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Abstract 

Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug 
resistance. Single-cell technologies enable analyzing cell states at a given condition, 
but catenating static cell snapshots to characterize dynamic drug responses remains 
challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state 
dynamics and identify common drug effects by modeling single-cell level gene expres-
sion changes. Its reliability is validated on both simulated and lineage tracing data. 
Application to real tumor drug treatment datasets identifies more subtle cell subclus-
ters with different drug responses beyond static transcriptome similarity and disentan-
gles drug action mechanisms from the cell-level expression changes.
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Background
Drug resistance is one of the major challenges for tumor therapy. High molecular het-
erogeneity of tumor cells frequently leads to intrinsic drug resistance, while the dynamic 
plasticity of tumor cells further causes adaptive or acquired resistance over time. There-
fore, it is crucial for improving the tumor therapeutic efficacy by investigating the bio-
logical mechanisms underlying the tumor cell state dynamics during drug treatment 
[1–3].

Recent advances in single-cell RNA sequencing (scRNA-seq) technologies provide a 
great opportunity to characterize and analyze the heterogeneity of cell states at a given 
condition [4]. However, it is still challenging to understand the tumor cell state dynamics 
during drug treatment by integrating the cell state “snapshots” (as scRNA-seq data) at 
different time points [5]. Due to the limitations of current sequencing technologies, cells 
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are destroyed during transcriptome profiling, making it very hard to track the dynamic 
gene expression of any individual cell at multiple time points. Hence, it is promising if 
any computational method can virtually align the unpaired single-cell level snapshots 
between two or more time points as a temporal-like “video”.

Aligning at cluster-level, through direct integrated clustering [6, 7] or nonlinear distri-
bution comparison [8–11], has emerged as a widely utilized strategy and leads to some 
valuable biological discoveries. But it does not fully consider the variation between cells 
and is hard to model complex multi-fate characteristics of tumor cell populations in 
response to drugs. Alternatively, a few cell-level algorithms based on mathematical mod-
eling (such as differential equations) have been proposed to align cells during develop-
ment and differentiation processes [12–16]. More recently, data-driven strategies have 
also been developed to cope with the uncertainty of cell fate trajectories when analyzing 
perturbation responses under diverse stimulation conditions (such as cytokines, drugs, 
etc.) [17, 18]. However, especially for the tumor cell state dynamics under drug treat-
ment, the high heterogeneity and plasticity of tumor cells lead to more complex drug 
responses in both cell population abundance and state, which requires special considera-
tion in computational modeling.

Here, we present scStateDynamics, a computational method to thoroughly decipher 
the tumor cell state dynamics in response to drug treatment by modeling single-cell level 
expression changes. This method first infers the dynamic characteristics of tumor cell 
states by minimizing the overall changes in gene expression while also considering dis-
tinct proliferation or inhibition rates across cell populations. Then, we identify cluster-
shared and cluster-specific components (gene factors) from the cell-level expression 
changes to dissect the drug action mechanisms. By testing on both the simulated data 
and the data with lineage tracing information, scStateDynamics shows reliable perfor-
mance in aligning the cells at different time points. By applying to more real datasets 
from different tumor types under distinct therapeutic strategies, we highlight the signifi-
cance of modeling cell-level expression changes in uncovering the intrinsic and acquired 
intra-cluster heterogeneity of tumor cells in response to drugs and also in dissecting the 
dynamic mechanisms of drug action.

Results
Overview of scStateDynamics

scStateDynamics is designed to infer tumor cell state dynamics under drug treatment 
and dissect tumor drug response mechanisms by modeling expression changes. First, we 
define each tumor cell state with the average expression profiles of several highly similar 
cells (Additional file  1: Fig. S1a). Then, we align the cells between pre- and post-time 
points based on the principle of minimizing the overall changes in gene expression, 
which can be formally modeled using optimal transport (OT) theory. OT was originally 
developed to determine the most efficient way to move a pile of sands from one location 
to another, and has been widely applied to compare two probability distributions [19]. 
Here, we normalize the number of cells in all tumor cell states at each time point into a 
discrete probability distribution. This allows us to align cells by seeking an optimal trans-
port plan between these two cell state probability distributions. To measure the degree of 
cell state change (transport cost) and determine which alignment relationship (transport 
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plan) is optimal, we adopt the idea of manifold learning [15, 20, 21], which propagates 
the local neighbor relationships among cell states to obtain their global distances along 
the low-dimensional manifold in high-dimensional space. Based on this distance matrix 
(also called the cost matrix) and the corresponding two cell state probability distribu-
tions, we derive an optimal transport plan matrix, which provides an alignment plan 
between cells. Further, by partitioning the cells into several distinct clusters, we can also 
derive the dynamic cell flows at the subcluster level (Additional file 1: Fig. S1b). These 
flows can be evaluated based on their average weighted transport costs, which offer a 
quantitative measure of the extent of cell state changes (“Methods”).

Notably, ignoring the diverse proliferation or inhibition rates between tumor cell pop-
ulations may lead to the unreasonable identification of several cell flows. In detail, cer-
tain source cells had relatively higher proliferation rates, but their corresponding target 
cells lacked sufficient probability masses to accommodate them. Consequently, the OT 
algorithm aligned these increased source cells to other target cells, leading to unrea-
sonable flows with abnormally high transport costs (outliers). Therefore, we categorize 
the cell flows as either “state-keeping”, “state-changed”, or “unreasonable flows” based 
on their transport costs and calculate the relative proliferation rates of clusters by cor-
recting the unreasonable flows. In this way, by iteratively performing OT and correcting 
flows several times until convergence (Additional file 1: Fig. S2 provides an illustrative 
example of the iterative process for the simulation dataset 1 mentioned later), we obtain 
the final cell alignment relationships and quantify the changes in cell states and cell 
abundances (proliferation, inhibition, or death). These results enable the identification 
of subclusters with distinct drug response fates and facilitate the exploration of intra-
cluster intrinsic or acquired heterogeneities (“Methods”).

Furthermore, to dissect the biological mechanisms underlying drug action, we calcu-
lated the cell-level changes ( � ) in gene expression profiles according to the previously 
inferred cell alignment results and designed a Bayesian factor analysis (FA) model to 
decompose the cell-level expression changes into the static components shared within 
each pre- or post-cluster and the dynamic components (gene factors) reflecting drug 
action mechanisms across clusters (“Methods”). This provides a new insight of integrat-
ing dynamic information to characterize drug action mechanisms and cell cluster het-
erogeneities (Fig. 1).

