq data 
as input, which we then incorporate into loop extrusion simulations without explicit 
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boundary elements. This model has intuitive appeal in that loop extrusion rates are small 
at genomic locations with high cohesin ChIP-seq signal, as if the LEFs are blocked there, 
while the rates are high at positions with low cohesin ChIP-seq signal, because LEFs 
spend little time in locations where they are not blocked. By design, CCLE is agnostic 
concerning the identities of BEs and other proteins that interact with cohesin. Indeed, 
CCLE allows for the boundary element concept to be extended, beyond localized barri-
ers to loop extrusion, to include more widely distributed variations in the loop extrusion 
rate, that may occur in response to chromatin composition, for example.

A key inspiration for the development of CCLE was Reference [54], which successfully 
simulates chromatin organization in meiotic S. cerevisiae, using a version of the previous 
vertebrate-focused LEF models, except with cohesin-binding sites replacing CTCF bind-
ing sites. CCLE improves on this approach in principle, by eliminating both (1) the need 
to specify how to pick out cohesin-binding sites from ChIP-seq data and (2) the need to 
specify how such binding sites affect loop extrusion, both of which are accomplished in 
an ad hoc fashion in Ref. [54] (and its CTCF-based precursors [26, 27, 30, 34] regarding 
CTCF binding sites). Limitation (1) ignores the low-contrast cohesin peaks that could 
represent a weak yet essential blocking effect by barriers to loop extrusion due to more 
elaborate chromatin composition, while limitation (2) hinders the model’s ability to self-
consistently reproduce the cohesin ChIP-seq data, thus rendering the model a weak 
physical basis. The CCLE model eliminates both limitations in principle.

To focus on the role of loop extrusion and avoid possible ambiguities associated with 
chromatin compartments, in this paper, we apply our model to meiotic budding yeast, 
following Ref. [54], mitotic budding yeast, and interphase fission yeast. None of the cor-
responding Hi-C maps shows a checkerboard pattern, characteristic of chromatin com-
partments. Using cohesin ChIP-seq data as input, CCLE seeks to describe the measured 
Hi-C maps of S. pombe quantitatively, with just four fitting parameters, namely the LEF 
processivity in the absence of obstructions, the chromatin persistence length, the linear 
density of loop-extruding cohesins ( ρ ), and the linear density of cohesive cohesins ( ρc ). 
For meiotic and mitotic S. cerevisiae, we use a fifth parameter to empirically account for 
the increased polymer volume exclusion in the more compact meiotic and mitotic chro-
mosomes. Using this approach, we demonstrate that CCLE achieves excellent experi-
ment-simulation agreement in all three cases on the 10–100-kb scales, despite major 
differences in their Hi-C features. Thus, CCLE transforms cohesin ChIP-seq data into an 
ensemble of fluctuating loop configurations that define three-dimensional chromosomal 
organization. Since CCLE does not incorporate genomic data on nucleosome position-
ing, it does not describe the kilobase-scale features in high-resolution Hi-C maps that 
originate from nucleosomes [37–39]. CCLE also provides corresponding values for loop 
extrusion parameters, such as the LEF density and processivity, in each case.

Results
Conserved‑current loop extrusion (CCLE) model enables calculation of chromatin loop 

configurations from genomic distribution of LEF

In order to develop our approach, we envision loop extrusion as giving rise to prob-
ability currents of LEF anchors, flowing through chromatin lattice sites. Assuming 
two-sided loop extrusion, we are led to the following coarse-grained master equations 
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for the probabilities, Rn and Ln , that chromatin site n is occupied by the right-moving 
or left-moving anchor of a LEF:

and

where Vn is the rate at which right-moving LEF anchors step from site n to site 
n+ 1 , Un is the rate at which left-moving LEF anchors step from site n to site n− 1 , 
and Pn = Rn + Ln is the probability that site n is occupied by either a left- or right-mov-
ing LEF anchor. The first and second terms on the right hand sides of each of Eqs.  1 
and 2 correspond to the current―i.e., the number per second―of LEF anchors to 
and from, respectively, site n by loop extrusion along the chromatin, while An and Dn ( an 
and dn ) are the association and dissociation currents of right-moving (left-moving) LEF 
anchors at site n, respectively.

At steady state, assuming the difference between LEF binding and unbinding terms 
is small compared to the loop-extruding terms, and that the mean probabilities of 
right- and left-moving LEF anchors being at site n are equal (i.e., �Rn� = �Ln� =

1
2
�Pn� ), 

and neglecting correlations among the anchor probabilities, Eqs.  1 and  2 lead to 
(Additional File 1: Methods)

and

where ρ is the mean LEF density in units of kb−1 , L is the mean LEF processivity in units 
of kb, and τ is the mean LEF lifetime, estimated to be of order 103 s in Ref. [31]. The ratio, 
L/τ , can be interpreted as the loop extrusion rate of an isolated LEF along the chromatin 
polymer, i.e., twice the extrusion rate of an isolated LEF anchor.

The utility of Eqs. 3 and 4 becomes apparent, when we realize that cohesin ChIP-
seq data specifies the n-dependence of 〈Pn〉 , assuming that cohesin is the LEF in ques-
tion. Thus, we can use cohesin ChIP-seq to calculate the position-dependent loop 
extrusion rates. These rates are subsequently used as input for Gillespie-type loop 
extrusion simulations (the  “Methods”  section) that implement loop extrusion, LEF 
association and dissociation, and mutual LEF blocking, as for the existing LEF mod-
els, but for which there are no explicit boundary elements. These simulations gener-
ate time-dependent loop configurations, that we average over time and over multiple 
independent simulations to calculate contact probability maps (the  “Methods”  sec-
tion). Our approach neatly sidesteps needing to know the identities and positions of 

(1)
dRn

dt
= Vn−1Rn−1(1− Pn)− VnRn(1− Pn+1)

+ An − Dn,

(2)
dLn

dt
= Un+1Ln+1(1− Pn)− UnLn(1− Pn−1)

+ an − dn,

(3)Vn =
ρL/τ

�Pn�(1− �Pn+1�)

(4)Un =
ρL/τ

�Pn�(1− �Pn−1�)
,
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BEs by exploiting the fact that the effect of BEs is encoded in 〈Pn〉 and, therefore, is 
incorporated into the loop extrusion rates via Eqs. 3 and 4.

Functionally, there are two populations of cohesin complexes, namely trans-acting, 
cohesive cohesins, which give rise to cohesion between sister chromatids, and cis-act-
ing, loop-extruding cohesins  [32]. For S. pombe, both types are present in interphase 
and contribute to cohesin ChIP-seq. To determine Pn , which is the probability that chro-
matin site n is occupied by loop-extruding cohesin, we assume that cohesive cohesin is 
randomly loaded along chromatin, giving rise to an n-independent contribution to the 
cohesin ChIP-seq, which we describe with a fitting parameter, ρc , that represents the 
uniform density of cohesive cohesin.

Finally, to compare experimental and simulated Hi-C maps, we incorporate the poly-
mer physics of self-contacts, within the confined volume of the nucleus, into simulated 
loop configurations, using a simple, albeit approximate, analytic approach, described in 
the “Methods” section.

CCLE quantitatively describes TADs and loop configurations in interphase S. pombe

CCLE simulations accurately reproduce experimental interphase S. pombe Hi‑C maps

As a first application of CCLE, we sought to describe the interphase fission yeast Hi-C 
map from Ref. [55], on the basis of ChIP-seq data of the protein, Psc3, which is a com-
ponent of the cohesin core complex, also from Ref. [55]. The right-hand side of Fig. 1A 
depicts a 1-Mb portion of the Hi-C map of S. pombe’s Chr 2 starting 0.3 Mb from the 
end of the left arm and extending to 1.3 Mb from the end of the left arm, using a loga-
rithmic false-color intensity scale. The maximum interaction distance shown is 120 kb. 
Each pixel in the experimental Hi-C maps corresponds to 10 kb. The original resolution 
of the simulation is 1 kb, which is binned to 10 kb to match the experimental resolu-
tion. In comparison, the left-hand side of Fig. 1A presents the corresponding conserved-
current simulated Hi-C map using the best-fit parameters (Table 2). Figure 1B magnifies 
the experiment-simulation comparison for three representative sub-regions, each 150 kb 
in size. In both Fig.  1A and B, visual inspection immediately reveals a high degree of 
left-right symmetry, corresponding to excellent agreement between the experimental 
and simulated Hi-C maps. Clearly, our simulations well reproduce the experimentally 
observed pattern of overlapping squares. By contrast, although the left- and right-hand 
sides of Fig.  1C and D look generally similar, clearly there is no left-right symmetry 
in these figures, which compare the experimental Hi-C maps of two non-overlapping 
regions of Chr 2 with each other, and which therefore are expected to be dissimilar. In 
comparison to other published comparisons between Hi-C experiments and simulations 
at the TAD scale [15, 21, 23, 26, 27, 40, 54], by eye, we judge the agreement displayed 
in Fig. 1A and B to be comparable or superior. To quantitatively compare the simulated 
and experimental contact maps, we examined the ratio of each pair of compared Hi-C 
maps in logarithmic scale, plotted as Fig. 1E and F, which further illustrate a good agree-
ment between experiment and simulation of the same region and a mismatch between 
non-overlapping regions. Each pixel in the ratio maps shown in Fig. 1E and F is the ratio 
between the corresponding pixels, En and Sn , whichever is larger, from the two com-
pared Hi-C maps, respectively, i.e., e| log(En/Sn)| . Therefore, all pixels in the ratio maps are 
always greater or equal to 1. Overall, Fig. 1E is lightly shaded, indicating relatively small 



Page 6 of 30Yuan et al. Genome Biology          (2024) 25:293 

discrepancies overall between the simulation and experiment of Fig. 1A and B. By con-
trast, Fig.  1F contains many more darker pixels, indicating relatively large differences 
between the experimental Hi-C maps of different genomic regions.

Overall, we have simulated Hi-C maps for a total of five 1.2-Mb-sized genomic regions 
(only the middle 1 Mb regions are displayed to avoid any possible distortions from the 
simulation boundaries), one from each chromosome arm that exceeds 1.2 Mb in length 
(the left arm of chromosome 3 was omitted, since it is 1.1 Mb long). These five regions 
together span more than one-third of the entire fission yeast genome. In every case, we 
achieve good agreement between the experimental and simulated Hi-C maps (Fig. 1 and 
Additional File 1: Figs. S1–4).

Figures S5–9 (Additional File 1) also present the comparisons between the CCLE-
predicted Hi-C maps and the newer Micro-C data for S. pombe from Hsieh et al. [56], 
both binned at a higher resolution of 2 kb. Since there are a reduced number of counts 
in each genomic pixel at 2 kb-resolution, the experimental contact map tends to be 
relatively noisy, which explains the relatively high MPR and low PCC values (given in 

Fig. 1  Conserved-current loop extrusion (CCLE) model recapitulates TAD-scale chromatin organization 
in interphase S. pombe using cohesin ChIP-seq data. A Comparison between Hi-C map of 1 Mb region, 
generated by the CCLE model (using cohesin ChIP-seq data from Ref. [55]), and the experimental Hi-C 
map [55] of the same region. B, Magnified comparisons of experimental and simulated Hi-C from panel A for 
three representative sub-regions, each 150 kb in size, located at 0.39–0.54 Mb, 0.83–0.98 Mb, and 1.04–1.19 
Mb, from top to bottom. C Magnified comparisons of two experimental Hi-C from panel D. D Comparison 
between two experimental Hi-C maps [55] from two different regions. All Hi-C maps show interactions up to 
a genomic separation of 120 kb. E Contact probability ratio maps between the simulated and experimental 
Hi-C shown in panel A. Each pixel represents the ratio of contact probabilities of the corresponding pixels of 
the simulated and experimental Hi-C shown in panel A. F Contact probability ratio maps between the two 
experimental Hi-C maps shown in panel D. Pixels with darker shades indicate a poorer agreement than pixels 
with lighter shades. All maps are displayed in log-scale. The simulated Hi-C map is generated by the CCLE 
model using the best-fit parameters given in Table 2. The optimization process is discussed in Additional File 
1: Methods
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the figure captions) compared to the Hi-C comparisons displayed at 10 kb-resolution. 
Nevertheless, the comparisons at 2 kb-resolution reveal clear left-right symmetry as 
well, indicating that CCLE also accurately describes the experimental contact maps at 
this higher resolution. Also included in Figures S5–9 (Additional File 1) are compari-
sons between the original Hi-C maps of Mizuguchi et al. and the newer maps of Hsieh 
et  al., binned to 10  kb-resolution. Inspection of these comparisons does not reveal 
any major new features in the interphase fission yeast Hi-C map on the 10–100  kb 
scale that were not already apparent from the Hi-C maps of Mizuguchi et al.

An additional, commonly applied way to compare Hi-C experiments and simula-
tions is to examine the mean contact probability, P(s), for loci with genomic separa-
tion, s. Figure 2 displays five P(s)-versus-s curves, each corresponding to one of the 
five regions simulated. Experimental and simulated mean contact probabilities are 
shown as the open circles and solid lines, respectively. Evidently, the experimental 
mean contact probabilities are very similar for different genomic regions, except 
for large separation contacts in the 1.2–2.4  Mb region of Chr 3, whose probability 
exceeds that of the other regions by about 15%. For every region, the simulated mean 
contact probability agrees well with its experimental counterpart, throughout the 
range of genomic separations studied (20 kb–500 kb), bolstering a posteriori the sim-
ple, analytic approach to polymer self-contacts, described in the “Methods” section.

To achieve the good agreement between simulation and experiment, evident in 
Figs. 1A, B and 2, we chose to quantify and minimize discrepancies between exper-
imental and simulated Hi-C maps, similarly to Refs.  [27, 54], using an objective 

Fig. 2  CCLE reproduces P(s) curves of experimental Hi-C contact maps across the entire S. pombe genome. 
Chromatin mean contact probabilities, P(s), as a function of genomic separation, s, are plotted in circles for 
five 1.2 Mb genomic regions, using experimental Hi-C contact map data from ref. [55]. The corresponding P(s) 
curves of CCLE-simulated Hi-C contact maps are plotted as lines. Different colors represent different regions: 
yellow, 0.5–1.7 Mb of Chr 1; purple, 4.2–5.4 Mb of Chr 1; red, 0.2–1.4 Mb of Chr 2; green, 1.8–3.0 Mb of Chr 2; 
cyan, 1.2–2.4 Mb of Chr 3. The vertical gray dashed line indicates the maximum genomic separation displayed 
in the Hi-C comparison maps and ratio maps shown in Fig. 1
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function, that can be interpreted as the mean pairwise ratio (MPR) of experimental 
and simulated pixels, whichever is larger, averaged over all pixels:

where En and Sn are the experimental and simulated contact probabilities, respectively, 
for pixel n, and N is the total number of pixels in the map of Fig. 1A. Note that the MPR 
value of the two compared maps is exactly the mean of all pixel values of their ratio map. 
A value of MPR closer to unity indicates better agreement. The MPR between the simu-
lated and experimental Hi-C maps of Fig. 1A is 1.0911 (Table 1), while for the experi-
mental Hi-C maps from two different regions (Fig. 1D), it is 1.1965 (Additional File 1: 
Table S1), showing a deviation from unity more than twice as large.

In addition to the MPR, we also calculated the P(s)-scaled Pearson correlation coef-
ficient (PCC) for pairs of Hi-C maps (Table 1 and Additional File 1: Table S1). The PCC 
for the simulated and experimental Hi-C maps of Fig.  1A is 0.6728, indicating a high 
correlation between the two maps. In contrast, the PCC for the experimental Hi-C 
maps shown in Fig. 1D, corresponding to non-overlapping genomic regions, is −0.0443 
(Additional File 1: Table S1), indicating no correlation, as expected for the comparison 
between two different regions. For all five regions studied, the MPR scores and PCCs 
correspond to distinctly smaller differences overall and significantly greater correlation, 
respectively, between experimental and simulated Hi-C maps (Table  1) than between 
different experimental Hi-C maps (Additional File 1: Table S1), demonstrating that the 
CCLE model is able to predict and reproduce TAD patterns in S. pombe, based solely on 
cohesin ChIP-seq data.

To obtain the best agreement between simulation and experiment, we optimized the 
four model parameters, namely, LEF density ( ρ ), LEF processivity (L), cohesive cohesin 
density ( ρc ), and chromatin persistence length, by minimizing Eq.  5, as described in 
more detail in Additional File 1: Methods. For each simulated region, the model param-
eters were optimized independently to their best-fit values, which are presented in 
Table 2. The optimized values of the LEF density and the LEF processivity are similar 
and have small errors, suggesting that the best-fit values of these parameters are robust 
and that cohesin-driven loop extrusion processes are essentially uniform across the S. 