Performance validation of scStateDynamics by using simulated data

To assess the reliability of scStateDynamics, we simulated the transcriptome profiles of 
tumor cells in the pre- and post-treatment stages of three distinct drug response sce-
narios using Splatter [22] (Additional file 2: Table S1). In scenario 1, the Pre_0 cluster 
was sensitive to the drug and transitioned to Post_2 with a decreased proportion. The 
Pre_1 cluster adapted to the drug treatment by adjusting its state and transitioned to 
Post_0. Conversely, the Pre_2 cluster maintained its intrinsic resistance and transi-
tioned to Post_1 (Fig. 2a). In scenario 2, we added a design in which the Pre_0 cluster 
initially exhibited sensitivity and experienced cell death, but gradually transitioned into 
a resistant state, resulting in the emergence of the Post_1 cluster (Fig. 2b). In scenario 
3, we designed the clusters to either undergo cell death (Pre_1) or be driven towards 
an intrinsic resistant state (Pre_0, Pre_2, and Pre_3 transitioning to Post_0) (Fig. 2c). By 
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applying scStateDynamics on these data, we successfully inferred the alignment relation-
ships between clusters (Fig. 2d-f ), except for three tiny erroneous flows (Pre_1- > Post_1 
and Pre_1- > Post_2 in scenario 1, and Pre_1- > Post_1 in scenario 2) due to the inher-
ent biases of unsupervised clustering at cluster boundaries. Furthermore, the inferred 
proliferation or inhibition rates (Fig. 2g-i), indicative of relative sensitivity or resistance 
types, were consistent with the simulation settings. The estimated transport distance 
effectively quantified the extent of cell state changes, thereby facilitating accurate deter-
mination of the intrinsic or acquired resistance types (Fig.  2d–f). Further, we bench-
marked scStateDynamics against the recently proposed method CINEMA-OT (causal 
independent effect attribution + optimal transport) and its variant CINEMA-OT-W 
(adding a reweighting step to overcome differential abundance) [18]. The results showed 
that scStateDynamics achieved higher accuracy in identifying the simulated alignment 
relationships between clusters (Additional file 1: Fig. S3).

The inferred results of scStateDynamics are supported by lineage tracing information

Lineage tracing technologies have emerged as a recent advancement, utilizing inherited 
DNA sequences (barcodes) to track cell clones [23, 24]. These barcode labels can be seen 
as strong evidences for linking cells across time [24]. Here, we collected the scRNA-seq 
data of PC9 lung cancer cell lines at four time points (days 0, 3, 7, and 14) during osi-
mertinib treatment, in which the cell lineages were simultaneously tracked using the 
Watermelon system [25] (Additional file  2: Table  S2). We performed pre-processing 

Fig. 1  Overview of the scStateDynamics algorithm. scStateDynamics is designed to decipher the tumor cell 
state dynamics under drug treatment by modeling cell-level gene expression changes. Given the pre- and 
post-treatment single-cell gene expression data, scStateDynamics first measures the distances between cell 
states in low-dimensional manifold space and infers initial alignment relationships between cell states by 
minimizing the overall changes based on optimal transport theory. Integrating the clustering results allows 
for the further derivation of the subcluster flows. Then, according to the estimated transport cost of each 
subcluster flow, we categorize the flow type as either state-keeping, state-changed, or unreasonable flow. 
By iteratively correcting the unreasonable flows, we finally estimate distinct proliferation or inhibition rates 
of clusters and determine the types of abundance changes they exhibit. Based on the inferred cell-level 
dynamics, scStateDynamics implements a Bayesian factor analysis model to decompose the expression 
changes ( � ) into static cluster-specific variations and dynamic cluster-shared gene factors. This provides 
a novel perspective of integrating dynamic information to dissect drug effects, characterize cell pairs, and 
compare cluster heterogeneities
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and clustering on the data (Fig. 3a) and applied scStateDynamics to infer the dynamic 
alignment relationships (subcluster flows) between clusters from adjacent time points 
(Fig.  3b). To evaluate the reliability of the identified subcluster flows, we counted the 
number of lineage barcodes connecting cells in each pair of clusters. To avoid the influ-
ence of cluster sizes, we normalized the lineage barcode counts using the square root of 
the product of the cell numbers in each cluster pair (“Methods”). Notably, we observed 
that almost all combinations of pre-clusters and post-clusters were supported by line-
age barcodes at varying levels. scStateDynamics successfully identified the majority of 
these cluster flows. The remaining unidentified flows had only exceedingly few support-
ing barcodes, which may be due to potential random fate biases with minimal probabili-
ties (Fig. 3c). We compared the cell lineage barcodes with the cell alignments inferred by 
scStateDynamics, CINEMA-OT, and CINEMA-OT-W and found that scStateDynamics 
exhibited higher correctness and completeness (Additional file  1: Fig. S4, “Methods”). 
Besides, we demonstrated that scStateDynamics outperformed the conventional joint-
clustering method in aligning cells at cluster level (Additional file 1: Fig. S5, “Methods”).

Fig. 2  scStateDynamics accurately identifies the drug response characteristics in simulated data. a–c 
Left side is the low-dimensional PCA representation of cells in three simulation scenarios, with point color 
indicating the pre- or post-cluster labels. Right side is the corresponding predesigned cluster alignment 
relationships and drug response types. d–f Left side is a Sankey plot showing the cell subcluster alignments 
inferred by scStateDynamics. The color of the rectangles corresponds to the pre-clusters and post-clusters, 
while the height of each rectangle indicates the cluster’s proportion in all cells. Right side is histogram 
plots showing the distribution of the transport distances (costs) in all flows, with the color representing the 
average transport cost of each flow. g–i Barplots showing each pre-cluster’s relative proliferation or inhibition 
rate estimated by scStateDynamics. A positive height indicates an increased proportion (proliferation), while 
a negative height indicates a decrease (inhibition). Red stars mark the ground truths of the proliferation or 
inhibition rates predesigned in the simulation
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Furthermore, we evaluated the performance of scStateDynamics in inferring the prolif-
eration or inhibition rates of cell clusters. We collected a lineage tracing dataset, termed 
ReSisTrace, which utilizes lentiviral labeling to track the lineage of ovarian cancer cells 
after treatment of drug olaparib, a PARP enzyme inhibitor [26]. The dataset comprises 
two replicates (named Olaparib_1 and Olaparib_2), and the cells were sampled before 
and after olaparib treatment (Additional file 2: Table S2). We firstly clustered the cells 
(Additional file  1: Fig. S6a and S6e) and analyzed the fraction of lineage barcodes in 
each pre-cluster that were either inherited or disappeared after drug treatment (Addi-
tional file 1: Fig. S6b and S6f ). Notably, we found that cluster S1 in Olaparib_1 exhib-
ited a lower inherited fraction compared to other clusters (Additional file 1: Fig. S6b). 
The analysis of scStateDynamics also inferred that cluster S1 had higher inhibition rates 
(Additional file 1: Fig. S6c). Furthermore, we compared the expression levels of PARP1 
(the target of olaparib) across different clusters and found that cluster S1 exhibited 

Fig. 3  The inferred results of scStateDynamics are supported by lineage tracing information. a UMAP 
(Uniform Manifold Approximation and Projection) plots of the cells in PC9 lung cancer cell line at days 0, 3, 
7, and 14 after osimertinib treatment in Watermelon lineage tracing scRNA-seq data. The color indicates the 
cluster label of the cells at each time point. b The inferred cell subcluster alignment relationships and the 
quantified flow costs at each pair of adjacent time points. c Barplots showing the normalized lineage barcode 
count of each subcluster flow. The height of the bar indicates the strength of confidence supported by 
lineaging barcodes. The color denotes whether the subcluster flow is identified by scStateDynamics (green 
for yes, red for no)
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higher expression values (Additional file 1: Fig. S6d), suggesting it may be more sensi-
tive to olaparib. Similar results were also observed for clusters S1 and S2 in Olaparib_2 
dataset (Additional file 1: Fig. S6f, S6g and S6h). The consistency of these three aspects 
of information proves the reliability of the proliferation and inhibition rates estimated by 
scStateDynamics.

scStateDynamics improves the characterization of tumor subcluster heterogeneity in drug 

response

To showcase the utility of scStateDynamics in unraveling the underlying heterogeneity 
and plasticity of tumor drug responses, we collected some real scRNA-seq datasets of 
tumor cells under drug treatment (Additional file 2: Table S3).