(5)MPR =
1

N

N

n=1

e
| log( EnSn )|,

Table 1  Mean pairwise ratio (MPR) score and P(s)-scaled Pearson correlation coefficient (PCC) 
between experimental and model-generated Hi-C after model parameter optimization

Regions MPR PCC

S. pombe Chr1: 0.6–1.6 Mb 1.0984 0.5955

S. pombe Chr1: 4.3–5.3 Mb 1.1102 0.5249

S. pombe Chr2: 0.3–1.3 Mb 1.0911 0.6728

S. pombe Chr2: 1.9–2.9 Mb 1.0877 0.6493

S. pombe Chr3: 1.3–2.3 Mb 1.0902 0.6188

S. cerevisiae Chr13: 290–790 kb (meiotic) 1.2516 0.7409

S. cerevisiae Chr10: 250–350 kb (mitotic) 1.9536 0.4488

S. pombe Chr2: 0.3–1.3 Mb (condensin) 1.1793 -0.0837
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pombe genome, at least at a resolution of 10 kb. The best-fit LEF density of 0.033 kb−1 
corresponds to a cellular copy number of about 400 loop-extruding cohesin complexes 
per cell. If we also take the best-fit “cohesive cohesin density” parameter at face value, 
then there are approximately an additional 400 cohesive cohesins per cell, that is, 800 
cohesins in total, which may be compared to the copy numbers from Ref.  [57] of the 
constituents of the cohesin core complex, namely Psc3, Psm1, Psm3, and Rad21, of 723, 
664, 1280, 173, respectively (mean 710). The best-fit values of the chromatin persistence 
length are also similar for different genomic regions, reflecting the similar behavior of 
the mean contact probability, P(s), versus genomic separation, s, for different genomic 
regions (Fig. 2). The best-fit values of the chromatin persistence length, which lie in the 
75–95  nm range, may be compared to the value of 70  nm, reported in Ref.  [58]. The 
relatively larger errors in the best-fit values of persistence length reflect the fact that our 
polymer model is only sensitive to the persistence length for large genomic separations 
(Additional File 1: Methods, Eq.  S36 and Fig.  S10). The best-fit values of the cohesive 
cohesin density show a greater variation for different genomic regions than the other 
parameters, hinting that the level of sister chromatid cohesion may vary across the 
genome. Alternatively, however, the apparent variation in this parameter could reflect 
different Psc3 ChIP-seq background levels or shifts for different regions (the “Methods” 
section).

In addition to cohesin, we also tested whether condensin, which is also a member of 
the SMC complex family shown to extrude DNA loops in vitro [59], could be another 
LEF that determines chromatin spatial configurations in S. pombe. However, when we 
carry out CCLE simulations using the ChIP-seq signal of interphase S. pombe conden-
sin [60], the resultant best-fit simulated Hi-C map shows poor agreement with experi-
ment (Additional File 1: Fig. S11 and Table 1), reinforcing that cohesin predominantly 
determines TAD-scale chromatin organization in interphase S. pombe.

Table 2  Optimized parameters of CCLE simulations for different genomic regions in interphase S. 
pombe, meiotic S. cerevisiae, and mitotic S. cerevisiae 

LEF density is given in terms of number of LEFs per kilobase pair; processivity is defined as the averaged LEF processivity in 
the corresponding region, in the absence of obstacles; cohesive cohesin density is also given in terms of number of cohesive 
cohesins per kilobase pair. Parameters are optimized to minimize the mean pairwise ratio (MPR). See Additional File 1: 
Methods for details of statistical error calculation and the optimization process

LEF density, ρ (1/
kb)

Mean 
processivity, 
L (kb)

Persistence 
length (nm)

Cohesive cohesin 
density, ρc (1/kb)

Gaussian σ (kb)

S. pombe

 Chr1: 0.5–1.7 Mb 0.033 (± 0.001) 30.0 (± 0.7) 85 (± 19) 0.037 (± 0.003)

 Chr1: 4.2–5.4 Mb 0.033 (± 0.001) 31.2 (± 0.8) 75 (± 23) 0.014 (± 0.003)

 Chr2: 0.2–1.4 Mb 0.033 (± 0.001) 30.0 (± 0.8) 80 (± 21) 0.050 (± 0.004)

 Chr2: 1.8–3.0 Mb 0.033 (± 0.001) 30.0 (± 0.6) 80 (± 13) 0.028 (± 0.005)

 Chr3: 1.2–2.4 Mb 0.030 (± 0.001) 33.3 (± 1.0) 95 (± 17) 0.043 (± 0.004)

S. cerevisiae

 Chr13: 240–840 kb 
(meiotic)

0.058 (± 0.003) 38.4 (± 3.3) 160 (± 19) 0.018 (± 0.009) 90 (± 25)

 Chr10: 100–700 kb 
(mitotic)

0.033 (± 0.003) 7.2 (± 0.2) 60 (± 2) 0 98 (± 3)
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CCLE self‑consistently reproduces cohesin ChIP‑seq data

In addition to predicting chromatin organization as measured by Hi-C maps and mean 
contact probability curves, loop extrusion simulations simultaneously yield position-
dependent LEF occupancy probabilities. For a typical 200-kb-sized region of S. pombe’s 
Chr 2, Fig. 3A compares the simulated time- and population-averaged probability that 
a chromatin lattice site is occupied by a LEF (red curve) to the corresponding experi-
mental ChIP-seq data for Psc3 [55] (blue curve), converted to occupancy probability, as 
described in the “Methods” section. Evidently, the simulated LEF occupancy probability 
matches the experimental Psc3 occupancy probability well. Indeed, as shown in Fig. 3B, 
the cross-correlation of experimental and simulated occupancy probability is nearly 0.7. 
In both cases, a number of peaks are apparent, extending above background to about 
twice, or less than twice, background. In the context of CCLE, this relatively weak con-
trast in occupancy probability gives rise to a corresponding relative lack of contrast in S. 
pombe’s interphase Hi-C pattern.

While unsurprising, given that we set the position-dependent loop extrusion rates 
using the Psc3 ChIP-seq data, the good agreement between experimental and simulated 
occupancy probabilities implies that our simulations are self-consistent and that the 
assumptions, leading to Eqs. 3 and 4, are valid for the parameters that are determined 
to best-describe the Hi-C contact map. The extent to which our best-fit simulations sat-
isfy the assumptions, underlying CCLE, can be further assessed by examining the simu-
lated distributions of the following dimensionless quantities, all of which should be small 
when CCLE is applicable:

which specifies the fractional imbalance in the numbers of left- and right-moving LEF 
anchors at each lattice site;

which is the ratio of the net current of right moving LEF anchors at each site, that vio-
lates current conservation, as a result of binding or unbinding, to the mean current of 
right-moving anchors, that satisfies current conservation; and

which is the corresponding conserved-current violation ratio for left-moving LEF 
anchors. As shown in Additional File 1: Fig. S12, all three of these quantities are distrib-
uted around zero with only small excursions (standard deviations ∼ 0.1 ), consistent with 
the assumptions, leading to Eqs. 3 and 4. While loop extrusion in interphase S. pombe 
seems to well satisfy the assumptions underlying CCLE, this may not always be the case.

(6)
Rn − Ln

Rn + Ln
,

(7)
An − Dn

1
2 (Vn−1Rn−1(1− Pn)+ VnRn(1− Pn+1))

,

(8)
an − dn

1
2 (Un+1Ln+1(1− Pn)+ UnLn(1− Pn−1))

,
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Loop configurations in interphase S. pombe

The good agreement between our simulated Hi-C maps and experimental Hi-C 
maps suggests that the corresponding simulated loop configurations are realistic 
of loop configurations in live S. pombe. Figure 4A shows three representative simu-
lated loop configurations for a 1.2-Mb region of Chr 2, corresponding to the best-fit 

Fig. 3  CCLE reproduces experimental cohesin occupancy landscape in S. pombe. A Comparison between 
the experimental cohesin occupancy probability landscape [55] (blue) and the simulated LEF occupancy 
probability landscape by CCLE (red) in the 450–650-kb region of Chr 2 of interphase S. pombe. The 
occupancy probability curves are normalized by the corresponding optimized LEF density of 0.033 kb−1 . B 
Cross-correlation between the experimental cohesin occupancy probability landscape and the simulated LEF 
occupancy probability landscape by CCLE, as a function of relative genomic shift
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parameters. In this figure, as in Ref.  [61], each loop is represented as a semicircle 
connecting the genomic locations of the two LEF anchor points. Because the model 
does not permit LEF anchors to pass each other, correspondingly semicircles never 
cross, although they frequently contact each other and nest, as is apparent for the 
configurations in Fig.  4A. The distributions of loop sizes for all five regions simu-
lated in S. pombe are presented in Fig. 4B. Evidently, the loop size distributions are 
similar for all five regions with an overall mean and standard deviation of 22.1  kb 
and 19.5  kb, respectively. The mean loop size may be compared to the number of 
base pairs within the chromatin persistence length, estimated to comprise 3.5 kb by 
taking the chromatin linear density to be 50  bp/nm [58]. Thus, typical loops con-
tain several ( ∼ 6 ) persistence lengths of the chromatin polymer. Figure  4C shows 
the distributions of chromatin backbone segment lengths, i.e., the distributions of 
lengths of chromatin segments, that lie outside of loops. Again, these distributions 
are similar for all regions simulated with an overall mean and standard deviation of 
28.9  kb and 26.8  kb, respectively, again corresponding to several ( ∼ 8 ) persistence 
lengths between loops. Since a LEF’s anchors bring the chromosomal loci, bound 
by the LEF anchors, into spatial proximity, loops lead to a significant linear com-
paction of the chromatin polymer. Figure 4D shows the distributions of chromatin 
compaction across an ensemble of loop configurations, defined as the fraction of the 
chromatin contour length contained within the backbone. These distributions too 
are similar for all five regions simulated, with overall mean and standard deviation of 
0.4161 and 0.0663, implying that the chromatin polymer’s contour length in fission 
yeast is effectively 2.5-times shorter with loops than without.

Fig. 4  Loop configurations and properties. A Snapshots of three representative simulated loop 
configurations of interphase S. pombe’s 200–1400 kb region of Chr 2. In each case, the chromatin backbone 
is represented as a straight line, while loops are represented as semicircles connecting loop anchors, 
following Ref. [61]. Because LEF anchors block each other, loops can nest but they cannot cross. B, C, and D 
Distributions of loop size, backbone segment length, and chromatin compaction ratio (as measured by the 
fraction of the chromatin contour length within the backbone), respectively, for the five genomic regions 
of interphase S. pombe, listed in Table 2: yellow, Chr 1: 0.5–1.7 Mb; purple, Chr 1: 4.2–5.4 Mb; red, Chr 2: 
0.2–1.4 Mb; green, Chr 2: 1.8–3.0 Mb; cyan, Chr 3: 1.2–2.4 Mb
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Diffusion capture model does not reproduce experimental interphase S. pombe Hi‑C maps

Because Hi-C and ChIP-seq both characterize chromatin configuration at a single 
instant of time, and do not provide any direct time-scale information, an alternative 
mechanism that somehow generates the same instantaneous loop distributions and 
loop correlations as loop extrusion would lead to the same Hi-C map as does loop 
extrusion. This observation has motivated consideration of diffusion capture models 
in which loops occur and persist as a result of loop capture via binding events [11, 
14, 15, 17, 20, 22–24, 62, 63]. Such a scenario is well recognized for a number of 
isolated enhancer-gene loci pairs in, for example, Drosophila melanogaster [64]. A 
major obstacle to the application of such models across the genome is that there 
is no physical basis for diffusion capture models to give rise to the approximately 
exponential loop size distributions, which emerge naturally from the loop extrusion 
model and well describe Hi-C maps (Fig. 4). Instead, the loops in diffusion capture 
models can be expected to realize an equilibrium, power-law distribution of loop 
sizes (Additional File 1: Fig.  S15D), corresponding to the return probability of a 
random walk. To investigate quantitatively how well a physically sensible diffusion 
capture model can describe Hi-C maps, while remaining consistent with cohesin 
ChIP-seq, we considered a diffusion capture model in which the probability that a 
loop connects sites i and j is proportional to

where Pi is the probability that site i is occupied by cohesin, which we determine from 
cohesin ChIP-seq data without distinguishing between cohesive and loop-extruding 
cohesins, and the factor |i − j|−

3
2 corresponds to the probability that a unconstrained 

random walk returns to its starting point after i − j steps (self-avoidance would change 
the exponent, but not the power-law behavior).

By using the experimental interphase S. pombe cohesin (Psc3) ChIP-seq data 
to determine Pi , we have carried out Monte Carlo simulations of this model with 
only two possible parameters: LEF density and chromatin persistence length, both 
derived from the CCLE-best-fit values for S. pombe. These simulations yield an 
ensemble of loop configurations, in turn allowing us to calculate the correspond-
ing Hi-C maps in the same way that we calculate Hi-C maps from the ensemble of 
loop configurations generated by CCLE simulations. Figure  S15A (Additional File 
1) compares a portion of the Hi-C map, simulated on the basis of the diffusion cap-
ture model, to the corresponding experimental Hi-C. Also illustrated in Figure S15B 
(Additional File 1) is the ratio map between the diffusion-capture-simulated Hi-C 
and experiment, showing more darker pixels than the ratio map between the CCLE-
simulated Hi-C and the experiment (Fig. 1E). Evidently, the diffusion capture model 
gives rise to a Hi-C map that provides a much poorer description of the experimen-
tal Hi-C map (with an MPR of 1.1754 and a PCC of 0.2675), than does CCLE, largely 
failing to reproduce the inhomogeneous pattern of squares corresponding to TADs 
and to match the measured P(s) (Additional File 1: Fig. S15C). This comparison sug-
gests that loop extrusion-based models for chromatin organization should be much 
preferred over diffusion capture models.

(9)PiPj|i − j|−3/2,
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CCLE describes TADs and loop configurations in meiotic S. cerevisiae

CCLE simulations accurately reproduce experimental Hi‑C maps of meiotic S. cerevisiae

To further examine the ability of CCLE to describe TAD-scale chromatin organiza-
tion, we next sought to describe the Hi-C map of meiotic S. cerevisiae from Ref. [65], 
using the ChIP-seq data of the meiotic cohesin core subunit, Rec8, from Ref.  [66]. 
In contrast to the semi-dilute polymer solution envisioned to describe chromatin 
in interphase, in meiosis, the chromatin polymer is significantly compacted and is 
conspicuously organized about the chromosomal axis. Therefore, meiotic chroma-
tin represents a very different polymer state than interphase chromatin, in which to 
test CCLE. To empirically account for increased polymer volume exclusion as a result 
of this more compacted polymer state, we scale the P(s) of the simulated Hi-C by a 
Gaussian scaling factor with standard deviation, σ , given in Table 2.

The right-hand side of Fig. 5A depicts a 500-kb portion of the experimental Hi-C 
map of meiotic S. cerevisiae’s Chr 13 from 290 kb to 790 kb, using a logarithmic false-
color intensity scale. In comparison, the left-hand side of Fig. 5A presents the corre-
sponding best-fit simulated Hi-C map. Both maps are shown at 2-kb resolution (the 
original simulated Hi-C map was at 500-bp resolution and binned to 2 kb to match the 
experimental resolution). Figure 5B magnifies the experiment-simulation comparison 
for three representative 80-kb sub-regions. Both Fig. 5A and B reveal similar patterns 
of high-probability contacts for the experimental and simulated Hi-C maps, mani-
fested in a high-degree of left-right symmetry. However, in contrast to the patch-like 
TAD patterns featured in the experimental and simulated Hi-C maps of interphase 
S. pombe, which consist of overlapping squares with more-or-less evenly distributed 
enhanced contact probability, the TADs of meiotic S. cerevisiae are dominated by 
discrete lines of high contact probability and their intersection points. Nevertheless, 
Fig.  5A and B make it clear that in spite of their strikingly different appearances to 
the TAD patterns of interphase S. pombe, the grid-like patterns of TADs in meiotic S. 
cerevisiae are also well reproduced by CCLE model. In addition, the three quantities, 
given by Eqs. 6, 7, and 8, are distributed around zero with relatively small fluctuations 
(Additional File 1: Fig. S13), indicating that CCLE model is self-consistent in this case 
also.

The very different appearances of the Hi-C maps of interphase S. pombe and meiotic 
S. cerevisiae directly follow from the much greater contrast of meiotic S. cerevisiae’s 
cohesin ChIP-seq profile, which consists of a dense pattern of strong, narrow peaks, 
which extend above the background to reach 4 or 5 times background (Fig. 5D). Also 
different is the best-fit value of the LEF density, which is about twice as large in mei-
otic S. cerevisiae as in interphase S. pombe (Table 2). However, the best-fit value for 
the LEF processivity of meiotic S. cerevisiae is similar to that of interphase S. pombe, 
suggesting loop-extruding cohesins possess similar properties in both species. Val-
ues for the LEF density (0.058 kb−1 ) and processivity (38.4 kb) may be compared to 
the best-fit values given in Ref.  [54], of 0.03–0.04  kb−1 and 64–76  kb, respectively. 
The best-fit value of the cohesive cohesin density is noticeably smaller for meiotic S. 
cerevisiae than for interphase S. pombe. It is also significantly smaller than the best-
fit density of loop-extruding cohesins, suggesting that the preponderance of cellular 
cohesins are involved in loop extrusion in meiotic S. cerevisiae. The best-fit value of 
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persistence length of meiotic chromatin in S. cerevisiae is about twice that of inter-
phase chromatin in S. pombe, potentially indicating stiffer chromatin due to a more 
compact chromatin state.