Taking the hepatocellular carcinoma (HCC) dataset as an example, the scRNA-seq 
data were detected from clinical patient biopsies before and after the immunotherapy 
with tremelimumab/durvalumab [27]. Through clustering (Fig. 4a) and inter-cluster dif-
ferential expression analysis, we observed that cluster S0 exhibited higher activity in nor-
mal hepatocyte functions, while cluster S1 displayed enhanced malignant proliferation. 
Cluster S2 expressed immune-related pathways and genes, suggesting potential sensitiv-
ity to immunotherapy (Fig.  4b and Additional file  1: Fig. S7a). Cox regression models 
further confirmed these malignancy patterns (Additional file 1: Fig. S7b, “Methods”).

Beyond routine inter-cluster comparisons, the cell-level alignment via scStateDynam-
ics allowed us to identify subclusters with distinct sources or targets within each cluster 
(Fig.  4c). This provides novel perspectives for analyzing the intra-cluster intrinsic and 
acquired heterogeneities of tumor cells in response to drug treatment (Fig. 4d). We per-
formed enrichment analyses on the differentially expressed genes between the subclus-
ters exhibiting different fates within each per-treatment cluster. Within cluster S0, the 
subcluster transitioning to cluster T2 (S0- > T2) displayed a notable loss of metabolic 
function compared to the other subclusters (S0- > T0 and S0—> T1). Within cluster S1, 
the subclusters flowing to clusters T1 and T2 (S1- > T1 and S1- > T2) exhibited higher 
activity in proliferation-related pathways, in contrast with the subcluster flowing to T0 
(S1- > T0) (Fig. 4e). Cox proportional hazards regression analysis confirmed these find-
ings, indicating that the subcluster in S0 flowing to T2 was more malignant potentially 
due to impaired metabolic function, and the subclusters in S1 flowing to T1 and T2 
displayed high malignancy possibly due to enhanced proliferation ability (Fig. 4f ). Fur-
ther, to assess the robustness of our findings, we randomly shuffled the inferred cell fate 
labels within each cluster 100 times and then performed the same intra-cluster intrinsic 
heterogeneity analysis. The results showed that none of the genes reached a statistically 
significantly differential expression (adjusted p-value < 0.05) after any of the 100 permu-
tations, which implied that scStateDynamics effectively assisted in the identification of 
intra-cluster heterogeneity compared to random shuffling of cell fates (Additional file 1: 
Fig. S8).

Then, to investigate the acquired heterogeneity arising within each subcluster flow, 
we calculated the change values of pathway scores ( � scores) based on the cell align-
ment relationships inferred by scStateDynamics (“Methods”). Comparing the average � 
scores of the cells in each subcluster flow revealed distinct drug response characteris-
tics. In cluster S0, the subclusters generally maintained their states, but flow S0- > T1 
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Fig. 4  scStateDynamics facilitates comprehensive analysis of both intrinsic and acquired heterogeneities 
in tumor drug response. a UMAP plots of HCC cells before and after immunotherapy with tremelimumab/
durvalumab. The color indicates the clustering results, with labels prefixed by “S” (for pre-treatment) and 
“T” (for post-treatment). b Bubble heatmap showing the hallmark pathway enrichment analysis results of 
the differentially expressed genes (DE genes) at inter-cluster level. c The inferred cell subcluster alignment 
relationships and the quantified flow costs by scStateDynamics. The inferred proliferation or inhibition rates of 
pre-clusters are presented at the bottom. d Sketch map showing the analysis of intra-cluster heterogeneity. 
Blue arrowed lines indicate intrinsic heterogeneity analysis, which compares the subclusters with different 
fates within each pre-cluster. Red arrowed lines indicate acquired heterogeneity analysis, which compares 
cells before and after treatment in each subcluster flow. e The enrichment analysis results of the DE genes 
at intra-cluster level. Each panel represents one pre-cluster, and the columns in it indicate its subclusters 
with different fates. f Forest plot showing the hazard ratio (HR) of the DE gene signature of each subcluster 
in the TCGA-LIHC cohort. The solid line indicates HR = 1. CI, confidence interval. g Bubble heatmap showing 
the change values of pathway scores ( � score) in each subcluster flow. h Selected DE genes between the 
subclusters in S0 flowing to T0 and T1. i The expression changes ( � expr) of metabolism-related genes in 
flows S1- > T1 and S1- > T2. j The distribution of the drug tolerant persister (DTP) scores in the source and 
target cells of four flows. One-sided Wilcoxon rank-sum test. ****p < 0.0001. k The mean of the signature 
scores in the source (circle) and target (diamond) cells of the identified DTP flows. The directions of the arrows 
reflect increasing or decreasing trends. One-sided Wilcoxon tests were performed on their distribution. 
**p < 0.001, ***p < 0.0001, ****p < 0.00001



Page 9 of 25Guo et al. Genome Biology          (2024) 25:297 	

exhibited slightly increased activity in proliferation-related pathways (Fig. 4g). To inves-
tigate the potential molecular causes of this unfavorable drug response in flow S0- > T1, 
we further checked the intrinsic differences between the subclusters flowing to T0 and 
T1. The analysis revealed that, although both subclusters resembled normal hepatocytes 
(as shown in Fig.  4e above), the subcluster flowing to T1 exhibited higher expression 
of several specific genes (such as TPT1, TMEM97, CELF1, KLC4, MAN2A1, VEGFA, 
and CTNND1) (Fig. 4h), which have been previously reported to be involved in tumor 
progression or immunotherapy resistance [28–34]. In cluster S1, the subclusters dis-
played more pronounced acquired heterogeneity. The flows S1- > T0 and S1- > T2 exhib-
ited significantly reduced activity in proliferation-related pathways, suggesting effective 
inhibition of tumor cell proliferation. Conversely, the flow S1- > T1 maintained high pro-
liferation ability (intrinsic characteristics of the subcluster in S1 flowing to T1), indicat-
ing insensitivity to treatment (Fig.  4g). Although both S1- > T1 and S1- > T2 displayed 
enhanced activities in metabolism-related pathways, further analysis revealed that 
S1- > T1 exhibited malignancy-related metabolic reprogramming (increased expression 
levels of the genes CD36, IDH1, PGD, and PFKM) [35–38], while S1- > T2 exhibited the 
recovery of normal metabolic function (increased expression levels of the genes ABCA6, 
LEAP2, APOA1, and APOE) (Fig.  4i). Notably, the original study of this HCC dataset 
used joint hierarchical clustering analysis and found that the cells overall changed their 
states after drug treatment [27], while our method of cell-level alignment effectively dis-
tinguished the cell subclusters flows with varying levels of acquired heterogeneity, high-
lighting the values of inferring cell-level dynamics.