In spite of the agreement between simulation and experiment, evident in Fig. 5A and 
B, the experiment-simulation comparison for meiotic S. cerevisiae shows a higher MPR 
and lower PCC than for interphase S. pombe (Table 1), indicating a poorer fit. However, 
we ascribe this poorer fit, at least in part, to the larger experimental errors of the former 
dataset. These larger experimental errors are apparent when we calculate the MPR and 
the PCC for the two duplicate Hi-C datasets available in Ref. [65], which take values of 

Fig. 5  Conserved-current loop extrusion (CCLE) model recapitulates TAD-scale chromatin organization 
in meiotic S. cerevisiae using cohesin ChIP-seq data. A Comparison between the simulated Hi-C map 
of 290–790 kb region of Chr 13, generated by the CCLE model (using meiotic Rec8 ChIP-seq data from 
Ref. [66]), and the experimental Hi-C map [65] of the same region. Both Hi-C maps show interactions up to a 
genomic separation of 64 kb. B Magnified experiment-simulation Hi-C comparisons for three representative 
sub-regions of 80 kb in size: 412–492 kb, 546–626 kb, and 672–752 kb, from top to bottom. C Contact 
probability ratio map between the experimental and simulated Hi-C maps in panel A. D Normalized 
experimental meiotic cohesin (Rec8) occupancy probability (blue) and simulated LEF occupancy probability 
landscape (red). The occupancy probability curves are plotted for 440–640 kb of Chr 13 and are normalized 
by the corresponding optimized LEF density of 0.058 kb−1 . E Cross-correlation between the experimental 
meiotic cohesin (Rec8) occupancy landscape and the simulated LEF occupancy probability landscape, as 
a function of relative genomic shift. F Chromatin mean contact probability, P(s), plotted as a function of 
genomic separation, s, for the experimental (blue circles) and simulated (red line) Hi-C, with the latter scaled 
by the Gaussian scaling factor as described in the “Methods” section. The vertical gray dashed line indicates 
the maximum genomic separation displayed in the Hi-C comparison map in panels A and B. G Snapshots 
of three representative simulated meiotic loop configurations in the 240–840-kb region of Chr 13. In each 
case, the chromatin backbone is represented as a straight line, while loops are represented as semicircles 
connecting loop anchors, following Ref. [61]. Because LEF anchors block each other, loops can nest but 
they cannot cross, although they frequently come into contact. Simulation results shown in this figure are 
generated by CCLE using the best-fit parameters given in Table 2. The optimization process is discussed in 
Additional File 1: Methods
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1.5714 and 0.8180, respectively. The MPR score reveals greater discrepancies between 
the two nominally identical meiotic S. cerevisiae datasets than between the experiment 
and the best-fit simulation. Furthermore, the PCC score for the comparison between 
two nominally identical datasets is not significantly higher than that for the experiment-
simulation comparison.

CCLE self‑consistently reproduces Rec8 ChIP‑seq data in meiotic S. cerevisiae

For a typical 200-kb-sized region of Chr 13 of S. cerevisiae, Fig. 5D compares the simu-
lated time- and population-averaged probability that a chromatin lattice site is occupied 
by a LEF (red curve) to the corresponding experimental ChIP-seq data for Rec8  [66] 
(blue curve), converted to occupancy probability, as described in the “Methods” section. 
Clearly, the simulated LEF occupancy probability matches the experimental Rec8 occu-
pancy probability well, with a cross-correlation value of almost 0.8 (Fig. 5E).

Loop configurations in meiotic S. cerevisiae

Figure 5G shows three representative simulated loop configurations for the 240–840 kb 
region of Chr 13, corresponding to the best-fit parameters. In comparison to the loop 
configurations in interphase S. pombe, the loops in meiotic S. cerevisiae appear more 
regularly spaced, corresponding to the more regularly distributed peaks of meiotic S. 
cerevisiae’s cohesin ChIP-seq data. Figures S16A and B (Additional File 1) present the 
distributions of loop sizes and backbone segment lengths, respectively, for the same 
region in S. cerevisiae. The mean and standard deviation of these quantities are 19.82 and 
16.06 kb (mean) and 15.97 and 14.67 kb (SD), respectively. Figure S16C (Additional File 
1) shows the distributions of chromatin relative compaction, whose mean and standard 
deviation are 0.2129 and 0.0702, i.e., the chromatin polymer’s contour length in meiotic 
S. cerevisiae is effectively 5 times shorter with loops than without, twice as compact as 
the interphase S. pombe’s chromatin. Motivated by the experimental observation that 
the inactivation of “cohesin release factor,” Wpl1, gives rise to larger loops  [41, 42, 67, 
68],we performed CCLE simulations of wild-type and Wpl1-depleted meiotic S. cerevi-
siae using the corresponding meiotic ChIP-seq data of Smc3  [69]. Indeed, we observe 
enhanced loop sizes in Wpl1-depleted cells with a mean loop size that is two and a half 
times larger than in wild-type cells (Additional File 1: Fig. S17).

CCLE describes TADs and loop configurations in mitotic S. cerevisiae

Next, we applied CCLE to the Hi-C map of mitotic S. cerevisiae using the mitotic 
ChIP-seq data for the cohesin core protein, Mcd1, from Ref. [70]. The right hand side 
of Fig. 6A displays the Hi-C map of the 250–350-kb region of mitotic S. cerevisiae’s 
chromosome 10 at 500-bp resolution, reproducing the Hi-C data shown in Fig. 2A of 
Ref. [71], up to a genomic separation of 45 kb. All else being equal, as a result of the 
500-bp-resolution, there are a reduced number of counts in each genomic pixel, com-
pared to Hi-C maps displayed at lower resolutions. It follows that this experimental 
contact map is relatively noisy compared to both interphase S. pombe and meiotic S. 
cerevisiae. Nevertheless, standing above a field of relatively weak contacts, it is appar-
ent that mitotic S. cerevisiae’s Hi-C map is primarily characterized by the presence of 
a number of prominent, isolated points of high-probability contacts―often called 
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“puncta.” Unsurprisingly, mitotic S. cerevisiae’s Hi-C map is very different from that of 
interphase S. pombe (Fig. 1). However, it also appears distinct from the Hi-C map of 
meiotic S. cerevisiae (Fig. 5), in spite of the fact that the cohesin ChIP-seq of mitotic 
S. cerevisiae shows the same peak locations as the cohesin ChIP-seq of meiotic S. cer-
evisiae, as illustrated in Figure  S18A (Additional File 1). Importantly, however, the 
cohesin ChIP-seq peaks are higher and narrower in the mitotic case than in the mei-
otic case, while the ChIP-seq signal between the peaks is suppressed in the mitotic 
case relative to the meiotic case. The lack of cohesin background signal in the mitotic 
case likely suggests that the mitotic cohesive cohesin density is very low.

In comparison with the experimental Hi-C map on the right-hand side Fig.  6A, 
the left-hand side of Fig.  6A shows the corresponding best-fit simulated Hi-C map 

Fig. 6  Conserved-current loop extrusion (CCLE) model recapitulates TAD-scale chromatin organization in 
mitotic S. cerevisiae using cohesin ChIP-seq data. A Comparison between the Hi-C map of 250–350 kb of 
Chr 10, generated by the CCLE model (using mitotic Mcd1 ChIP-seq data from Ref. [70]), and the experimental 
Hi-C map [71] of the same region. Both Hi-C maps show interactions up to a genomic separation of 45 kb. 
B Contact probability ratio map between the experimental and simulated Hi-C in panel A. C Normalized 
experimental mitotic cohesin (Mcd1) occupancy probability (blue) and simulated LEF occupancy probability 
landscape (red). The occupancy probability curves are normalized by the corresponding optimized LEF 
density of 0.033 kb−1 . D Cross-correlation between the experimental mitotic cohesin (Mcd1) occupancy 
landscape and the simulated LEF occupancy probability landscape, as a function of relative genomic 
shift. E Chromatin mean contact probability, P(s), plotted as a function of genomic separation, s, for the 
experimental (blue circles) and simulated (red line) Hi-C , scaled by the Gaussian correction factor as 
described in the “Methods” section. The vertical gray dashed line indicates the maximum genomic separation 
displayed in the Hi-C comparison map in panel A. F Snapshots of three representative simulated mitotic loop 
configurations in the 100–700 kb region of Chr 10. In each case, the chromatin backbone is represented as a 
straight line, while loops are represented as semicircles connecting loop anchors, following Ref. [61]. Because 
LEF anchors block each other, loops can nest but they cannot cross, although they frequently come into 
contact. Simulation results shown in this figure are generated by CCLE using the best-fit parameters given in 
Table 2. The optimization process is discussed in Additional File 1: Methods
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generated by the CCLE model. The CCLE-simulated Hi-C map shows puncta that 
well match the experimental puncta, demonstrating that CCLE is also able to well-
describe chromatin looping in mitotic S. cerevisiae. In spite of the agreement between 
simulation and experiment, the experiment-simulation comparison for mitotic S. cer-
evisiae reveals a higher MPR and lower PCC compared to both interphase S. pombe 
and meiotic S. cerevisiae, which may indicate a poorer fit or noisier experimental 
data (Table  1). Given the noisier nature of the Hi-C data at this higher resolution, 
we ascribe the lower MPR and PCC scores to the latter case. Figure  6B shows the 
contact probability ratio map between the experimental and simulated Hi-C maps 
from which the noise present in these data is further apparent. It is important to note 
that the poorer MPR and PCC scores could also arise from the kilobase-scale features 
that originate from nucleosomes in high-resolution Hi-C maps, as CCLE does not 
describe nucleosome-level organization.

Interestingly, except the Gaussian scaling factors, the best-fit values of all other model 
parameters for mitotic S. cerevisiae (Table 2) are quite different from those for meiotic 
S. cerevisiae. Specifically, the LEF density is about half of the value observed in mei-
otic S. cerevisiae, the LEF processivity for mitotic S. cerevisiae is only about 20% of the 
value observed in meiotic S. cerevisiae, and the persistence length is only about 40%. It 
is important to realize that, since the persistence length and the Gaussian scaling factor 
primarily determine the long-range genomic contact, altering one of these parameters 
is likely to affect the best-fit value of the other. To reflect the lack of background signal 
in the experimental mitotic cohesin ChIP-seq data, we set the value of cohesive cohesin 
density to zero (Table 2). The circumstances of fewer and less extended cohesin loops in 
the mitotic case, compared to the meiotic case, are reflected in the sparser and smaller 
loops in Fig. 6F, compared to Fig. 5G. Thus, according to the CCLE model, the different 
appearances of the Hi-C maps of meiotic and mitotic S. cerevisiae originate from the dif-
ferences in their ChIP-seq profiles, as well as variations in cohesin density and processiv-
ity between the two cases.

Figure 6C displays the normalized experimental mitotic cohesin occupancy probabil-
ity derived from Mcd1 ChIP-seq [70] (blue line), versus LEF occupancy probability from 
the CCLE simulation (red line). Both landscapes appear very similar, with strong peaks 
at the same genomic locations (although the experimental peaks are higher), and they 
exhibit a very strong cross-correlation (Fig. 6D). As shown in Fig. 6E, the experimental 
chromatin mean contact probability, P(s), as a function of genomic separation, s, is also 
well reproduced by the CCLE model.

However, in comparison to the previous two examples, the three quantities, given by 
Eqs. 6, 7, and 8, have broader distributions and larger standard deviations around the 
mean values, which are nevertheless close to zero (Additional File 1: Fig.  S14). Inter-
estingly, lattices with a greater imbalance of left- and right-moving LEFs are found on 
both sides of cohesin peaks. Indeed, Figure S14C (Additional File 1) presents the cross-
correlation between the cohesin ChIP-seq and the imbalance landscape, where the 
trough-peak pattern around zero suggests that there are more right-moving LEF anchors 
approaching the left sides of cohesin peaks and more left-moving LEF anchors approach-
ing the right sides of cohesin peaks. Furthermore, Figures S14F and I (Additional File 1), 
which present the cross-correlations between cohesin ChIP-seq and current violation 
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landscapes, show significant troughs at zero, suggesting that LEF unbinding events 
outnumber the binding events at cohesin peaks. We ascribe these greater violations of 
CCLE’s assumptions at the locations of cohesin peaks in part to the low processivity of 
mitotic cohesin in S. cerevisiae, compared to that of meiotic S. cerevisiae and interphase 
S. pombe, and in part to the low CCLE loop extrusion rate at the cohesin peaks. While 
CCLE assumptions are violated at these sites, the model (1) does allow for these approx-
imations to be modeled, (2) provides internal metrics to check for violations, and (3) 
still recovers chromatin contact distribution correctly (based on Hi-C comparison). In 
the future, we plan to develop an improved version of CCLE that will self-consistently 
account for binding and unbinding, as well as imbalance of left- and right-moving LEFs, 
as follows: (1) from the previous best-fit simulation results, evaluate the empirical bind-
ing/unbinding rates and left/right-moving LEF imbalance for each lattice position, (2) 
update and solve the exact master equations, Eqs. 1 and 2, for the position-dependent 
loop extrusion rates using the empirical binding/unbinding rates and left/right-moving 
LEF proportions, (3) use the new loop extrusion rates to run CCLE simulations and 
obtain a new set of best-fit simulation results, (4) iterate until the simulation parameters 
converge.

Discussion
In vertebrates, CTCF defines the locations of most TAD boundaries. It is interesting to 
ask what might play that role in interphase S. pombe as well as in meiotic and mitotic S. 
cerevisiae. A number of papers have suggested that convergent gene pairs are correlated 
with cohesin ChIP-seq in both S. pombe [72, 73] and S. cerevisiae [68, 73–77]. Because 
CCLE ties TADs to cohesin ChIP-seq, a strong correlation between cohesin ChIP-seq 
and convergent gene pairs would be an important clue to the mechanism of TAD forma-
tion in yeasts. To investigate this correlation, we introduce a convergent-gene variable 
that has a non-zero value between convergent genes (determined using gene annotations 
from Saccharomyces Genome Database [78]) and an integrated weight of unity for each 
convergent gene pair. Figure S18A (Additional File 1) shows the convergent gene vari-
able, so-defined, alongside the corresponding cohesin ChIP-seq for meiotic and mitotic 
S. cerevisiae. It is apparent from this figure that a peak in the ChIP-seq data is accom-
panied by a non-zero value of the convergent-gene variable in about 80% of cases, sug-
gesting that chromatin looping in meiotic and mitotic S. cerevisiae may indeed be tied 
to convergent genes. Conversely, about 50% of convergent genes match peaks in cohesin 
ChIP-seq. The cross-correlation between the convergent-gene variable and the ChIP-seq 
of meiotic and mitotic S. cerevisiae is quantified in Figs.  S18B and C (Additional File 
1). By contrast, in interphase S. pombe, cross-correlation between convergent gene loca-
tions (determined using gene annotations from PomBase [79]) and cohesin ChIP-seq in 
each of five considered regions is unobservably small (Additional File 1: Fig. S19), sug-
gesting that convergent genes per se do not have a role in defining TAD boundaries in 
interphase S. pombe.

Although “bottom-up” models which incorporate explicit boundary elements do 
not exist for non-vertebrate eukaryotes, one may wonder how well such LEF models, 
if properly modified and applied, would perform in describing Hi-C maps with diverse 
features. To this end, we examined the performance of the model described in Ref. [54] 
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in describing the Hi-C map of interphase S. cerevisiae. Reference  [54] uses cohesin 
ChIP-seq peaks in meiotic S. cerevisiae to define the positions of loop extrusion barri-
ers which either completely stall an encountering LEF anchor with a certain probabil-
ity or let it pass. We apply this “explicit barrier” model to interphase S. pombe, using 
its cohesin ChIP-seq peaks to define the positions of loop extrusion barriers, and using 
Ref. [54]’s best-fit value of 0.05 for the pass-through probability. Although the applica-
bility of a pass-through probability of 0.05, derived from meiotic S. cerevisiae, to inter-
phase S. pombe is uncertain, in fact, simulations reveal that varying this quantity across 
the range from 0.005 to 0.5 causes only modest changes in the corresponding simulated 
Hi-C maps, as illustrated in Figs.  S20E and F (Additional File 1). Figure  S20A (Addi-
tional File 1) presents the simulated Hi-C map of the 0.3–1.3 kb region of Chr 2 of inter-
phase S. pombe in comparison with the corresponding Hi-C data. It is evident that the 
explicit barrier model provides a poorer description of the Hi-C data of interphase S. 
pombe compared to the CCLE model, as indicated by the MPR and PCC scores of 1.6489 
and 0.2267, respectively. While the explicit barrier model appears capable of accurately 
reproducing Hi-C data with punctate patterns, typically accompanied by strong peaks in 
the corresponding cohesin ChIP-seq, it seems less effective in cases such as in interphase 
S. pombe, where the Hi-C data lacks punctate patterns and sharp TAD boundaries, and 
the corresponding cohesin ChIP-seq shows low-contrast peaks. The success of the CCLE 
model in describing the Hi-C data of both S. pombe and S. cerevisiae, which exhibit very 
different features, suggests that the current paradigm of localized, well-defined bound-
ary elements may not be the only approach to understanding loop extrusion. By con-
trast, CCLE allows for a concept of continuous distribution of position-dependent loop 
extrusion rates, arising from the aggregate effect of multiple interactions between loop 
extrusion complexes and chromatin. This paradigm offers greater flexibility in recapitu-
lating diverse features in Hi-C data than strictly localized loop extrusion barriers.

In our current CCLE implementation, cohesin binds to chromatin at random loca-
tions. However, the fission yeast protein, Mis4, has been previously identified, as a com-
ponent of the cohesin loading complex [80–82], prompting us to envision a modification 
of the model to incorporate position-dependent cohesin binding with a binding rate pro-
portional to the Mis4 ChIP-seq signal. However, for S. pombe, the effect of such a modi-
fication on the resultant loop configurations must necessarily be small, because cohesin 
distribution essentially defines the steady-state distribution of loop anchors but there is 
no correlation between the Mis4 [83] and Psc3 [55] ChIP-seq signals (Additional File 1: 
Fig. S21A). Therefore, the overall distribution of cohesin along the genome (given by the 
Psc3 ChIP-seq) is independent of where the cohesin was putatively loaded (specified by 
the Mis4 ChIP-seq). This observation suggests that, in S. pombe at least, the collective 
spreading of cohesins following association to chromatin is sufficiently large, so as to 
obscure their initial positions.