We also tested scStateDynamics on two other cancer types under distinct treatment 
strategies: glioblastoma (GBM) samples undergoing temozolomide chemotherapy [39] 
and non-small-cell lung carcinoma (NSCLC) samples receiving erlotinib-targeted ther-
apy [40] (Additional file 1: Fig. S9, “Methods”). Notably, acquired heterogeneity analysis 
identified some intriguing flows, which appeared to enter a state known as drug-tolerant 
persisters (DTPs) [41–43], including the flows C1- > D1 and C2- > D1 in GBM2 dataset 
and the flows S0- > T0 and S1- > T0 in NSCLC dataset. DTPs, characterized by tumor 
cells becoming quiescent or slow cycling to evade drug-induced death while retaining 
the ability to resume growth upon drug removal, are increasingly recognized as being 
associated with tumor relapse [43]. To validate this hypothesis, we utilized a DTP signa-
ture [42] to score these subclusters and observed indeed higher DTP scores after drug 
treatment (Fig. 4j). Furthermore, we examined the functional changes in these flows and 
found that the cells displayed increased autophagy capability [44, 45] but decreased pro-
liferation ability and mTORC1 pathway activity, consistent with previous reports [42] 
(Fig. 4k and Additional file 1: Fig. S10). This was also in accordance with the findings 
reported in the original studies of GBM2 and NSCLC datasets [39, 40].

In summary, scStateDynamics improves the resolution of investigating tumor cell het-
erogeneity from inter-cluster to intra-cluster level. This enables the identification of sub-
clusters with different fates and facilitates the dissection of both intrinsic and acquired 
heterogeneity of tumor drug response from a dynamic perspective. We observed that 
despite overall similar expression profiles, some subtle molecular differences may poten-
tially lead to distinct drug responses, which is consistent with the conclusion that diverse 
resistant clones evolve from homogeneous tumor cells in a recent experimental study 
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[46]. These downstream analyses deepen our understanding about the molecular mech-
anisms underlying anti-tumor drug responses and provide valuable insights for devel-
oping more effective therapeutic strategies by targeting intrinsic drug resistance and 
drug-induced cell plasticity.

scStateDynamics disentangles the cluster‑shared and cluster‑specific drug effects

We devised a Bayesian factor analysis (FA) model in scStateDynamics to extract the 
biological factors (gene signatures) that contribute to the observed cell-level changes in 
gene expression ( �X ) before and after treatment. The dynamic changes in expression 
( �X ) are determined by two types of variation: (i) the initial and final static molecular 
heterogeneity between cells, which can be characterized by cell’s cluster identity ( U s and 
V t ), indicating that the cells belonging to the same cluster shared some common effects 
and (ii) the dynamic molecular mechanisms of drug action, which are shared by all clus-
ters and can be seen as a combination of multiple expression program factors ( WZ ). To 
quantify these static and dynamic variations, we defined probability distributions of the 
variables and estimated their values by variational inference (Fig. 5a, “Methods”).

We applied this FA model to previously used real datasets. First, we observed that Z , 
as a new embedding of cell pairs, was indeed not relevant to either the pre- or post-clus-
ter labels, proving the successful decomposition of these two types of variations (Addi-
tional file  1: Fig. S11). Then, we utilized the gene weights ( W  ) to calculate the factor 
scores for some known pathways (“Methods”). Notably, the factors identified in all the 
datasets were biologically meaningful and associated with the mechanisms of the cor-
responding drugs (Fig. 5b, Additional file 1: Fig. S12 and S13). For example, in HCC sam-
ple undergoing immunotherapy, factor 1 was strongly associated with pathways involved 
in immune response modulation. In GBM1 sample undergoing chemotherapy, factors 1, 
2, and 3 were all related to DNA replication pathway, consistent with the drug’s mecha-
nism of action on DNA. In NSCLC sample undergoing targeted therapy, factor 1 dis-
played a remarkably strong association with ERBB signaling pathway, which corresponds 
precisely to the target gene of Erlotinib. In addition, the decomposed static cluster-spe-
cific variations ( U  and V  ) provide a novel representation for each cluster that consid-
ers dynamic information. We observed that some genes with highly positive or negative 
effects in U  vectors were associated with tumor progression and prognosis, which may 
be conventionally ignored due to their relatively low average expression levels (Addi-
tional file  1: Fig. S14). By comparing the U  vectors between each pair of pre-clusters 
(Fig. 5c), we identified some new cluster-specific and tumor-related genes (red and blue 
triangular points) that were not captured by conventional differential expression analysis 
based on static pre-treatment expression (square points). For example, MLKL, a necrop-
tosis regulator, plays a complex but poorly understood role in cancer development and 
metastasis [47], and it was recently reported that it can promote immune evasion in 
HCC [48]. High MAOA expression was reported to be associated with an immunosup-
pressive tumor microenvironment and poor prognosis [49]. And CCDC50 was shown 
to promote HCC growth via Ras/Foxo4 signaling [50, 51]. These results highlight the 
profound value of decomposing gene expression changes in characterizing drug mecha-
nisms and cell cluster heterogeneity from a novel dynamic perspective.
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Discussion
scStateDynamics is an algorithm to investigate the tumor cell state dynamics in response 
to drug treatment by modeling single-cell level gene expression changes. To cope with 
the challenge of unpaired cells, we employed the principle of minimizing the overall 
weighted changes in gene expression along a low-dimensional manifold to align the cells 
before and after treatment. Considering the varying drug sensitivities across tumor clus-
ters due to their high heterogeneity and plasticity, we used a data-driven approach to 
discern the types of cell subcluster flows and estimated the proliferation or inhibition 

Fig. 5  scStateDynamics disentangles the expression changes under drug action. a The probabilistic 
graphical model representation of the Bayesian factor analysis (FA) model in scStateDynamics, illustrating 
hidden random variables as circles and observed variables as shaded circles. Edges denote the statistical 
dependences between the variables. Boxes (plates) signify independent replications. The table provides a 
description of the variables and their corresponding probabilistic distributions. b Heatmaps showing the 
pathway scores of the identified factors in three datasets. c Scatter plots showing the gene comparisons for 
each pair of pre-clusters in the HCC dataset. The x-axis represents the differences between the U vectors of 
two pre-clusters, while the y-axis represents the differences between the average expression value vectors 
of two pre-clusters. Square points denote the differential expression genes (DEGs) identified based on 
pre-treatment expression, with colors corresponding to the cluster colors used in Fig. 4a. Triangular points in 
red or blue denote the marker genes newly identified by subtracting U vectors. Some top genes associated 
with tumor progression are labeled with their gene symbols. Gray circle points denote other genes
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rates of the clusters. To dissect the biological characteristics underlying drug actions 
by integrating dynamic information, we designed a Bayesian FA model to decompose 
the gene expression changes into cluster-specific static variations and cluster-shared 
dynamic gene factors.

For the investigation on the dynamics of complex systems, we think modeling the 
change values ( � ) is very important. Thus, we adopt the strategy of minimizing the over-
all changes to align cells and decompose the change value matrix to uncover the mecha-
nisms of drug action. The significance of analyzing dynamic changes has been validated 
on previous studies, such as analyzing differential protein–DNA interactions across 
different biological conditions by designing dPCA algorithm [52]. Moreover, learning 
common and specific effects is also an effective strategy to disentangle the characteris-
tics of complex system, which has been applied to compare the patterns across distinct 
cancer types or multiple differentiation stages via matrix factorization, such as CSMF 
algorithm [53]. Here, we adopt this strategy and design a Bayesian model to dissect the 
cluster-common and cluster-specific factors. Bayesian models have numerous advan-
tages. Specifically, they provide increased flexibility and scalability in capturing intri-
cate relationships among variables, enable the quantification of uncertainty associated 
with variables from a probabilistic view, and enhance the interpretability of the model 
structure to understand the complex interplay among variables. Besides, the resolution 
at cell-level is crucial for analyzing the heterogeneity of tumors. Single-cell technologies 
offer a promising avenue, but its high noise is very annoying. Constructing metacells, 
as a preprocessing step, effectively reduces the dropout noise, so that a meta-cell can be 
regarded as a denoised representation of a cell. For the sake of brevity and understand-
ability, we use the term “cell-level” instead of “metacell-level” or “denoised cell-level” in 
the study. Further, low-noise single-cell sequencing technologies are expected to bring 
more solid biological insights.

By applying scStateDynamics on real data of tumor cells during drug treatment, we 
found that some subclusters exhibited generally similar expression profiles, but subtle 
differences in a few genes may lead to their distinct drug responses. This inspires us to 
consider not only the conventional static characteristics of cells (what they are like) but 
also their dynamic information (where they come from and where they go) when clus-
tering cells and analyzing tumor drug responses. Notably, we accurately identified some 
cell flows entering the drug-tolerant persister states, which has attracted increasing 
attention for their role in tumor drug resistance. In addition, by disentangling the drug 
action mechanisms, we uncovered some candidate genes that may affect tumor progres-
sion; these genes were easily overlooked when using only conventional differential analy-
sis on pre-treatment expressions.

Currently, we operate under the assumption that short-term drug treatment 
cannot induce drastic changes in tumor cell states and result in completely differ-
ent expression profiles. Thus, we infer the cell dynamics by minimizing the overall 
gene expression changes. However, the dynamics of tumor drug response are inher-
ently complex. If the time interval is very long, tumors cell may undergo substantial 
alterations in their molecular states. If the drug is more aggressive, a significant pro-
portion of tumor cell clones may be killed, leaving only a small clone to proliferate 
under drug treatment. In these scenarios, our initial hypothesis may not hold and 
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scStateDynamics may not be very suitable. Therefore, lineage tracing information 
becomes invaluable for investigating cancer dynamics. By utilizing this informa-
tion, we can analyze the pattern of change in tumor cell states and population sizes, 
thereby refining the model to align cells more accurately. Similarly, in cases of tem-
porally unmatched tumor samples (such as from different patients), the high inter-
tumor heterogeneity often obscures the gene expression changes induced by drug 
treatment. Hence, scStateDynamics may also not be suitable in such scenarios. In 
addition, batch effect noise is very annoying, as it often coincides with real biologi-
cal signals. Therefore, a reasonable evaluation and correction for batch effect noise 
are essential to obtain more accurate measurements of cell–cell distances in scStat-
eDynamics. Besides, scStateDynamics may identify an extremely small number of 
tiny cluster flows. We attribute this phenomenon partly to the inherent biases of 
unsupervised clustering and also to the potential randomness that exists in cellu-
lar fate. How to better model this randomness of cell fates is also a problem worth 
exploring. Additionally, our primary focus here is on tumor cells, without consider-
ing their interaction with the tumor microenvironment, which plays an important 
role in regulating tumor cell states. Future works can attempt to model the dynam-
ics of tumor cells, immune cells, and stromal cells simultaneously from a systematic 
perspective, which may be able to offer more insights into tumor therapy.

Overall, deciphering tumor cell state dynamics under drug treatment is highly 
valuable but challenging. scStateDynamics fully considers the highly heterogeneous 
and varying molecular characteristics of tumor drug responses and offers a powerful 
algorithm framework to analyze tumor cell state dynamics by modeling single-cell 
level gene expression changes. The analysis results pave the way for understanding 
the dynamic mechanisms of tumor drug resistance, and further explorations hold 
great potential for developing more effective treatment strategies.

Conclusions
In this study, we present scStateDynamics, a novel algorithm to infer tumor cell state 
dynamics under drug treatment and dissect tumor drug response mechanisms by 
modeling gene expression changes. By testing on simulated dataset, we show that 
scStateDynamics has superior performance on inferring cell cluster dynamics and 
can accurately identify predesigned drug response types. By testing on the data with 
lineage tracing labels, we confirm scStateDynamics has higher correctness and com-
pleteness in aligning cells and can avoid the influence of random biases to identify 
more reliable cluster flows. Furthermore, we apply scStateDynamics to real data 
from different cancer types treated with immunotherapy, chemotherapy, or tar-
geted therapy. The results demonstrate that scStateDynamics facilitates the identi-
fication of cell subclusters with distinct drug response fates, enabling the analysis 
of both intrinsic and acquired intra-cluster heterogeneity. Moreover, scStateDynam-
ics effectively captures known and potential drug action mechanisms in no matter 
immunotherapy, chemotherapy, or targeted therapy and offers a novel perspective 
of integrating dynamic information to characterize cell pairs and compare cluster 
heterogeneities.
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Methods
Inferring the cell state dynamic relationships

To characterize the cell states in a high-dimensional gene expression space and iden-
tify their alignment relationships, we designed the following computational steps in 
scStateDynamics.

Identifying cell states and estimating their transcriptomic profiles

Due to the stochastic nature of gene transcription and the limited detection capacity for 
rare transcripts, scRNA-seq data often exhibit high-frequency dropout events, result-
ing in a large proportion of zeros in the gene expression matrix (Additional file 1: Fig. 
S15) [54–56]. To mitigate the influence of dropout event noise, we add a preprocess-
ing step of grouping several similar cells into a metacell to represent a type of cell state 
[57–59]. In practice, we utilize the “Scanpy” package [60] to perform clustering with a 
large ‘resolution’ parameter setting (such as 30 or 50). Each resulting cluster is consid-
ered as a metacell, generally consisting of approximately three to ten cells, to represent 
a specific cell state. This adaptive numbers of cells within metacells can better cope with 
the varying densities of cell distribution in gene expression space. Then, we characterize 
each metacell by calculating the average expression profiles of its constituent cells. Gen-
erally, the cells with very similar expression profiles can be seen as being resampled from 
a common cell state, and the probability of dropout events occurring simultaneously in 
these similar cells for a given gene is relatively low. Therefore, this preprocessing step of 
aggregating similar cells and utilizing their average expression values to represent the 
corresponding cell states can reduce the dropout noise. The analysis on our testing data-
sets also validated its necessity and effectiveness (Additional file 1: Fig. S15), thereby a 
meta-cell can also be regard as a denoised representation of a cell. Besides, it can reduce 
the computational complexity of subsequent analyses. Notably, to make this preprocess-
ing step more flexible and robust, we provide an interface for users to either supply their 
own metacell labels or bypass this preprocessing step through setting unique metacell 
labels.