As noted above, the input for our CCLE simulations of chromatin organization in S. 
pombe was the ChIP-seq of Psc3, which is a component of the cohesin core complex [84]. 
Accordingly, Psc3 ChIP-seq represents how the cohesin core complex is distributed 
along the genome. In S. pombe, the other components of the cohesin core complex are 
Psm1, Psm3, and Rad21. Because these proteins are components of the cohesin core 
complex, we expect that the ChIP-seq of any of these proteins would closely match 
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the ChIP-seq of Psc3 and would equally well serve as input for CCLE simulations of S. 
pombe genome organization. Figure S21C (Additional File 1) confirms significant cor-
relations between the ChIP-seq of Psc3 [55] and Rad21 [60]. In light of this observation, 
we then reason that the CCLE approach offers the opportunity to investigate whether 
other proteins beyond the cohesin core are constitutive components of the loop extru-
sion complex during the extrusion process (as opposed to only loading or unloading). 
To elaborate, if the ChIP-seq of a non-cohesin-core protein is highly correlated with the 
ChIP-seq of a cohesin core protein, we can infer that the protein in question is associ-
ated with the cohesin core and therefore is a likely participant in loop-extruding cohesin, 
alongside the cohesin core. Conversely, if the ChIP-seq of a putative component of the 
loop-extruding cohesin complex is uncorrelated with the ChIP-seq of a cohesin core 
protein, then we can infer that the protein in question is unlikely to be a component of 
loop-extruding cohesin or at most is transiently associated with it.

For example, in S. pombe, the ChIP-seq of the cohesin regulatory protein, Pds5 [83], is 
correlated with the ChIP-seq of Psc3 [55] (Additional File 1: Fig. S21B) and with that of 
Rad21 [60] (Additional File 1: Fig. S21D), suggesting that Pds5 can be involved in loop-
extruding cohesin in S. pombe, alongside the cohesin core proteins. Similar correlation 
between the ChIP-seq of Mcd1 [70] and Pds5 [85] is also found in S. cerevisiae (Addi-
tional File 1: Fig.  S22B). Interestingly, this inference concerning the fission yeast and 
budding yeast cohesin subunit, Pds5, stands in contrast to the conclusion from a recent 
single-molecule study [43] concerning cohesin in vertebrates. Specifically, Reference [43] 
found that cohesin complexes containing Pds5, instead of Nipbl, are unable to extrude 
loops. Other studies also found that Pds5 restricts DNA loop extrusion by cohesin in 
both budding yeast  [42, 68] and vertebrates  [41]. In light of these findings, an attrac-
tive explanation for the observed correlations between the ChIP-seq of Rad21/Mcd1 and 
Pds5 in S. pombe and S. cerevisiae is that Pds5 could act like a boundary element that 
stalls cohesin complexes upon contact, thus achieving colocalization with cohesin.

Additionally, as noted above, in interphase S. pombe, the ChIP-seq signal of the 
cohesin loader, Mis4, is uncorrelated with the Psc3 ChIP-seq signal in non-centromeric 
regions (Additional File 1: Fig. S21A), suggesting that Mis4 is, at most, a very transient 
component of cohesin in S. pombe. Such a correlation between the ChIP-seq of Scc2 [86] 
(counterpart of S. pombe’s Mis4) and the cohesin core (Mcd1  [70]) is also lacking in 
mitotic S. cerevisiae (Additional File 1: Fig.  S23). However, Reference  [87] found that, 
in addition to its role as a cohesin loader, Scc2 drives expansion of DNA loops in vivo in 
mitotic S. cerevisiae. Assuming that ChIP-seq data correctly reflects cohesin distribution, 
the absence of correlation between the ChIP-seq of Scc2 and cohesin core in mitotic 
S. cerevisiae suggests that the activity of Scc2 in driving DNA loop expansion involves 
a mechanism other than persistent colocalization or co-translocation with the cohesin 
core. However, this observation does not rule out the possibility that Scc2 directly inter-
acts with the cohesin core. Indeed, as a commonly identified cohesin loading complex, 
Scc2 could transiently colocalize with the cohesin core as loading takes place. In contrast 
to the lack of correlation between the ChIP-seq of Mis4/Scc2 and cohesin in interphase 
S. pombe and mitotic S. cerevisiae, there are significant correlations between the ChIP-
seq of Nipbl  [88] (counterpart of Mis4/Scc2) and the cohesin core protein, Smc1 [88], 
in humans (Additional File 1: Fig. S21G). Unsurprisingly, both References [43] and [44] 
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found that Nipbl is an obligate component of the loop-extruding human cohesin com-
plex, in addition to its role as a cohesin loader. Although CCLE has not yet been applied 
to vertebrates, from a CCLE perspective, the possibility that Nipbl may be required for 
the loop extrusion process in humans is bolstered by the significant correlations between 
the ChIP-seq of human Nipbl and the cohesin core (Additional File 1: Fig. S21G), con-
sistent with Ref.  [32]’s hypothesis that Nipbl is involved in loop-extruding cohesin in 
vertebrates. A recent theoretical model for the molecular mechanism of loop extrusion 
by cohesin hypothesizes that transient binding by Mis4/Scc2/Nipbl is essential for per-
mitting directional reversals and therefore for two-sided loop extrusion [46]. Surpris-
ingly, there are significant correlations between Mis4 and Pds5 in S. pombe (Additional 
File 1: Fig. S21E), indicating Pds5-Mis4 association, outside of the cohesin core complex; 
however, similar correlations are lacking between Scc2 and Pds5 in S. cerevisiae (Addi-
tional File 1: Fig. S22).

Beyond yeast, because the CCLE model is agnostic about the identity of any particular 
boundary element, in principle it extends the LEF model to organisms across the tree of 
life, including organisms that do not express CTCF. By contrast, prior LEF models have 
been overwhelmingly limited to vertebrates, which express CTCF and where CTCF is 
the principal boundary element. Two exceptions, in which the LEF model was applied 
to non-vertebrates, are Ref. [54], discussed above, and Ref. [89], which models the Hi-C 
map of the prokaryote, Bacillus subtilis, on the basis of condensin loop extrusion with 
gene-dependent barriers. In future work, it will be interesting to explore the applicabil-
ity of CCLE model to other model organisms, that exhibit TADs, including, for example, 
Drosophila melanogaster, Arabidopsis thaliana, Oryza sativa, Caenorhabditis elegans, 
and Caulobacter crescentus, as well as to vertebrates.

Conclusions
By examining an approximate steady-state solution of master equations describing the 
motions of chromatin loop extruding complexes, we have been led to a new version 
of the loop extrusion factor model―the conserved-current loop extrusion (CCLE) 
model―that does not require the input of genomic positions of boundary elements 
and uses cohesin ChIP-seq data as the sole input. To demonstrate its utility, we applied 
the CCLE model to accurately reproduce the TAD-scale ( ∼ 10− 100 kb) Hi-C maps for 
each of interphase S. pombe and mitotic S. cerevisiae, for the first time, and of meiotic 
S. cerevisiae, in effect recapitulating the results of Ref.  [54] but using a model with an 
improved physical basis. Importantly, the fact that the CCLE model can convert cohesin 
ChIP-seq data into an accurate Hi-C map highlights that essential aspects of the three-
dimensional chromatin configuration are encoded in the one-dimensional cohesin dis-
tribution and strongly suggests that the loop configurations generated, as well as the 
best-fit values of the density and processivity of loop-extruding cohesins, are realis-
tic. Not limited to cohesin, other SMC complexes, such as condensin  [59, 90–92] and 
Smc5/6  [93], could play similar roles in other organisms or different stages of the cell 
cycle. The CCLE model is agnostic to how SMC distributions are established, provid-
ing greater flexibility to account for different LEF-chromatin interactions, such as loop 
extrusion barriers blocking LEFs  [27, 94, 95] and arrays of factors slowing down LEF 
translocation [94–96]. Overall, our results provide compelling evidence that chromatin 
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organization at the TAD scale in interphase S. pombe, as well as in meiotic and mitotic 
S. cerevisiae, is primarily the result of loop extrusion and that the cohesin complex is the 
dominant loop extrusion factor, marking the base of all, or the overwhelming majority, 
of TAD-scale loops in these systems.