Measuring the distances between cell states along the low‑dimensional manifold

In the high-dimensional gene expression space, cells are usually distributed on a low-
dimensional manifold. This observation suggests that direct calculation of global Euclid-
ean distances may not provide an accurate representation of the similarities between 
cells along the manifold. Hence, we refer to the methodologies of PHATE [21], Diffusion 
Map [20], and MuTrans [15] algorithms and utilize local distance diffusion to assess the 
global relationships among different cell states. In detail, we use the Gaussian kernel 

function K ǫ x, y = exp −
�Ex−Ey�

2

ǫ
 to transform the global Euclidean distances 

between the joint-embedded expression profiles Ex and Ey of metacells x and y into local 
affinities. This transformation ensures that the affinity degree between two cell states is 
greater than 0 only when they are close enough, so that we can obtain the local neighbor 
relationships based on the affinity degrees (Additional file 1: Fig. S16a). The parameter ǫ 
governs the local bandwidth constrained by the kernel function (Additional file 1: Fig. 
S16b). Considering that the density of the cell distribution is uneven, the 
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k-nearest-neighbor distance ǫk(x) is used as an adaptive bandwidth. Additionally, to con-
trol the heavy tail of the Gaussian kernel when ǫk(x) is large, the exponent α is intro-
duced (Additional file  1: Fig. S16b). Consequently, the resulting kernel function is 
obtained by taking the average of two kernel values to ensure the symmetry of the affin-

ity matrix: K k ,α

(

x, y
)

= 1
2exp

(

−

(

�Ex−Ey�
2

ǫk (x)

)α)

+ 1
2exp

(

−

(

�Ex−Ey�
2

ǫk(y)

)α)

 . Then we 

normalize the affinity matrix by its row sums to generate the following random-walk 
transition probability matrix among cell states P

(

x, y
)

=
K k ,α(x,y)

∑

zK k ,α(x,z)
 . Furthermore, to 

propagate the local neighbor relationships and assess the long-range affinity values along 
the low-dimensional manifold, we perform a t-step random walk and calculate the t-step 
diffusion probability P(t) = P

(t−1)
P . Here, the parameter t is a positive integer that 

denotes how many steps of long-range diffusion are considered acceptable, and it can be 
determined based to the distribution density of cells. And P(0) is an identity matrix. 
Finally, we measure the distance between two cell states by calculating the l2-norm dis-
tance of their logarithmic t-step diffusion probabilities to other cell states: 

Dxy =

√

�log
(

P
(t)
x·

)

− log
(

P
(t)
y·

)

�
2
 . Notably, at this distance measurement step, we 

assume that the influence of batch effects on measuring distances between cells along 
the manifold is slight. In the practice, we advise users to evaluate the extent of batch 
effect noise using approaches such as low-dimensional co-projection, or quantitative 
indicators and then determine whether and how to correct the batch effect before utiliz-
ing our algorithm. If the batch effect noise is pronounced, it is essential to correct it 
beforehand.

Aligning the cell states between two time points

Here, we assume that the overall changes in cell states is relatively small during drug 
treatment and only a portion of cells have significant state changes. Using the distances 
along manifold calculated above to measure the extent of cell state changes, we adopt the 
principle of minimizing the overall changes to align cells in a low-dimensional manifold 
between two time points, which can be achieved by the optimal transport algorithm. At 
each time point, all cells form a discrete cell state probability distribution in gene expres-
sion space. Therefore, aligning the cell states can be regarded as seeking a transport plan 
between two probability distributions.

In the discrete case, given the source and target probability distributions
a ∈ R

n1
+

(
∑n1

i=1ai = 1
)

 and b ∈ R
n2
+

(

∑n2
j=1bj = 1

)

and a n1 × n2 transport cost matrix C ∈ R
n1×n2
+  , where each element C ij indicates the 

cost when transporting from state i to j . Then, the objective of the optimal transport 
problem is to find a transport matrix T ∈ R

n1×n2
+  that minimizes the total cost (overall 

changes)
�C ,T � =

∑

i,jC ijT ij subject to 
∑n2

j T ij = ai and 
∑n1

i T ij = bj

where T ij indicates the identified probability mass transporting from i to j . This means 
that the total cost is the inner product of the cost matrix C and the transport matrix T  , 
while ensuring that the row sum and column sum of T  are equal to a and b , respectively.

In our cell state alignment problem, the number of cells in all metacells (cell states) at 
the pre- and post- time points can be normalized as probability distributions a and b , 
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respectively. Taking the distances calculated above (matrix D ) as the cost matrix C , we 
can obtain the transport matrix T  based on the optimal transport algorithm, in which 
each element T ij indicates the probability mass transforming from the pre-timepoint to 
the post-timepoint. According to these transport probabilities, we can align the cells in 
all metacells between the two time points. This step is implemented with the “ot” Python 
package [61].

Grouping the cell alignment relationships into subcluster flows

To investigate the dynamics at cluster level, we conduct clustering on the cells at each 
time point individually using “Scanpy” package [60], with a small “resolution” param-
eter setting (Additional file 1: Fig. S1a). This step of separate clustering, rather than joint 
clustering, can avoid the influence of batch effect noise. In this way, we connect the clus-
ters between two time points based on cell flows and identify distinct fates among cells. 
According to the cell fates (which post-cluster the cell transition to), we further divide 
the pre-clusters into distinct subclusters (Additional file 1: Fig. S1b). This operation of 
identifying cell subcluster flows can help infer the distinct proliferation or inhibition 
rates of clusters and support the subsequent differential expression analysis to dissect 
intra-cluster intrinsic and acquired heterogeneity between distinct cell fates.

Quantifying the dynamic characteristics of cell populations

After drug treatment, distinct clusters of tumor cells may exhibit varying degrees of 
sensitivity, leading to differences in proliferation or inhibition rates. Besides, some cells 
can also change their states to adapt to the external environment. Hence, the dynamic 
characteristics of cell populations include the changes in both cell states and abundances 
(proportions). The extent of changes in cell states can be quantified by the transport 
costs. However, for the cell abundances, the classical optimal transport theory we used 
could not model the increase or decrease in probability mass that reflects the relative 
proliferation or inhibition of cell populations. To address this limitation, we first iden-
tify the unreasonable cell subcluster flows caused by the neglect of cell proliferation and 
then correct them to obtain more reliable cell dynamics.

Identifying the types of cell subcluster flows

To quantify the extent of changes in cell states and distinguish the pattern of cell sub-
cluster flows, we calculate the average transport cost for each flow. Given that the meta-
cell sets at pre-timepoint s and post-timepoint t of a cell subcluster flow are Qs and Qt , 
we define the average weighted transport cost of it as

According to the distribution of average transport costs of all subcluster flows, we 
think they can be categorized into either state-keeping, state-changed, or unreasonable 
flows. State-keeping corresponds to the cells that maintain high similarity, resulting in 
flows with low transport costs. State-changed indicates that cells adaptively adjust their 
states, leading to flows with relatively high transport costs. Unreasonable flows refer 

FlowCost(Qs,Qt) =

∑

i∈Qs ,j∈Qt
C ij ∗ T ij

∑

i∈Qs ,j∈Qt
T ij
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to some incorrect alignments identified by OT algorithm arising from the neglect of 
distinct proliferation or inhibition rates among cell clusters. As a result, when certain 
source cell populations are inhibited, their reduced probability masses have to be allo-
cated to other target cell populations exhibiting high proliferation rates. These incorrect 
alignments lead to some unreasonable flows with abnormally large transport costs. To 
determine the type of flows, an analysis of the average transport cost distribution for all 
subcluster flows is conducted through plotting a histogram. If the distribution exhibits 
a distinct trimodal pattern, a Gaussian mixture model (GMM) can be applied to cat-
egory the three peaks into state-keeping, state-changed, or unreasonable flows. Instead, 
if there are several outliers that are clearly distant from the majority of data points, out-
lier detection approaches (e.g., using 1.5 times the interquartile range above the third 
quartile as a threshold) can be employed to identify these outliers as unreasonable flow. 
Besides, manually setting the thresholds to identify unreasonable flows is also optional.

Correcting the unreasonable cell flows

Based on the identified type of cell flows, we aim to correct the unreasonable flows and 
estimate the proliferation or inhibition rates of clusters.

Given an unreasonable flow with a probability mass of δ from a subset of cluster Pre_A 
at pre-timepoint to a subset of cluster Post_B at post-timepoint, we can infer that the 
cluster Pre_A is inhibited, and the inhibition rate can be calculated by dividing δ by the 
total probability masses of cluster Pre_A. Meanwhile, the cluster Post_B should originate 
from the cells that are more similar to it. Hence, if there are other reasonable sources 
(without loss of generality, we refer to them as Pre_C and Pre_D) for Post_B, we assign 
the probability mass δ to Pre_C and Pre_D based on their relative fractions. If Post_B 
completely originates from Pre_A, we think the cluster with the highest similarity to 
Post_B should have a greater proliferation rate. In this way, the probability masses of 
unreasonable flows can be assigned to more appropriate source clusters. By re-normal-
izing the probability masses at the pre-timepoint, we obtain the updated source prob-
ability distribution, denoted as a′ . Then, we replace a with a′ to re-perform optimal 
transport and re-correct the identified unreasonable flows iteratively, until no outlier 
flows exist or the results stabilize.

In the end, by comparing the final updated source probability distribution with the 
initial source distribution a , we can estimate the final proliferation or inhibition rate of 
each cluster at pre-timepoint.

Decomposing the expression changes into static variations and dynamic biological effects

The changes in gene expression profiles between the cells at two time points can pro-
vide insights into the dynamic biological mechanisms of drug action. According to the 
obtained optimal transport matrix T  , an element T ij greater than 0 indicates a potential 
dynamic alignment between the i th cell state (metacell) at the pre-timepoint and the j 
th cell state at the post-timepoint. Consequently, assuming that there are M elements 
greater than 0 in T  , we identify M alignment relationships among cell states, resulting 
in the formation of M distinct cell pairs. Subsequently, according to the coordinates 
of these M elements in T  , we can extract the corresponding M gene expression vec-
tors at the pre- and post-timepoints. These vectors collectively compose the matrices 
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X
(pre) ∈ R

G×M
+  and X (post) ∈ R

G×M
+  , where G denotes the number of genes. Then the 

matrix of gene expression changes �X ∈ R
G×M can be calculated by X (post) − X

(pre) . 
Here, we think these dynamic changes are determined by two types of effects: (i) the 
initial and final cell expression profiles and (ii) the molecular mechanisms of drug action. 
To disentangle these two types of variations, we design a Bayesian factor analysis model 
by characterizing the first type of static variations with the cell cluster identities and 
decomposing the second type of dynamic effects into a combination of gene factors 
(signatures).

Model representation

Assuming that there are S and T  clusters at the two time points, then for a cell pair 
m ∈ {1,2, . . . ,M} , consisting of a metacell within cluster s ∈ {1,2, . . . , S} and a metacell 
within cluster t ∈ {1,2, . . . ,T } , we decompose its change vector �Xm into a sum of three 
components and an additive Gaussian noise:

Here, vector U s ∈ R
G×1 denotes the common effects shared by the cells in cluster s at 

pre-timepoint, while vector V t ∈ R
G×1 denotes the effects shared by the cells in cluster t 

at post-timepoint. We model them with normal distributions

The matrix W ∈ R
G×K
+  denotes the regulatory weights of K  factors on genes, and each 

factor can be seen as a gene signature related to the dynamic biological mechanism of 
drug action. We constrain the elements in it to be positive and use independent log-
normal distribution to model it

The vector Zm ∈ R
K×1 denotes the composition coefficients (activities) of the factors 

for cell pair m , and can also be seen as an embedding of this cell pair in the space span-
ning by these gene factors. We model it with normal distribution

The vector � ∈ R
G×1 is Gaussian residual noise

We use the precision parameter τ g to capture the gene-specific variation and define an 
independent conjugate prior for it

�Xm = U s + V t +WZm +�

P(U s) = N

(

0, σ 2
u I

)

P(V t) = N

(

0, σ 2
v I

)

P(W ) =
∏K

k=1
LogNormal

(

0, σ 2
wI

)

P(Zm) = N

(

0, σ 2
z I

)

P(�) = N

(

0, diag
(

τ
−1

))
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In these distributions, σu, σv, σw, σz, ατ , and βt are hyperparameters .
Hence, we can imply the likelihood as

Inference

Given the observation variable �X , the latent variables W  , Z , U  , V  , and τ are not mutu-
ally independent. Exact inference for the posterior distribution P(W ,Z,U ,V , τ |�X) 
requires integrals, which are computationally intractable. Hence, we use the strategy 
of variational inference to approximate the true posterior distributions. We introduce 
a parameterized variational distribution Qφ(W ,Z,U ,V , τ ) , which can be factorized as

where φ are all the variational parameters in each of the following distributions

Hence, our goal is to optimize the parameters φ to find the best possible variational 
distribution Qφ that effectively approximates the posterior distribution. When we use 
Kullback–Leibler divergence KL

(

Qφ(W ,Z,U ,V , τ )|P(W ,Z,U ,V , τ |�X)
)

 to measure 
the distance between these two probability distributions, the optimization problem can 
be converted to maximize the evidence lower bound (ELBO)

The optimization and update of variational parameters φ are performed by using sto-
chastic gradient descent algorithm (Adam optimizer).