Methods
Gillespie‑type loop extrusion simulations

For interphase S. pombe (meiotic and mitotic S. cerevisiae), we represent 1.2 Mb (600 kb) 
regions of the chromatin polymer as an array of 1200 discrete lattice sites, each compris-
ing 1000 bp (500 bp), and simulate chromatin loop configurations using a Gillespie-type 
algorithm applied to the LEFs, populating these lattice sites, similarly to Refs.  [27, 29]. 
Because the simulations are of Gillespie-type, the time separations between successive 
events are exponentially distributed, while which event is realized occurs with a prob-
ability that is proportional to the rate of that event. LEFs are modeled as objects with 
two anchors, which initially bind to empty, adjacent chromatin lattice sites with a bind-
ing probability, that is uniformly distributed across the genome. Upon binding, a LEF’s 
anchors translocate stochastically and independently in opposite directions at rates 
specified by position-dependent loop extrusion rates determined from experimental 
cohesin ChIP-seq data. Only outward steps, that grow loops, are permitted. Transloca-
tion of a LEF anchor into a lattice site that is already occupied by another LEF’s anchor, 
is forbidden. LEFs dissociate at a constant rate, dissipating the corresponding loop. In 
our simulations, after unbinding, a LEF immediately rebinds to an empty pair of neigh-
boring sites, maintaining a constant number of bound LEFs. Neither simulated contact 
probabilities nor simulated mean occupancy probabilities depend on the time scale of 
loop extrusion. Therefore, the results of our simulations for chromatin-chromatin con-
tacts and LEF occupancies depend on the mean LEF processivity, which is the ratio of 
the mean LEF extrusion rate and the dissociation rate, and which therefore is the appro-
priate fitting parameter. In other words, the LEF dissociation rate (inverse of lifetime) 
can be arbitrary so long as the processivity remains unchanged by adjusting the extru-
sion rate accordingly. In practice, however, we set the LEF dissociation rate to 5× 10−4 
time-unit−1 (equivalent to a lifetime of 2000 time-units), and the nominal LEF extru-
sion rate (aka ρL/τ , see Additional File 1: Methods) can be determined from the given 
processivity.

ChIP‑seq to occupancy probability

The S. pombe (S. cerevisiae) experimental cohesin ChIP-seq data is averaged over each 
1000-bp-sized (500-bp-sized) lattice site to yield the ChIP-seq signal, Cn , for each chro-
matin lattice site, n. To convert Psc3 ChIP-seq data at lattice site n, Cn , to the occupancy 
probability, Pn , we write

where ρc is the cohesive cohesin density (number per chromatin lattice site), N is the 
total number of lattice sites, and NLEF is the number of LEFs simulated in the region 
represented by N lattice sites. The factor of 2 is because one LEF has two anchors and 

(10)Pn = 2NLEF
Cn∑N
n=1 Cn

− ρc
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occupies two lattice sites. Although we call ρc “cohesive cohesin density,” it is important 
to note that any experimental backgrounds or shifts in the published ChIP-seq data are 
also subsumed into this parameter. The excellent experiment-simulation agreement jus-
tifies the assumption of a uniform distribution of cohesive cohesins a posteriori.

Modeling the chromatin polymer inside the nucleus

To model chromatin self-contacts, we treat chromatin inside the cell nucleus as a Gauss-
ian polymer in spherical confinement. For a Gaussian polymer in the continuous limit, 
the probability density, p(r, θ ,φ, n) , that a genomic locus n along the polymer is posi-
tioned at coordinates ( r, θ ,φ ) follows the diffusion equation, ∂p/∂n = (l2/6)∇2p , where 
l is the Kuhn length, which is twice the persistence length. Spherical confinement within 
a nuclear radius a can be enforced by finding solutions to the diffusion equation either 
with reflecting or absorbing boundary conditions at r = a . As discussed in Refs. [97–99], 
reflecting boundary conditions correspond to an attractive surface-polymer interaction 
given by ǫ = −kBT log (6/5) , while absorbing boundary conditions correspond to zero 
polymer-surface interaction. Comparison of chromatin mean contact probability, P(s), 
using reflecting and absorbing boundary conditions is presented in Fig. S10 (Additional 
File 1). To crudely account for “Rabl configurations,” in which chromatin is known to 
be attached to the nuclear envelope [100, 101], we chose to use the solution for reflect-
ing boundary conditions to calculate the self-contact probability between any two points 
along the chromatin polymer. Calculation of the corresponding self-contact probability 
for two locations with genomic separation, n, is presented in detail in Additional File 
1: Methods. A similar method is also adopted in Ref. [102]. To then incorporate loops, 
we replace the actual genomic separation (n) between the two loci of interest by their 
effective genomic separation ( neff  ), which is also discussed in detail in Additional File 1: 
Methods [103]. In brief, neff  is the backbone length between the two locations of interest 
modified by the contribution of any loops that contain the two locations. Our approx-
imate, analytic approach to polymer self-contacts may be justified a posteriori on the 
basis of the excellent data-simulation agreement apparent in Figs. 1 and 2.

Because of the increased compaction of meiotic and mitotic chromosomes, compared 
to interphase chromosomes, we can expect volume exclusion to play a more prominent 
role in meiotic and mitotic nuclei than in interphase nuclei. In order to account for vol-
ume exclusion in meiotic and mitotic S. cerevisiae, we introduce an additional empirical 
factor, e−s2/2σ 2 , which reduces the probability of contacts with large genomic separa-
tions. This factor is characterized by an additional fitting parameter, namely σ , which 
represents a genomic distance scale, beyond which chromatin-chromatin contacts are 
reduced because of volume exclusion. Inclusion of this factor leads to improved agree-
ment between experimental and simulated P(s) curves at longer length scales ( � 50 kb) 
(Figs. 5F and 6E) but has little effect on simulated Hi-C maps at shorter length scales ( � 
50 kb).

Simulated Hi‑C contact map generation

To generate simulated Hi-C contact maps, for each genomic region and each set of 
parameter values, we performed 200 independent loop extrusion simulations, each 
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comprised of 100000 LEF events. In our simulations, loops achieve a dynamic steady 
state well within 15000 LEF events, as gauged by convergence of the radius of gyration 
of chromatin to its steady-state value [104] (Additional File 1: Fig. S24A). We also exam-
ined two loop size distributions from two different simulation periods: each distribution 
consists of 1000 data points, equally separated in time, one between LEF event 15000 
and 35000, and the other between LEF event 80000 and 100000. The two distributions 
are within-errors identical (Additional File 1: Fig. S24B), suggesting that the loop extru-
sion steady state is well achieved within 15000 LEF events. To ensure that only steady-
state loop configurations are included in our simulated Hi-C maps, we discard the first 
15000 LEF events. First, to generate a simulated Hi-C contact map for a given loop con-
figuration, we calculate the contact probability for each pair of lattice sites in the given 
genomic region, using their effective genomic distance, neff  , and the functional form 
of self-contact probability for a polymer inside a sphere (Additional File 1: Methods, 
Eq. S36). Then, for each of the 200 independent loop extrusion simulation, we create a 
time-averaged Hi-C map by averaging together 100 simulated Hi-C contact maps, cor-
responding to 100 simulated loop configurations that are evenly distributed in time-
unit across the simulation time period after the initial 15000 events of non-steady-state 
period. Finally, we average together the time-averaged Hi-C maps from all 200 simula-
tions to produce an ensemble-averaged Hi-C map. Because the CCLE simulations are 
performed using a finer resolution than the resolution of experimental Hi-C maps, our 
ensemble-averaged Hi-C contact maps are binned (block-averaged) to match the resolu-
tion of the corresponding experimental Hi-C. The simulated Hi-C maps of interphase S. 
pombe and meiotic S. cerevisiae are scaled so that the mean contact probability of each 
simulated Hi-C map along its second diagonal is equal to the mean contact probability 
along the second diagonal of the corresponding experimental Hi-C map, while the simu-
lated Hi-C map of mitotic S. cerevisiae is scaled so that the mean contact probabilities of 
the simulated and the corresponding experimental Hi-C maps along the third diagonal 
are equal. In other words, we require Psim(20 kb) = Pexp(20 kb) for interphase S. pombe, 
Psim(4 kb) = Pexp(4 kb) for meiotic S. cerevisiae, and Psim(1.5 kb) = Pexp(1.5 kb) for 
mitotic S. cerevisiae. The simulated Hi-C maps so-obtained are compared to experimen-
tal maps in Figs. 1, 5, 6 and Additional File 1: Figs. S1–4.

To assess the noise within our simulated Hi-C maps, we also calculated the MPR and 
the PCC between the averages of two sets of 200 independent, time-averaged Hi-C sim-
ulations, for each case of S. pombe, meiotic S. cerevisiae and mitotic S. cerevisiae, giving 
MPR values of 1.0149, 1.0179, and 1.0121, and PCC values of 0.9834, 0.9924, and 0.9988, 
respectively. Evidently, these values are close to unity, indicating that our final simulated 
maps in all presented cases accurately represent the CCLE model with little noise.
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