P(τ ) =
∏G

g=1
Gamma(ατ ,βτ )

P(�X |W ,Z,U ,V , τ ) =
∏M

m=1
N

(

�Xm|WZm +U s(m) + V t(m), diag
(

τ
−1

))

Qφ(W ,Z,U ,V , τ ) = Qφ(W )Qφ(Z)Qφ(U)Qφ(V )Qφ(τ )

Qφ(W ) =

G
∏

g=1

K
∏

k=1

LogNormal
(

µwgk
, σ 2

wgk

)

Qφ(Z) =

K
∏

k=1

M
∏

m=1

N

(

µzkm , σ
2
zkm

)

Qφ(U) =

G
∏

g=1

S
∏

s=1

N

(

µugs , σ
2
ugs

)

Qφ(V ) =

G
∏

g=1

T
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t=1

N

(

µvgt , σ
2
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)

Qφ(τ ) =

G
∏

g=1

Gamma
(

αg ,βg
)

ELBO = EQφ

[

logP(�X ,W ,Z,U ,V , τ )− logQφ(W ,Z,U ,V , τ )
]
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Datasets and pre‑processing

Simulated data generation

To evaluate the performance of scStateDynamics, we used the “paths” method of the 
“splatSimulate” function within the Splatter package [22] to generate three scRNA-seq 
datasets that simulate distinct scenarios of tumor drug responses. To design the charac-
teristics of these dynamic processes, we mainly manipulated the following parameters. 
We used the “group.prob” to control the sizes of cell clusters and used the “path.from” 
parameter to determine the dynamic relationships between clusters. Then, to model the 
extent of changes in cell states, we adjusted the “de.prob” parameter. Besides, we utilized 
the “path.skew” parameter to fine-tune the distribution of cells towards either the source 
or target population.

Data pre‑processing

The pre-processing for the simulated and real data was performed based on the Scanpy 
[60], Seurat [62], and scCancer [63, 64] packages. First, data quality control is performed 
by filtering the potential lysed cells, low-quality cells, and doublets, based on the num-
ber of detected transcripts and genes, as well as the percentage of transcripts from 
mitochondrial genes. Besides, mitochondrial genes, ribosomal genes, and the genes 
expressed in fewer than three cells are also filtered. For the remaining cells and genes, we 
calculate the relative expression values by performing data normalization and log-trans-
formation. Next, the highly variable genes of the data at two time points are identified, 
and their union set is used as the final selected genes. Then, we regress out the unwanted 
variance sources and perform data centering and scaling. Further, to project the cells of 
two time points into a shared low-dimensional space, we perform similar pre-process-
ing steps on the combined expression matrix and conduct principal component analysis 
(PCA). These low-dimensional representations are subsequently used to calculate the 
distances between the cell states.

Downstream comparison and analyses

In this section, we provide the method details of the downstream analyses based on the 
results of scStateDynamics.

Comparing the inferred cell alignment relationships with lineage tracing information

We first screen the lineage barcodes that appear at both of the two time points, so that 
we could leverage the dynamic relationships represented by them to evaluate the confi-
dence level of each cell subcluster flow. For example, if a lineage barcode is observed in n1 
cells within cluster Pre_1 at the pre-timepoint and n2 cells within cluster Post_2 at post-
timepoint, we interpret this as n1 ∗ n2 barcode evidences supporting the Pre_1- > Post_2 
flow. To eliminate the influence of clone sizes, we normalize this count by dividing it by 
the square root of the product of the total number of cells labeled by this barcode at the 
two time points. Then, we integrate the evidences derived from all lineage barcodes and 
calculate the sum of their normalized counts for each flow. Further, to avoid the influ-
ence of cluster sizes, we also divide these summation results by the square root of the 
product of the cell numbers in the source cluster and target cluster for each flow. In this 
way, we obtain the final normalized lineage barcode counts, as shown in Fig. 3c.
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Further, we also define two metrics to evaluate the correctness and completeness of 
the inferred cell alignments by comparing with the cell lineage barcodes, as shown in 
Fig. S4b of Additional file 1. We first determine the possible target clusters of each cell at 
the pre-timepoint based on its lineage barcode label. Then, by comparing them with the 
results inferred by the algorithms (scStateDynamics, CINEMA-OT, or CINEMA-OT-
W), we define the correctness metric as the proportion of cells with correct fate infer-
ence. Besides, by measuring whether all the fates supported by lineage information in 
each clone are identified by the algorithms, we define the completeness metric as the 
average fate recognition rate across all cells at the pre-timepoint.

Besides, we conduct a comparative analysis between the performance of scStateDy-
namics and joint-clustering, a conventional cluster-level alignment method, based on 
the Watermelon lineage tracing dataset. In detail, we employ the BBKNN algorithm [65] 
to integrate the data from adjacent timepoints, and then apply Leiden graph-clustering 
method [66] to jointly cluster cells based on the Scanpy package [60]. Within each clus-
ter, cells from pre- and post-timepoints are considered temporally aligned. To assess 
performance, we calculate the mean squared errors (MSEs) between the transition prob-
ability matrix (TPM) based on the lineage tracing labels (considered as ground truth) 
and the TPMs obtained through joint-clustering or scStateDynamics (Fig. S5).

Inter‑cluster and intra‑cluster heterogeneities analyses

To investigate the intrinsic heterogeneities at inter-cluster and intra-cluster levels, we 
conduct differential expression analysis between the clusters or the subclusters with dis-
tinct fates based on the Wilcoxon rank-sum test method in Scanpy package [60]. Then 
the significantly differentially expressed genes (DE genes) of each cluster or subclus-
ter are subjected to enrichment analysis on the cancer hallmark pathways in MSigDB 
[67]. Furthermore, to compare the malignancy degrees among clusters or subclusters, 
we regard their DE genes as a signature to represent the subcluster and apply them to 
TCGA bulk samples with the same cancer type. We define the signature scores of the 
bulk samples by calculating the average expression values of the genes in the signature 
and utilize Cox proportional hazards regression to analyze the effect of the signatures on 
survival. In this way, the hazard ratios obtained can be used to quantify the malignancy 
degrees of the clusters or subclusters (Fig. 4f and Additional file 1: Fig. S7b).

To analyze the acquired heterogeneities, we calculate the change values of gene expres-
sion and pathway scores ( �score in Fig. 4g) by performing subtraction between the post-
treatment and pre-treatment cells according to their inferred alignment relationships. 
Here, the log-normalized gene expression values are adopted. The pathway (signature) 
scores are defined as the average expression values of the genes within the pathways. 
In the case of the DTP signature [42], where weights are assigned to genes, we multiply 
these weights by the gene expression values before calculating the average. In addition, 
we also perform a Wilcoxon rank sum test on the DTP-related pathway scores to meas-
ure the increase or decrease in pathway activity induced by drug treatment (Fig. 4j, 4k 
and Additional file 1: Fig. S10).
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Annotating the factors with signal pathways

We collect the cancer hallmark pathway and drug-related pathway information to pro-
vide biological annotations for the identified factors. For each factor k in the decom-
posed gene-factor weight matrix W  , we define its initial pathway score sinit as the average 
weight of the genes in the respective pathway. Then to make the scores comparable, we 
generate a background distribution by randomly shuffling the gene weights 1000 times 
and calculate the scores as previously described. By utilizing the mean µ and standard 
deviation σ of these 1000 scores, we transform the initial pathway score into its final 
z-score formation by sinit−µ

σ
 , as shown in Fig. 5b.
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