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Abstract 

Background: Atypical teratoid rhabdoid tumors (ATRT) are incurable high‑grade pedi‑
atric brain tumors. Despite intensive research efforts, the prognosis for ATRT patients 
under currently established treatment protocols is poor. While novel therapeutic 
strategies are urgently needed, the generation of molecular‑driven treatment concepts 
is a challenge mainly due to the absence of actionable genetic alterations.

Results: We here use a functional genomics approach to identify genetic depend‑
encies in ATRT, validate selected hits using a functionally instructed small molecule 
drug library, and observe preferential activity in ATRT cells without subgroup‑specific 
selectivity. CDK4/6 inhibitors are among the most potent drugs and display anti‑tumor 
efficacy due to mutual exclusive dependency on CDK4 or CDK6. Chemogenetic interac‑
tor screens reveal a broad spectrum of G1 phase cell cycle regulators that differentially 
enable cell cycle progression and modulate response to CDK4/6 inhibition in ATRT 
cells. In this regard, we find that the ubiquitin ligase substrate receptor AMBRA1 acts 
as a context‑specific inhibitor of cell cycle progression by regulating key components 
of mitosis including aurora kinases.

Conclusions: Our data provide a comprehensive resource of genetic and chemical 
dependencies in ATRTs, which will inform further preclinical evaluation of novel tar‑
geted therapies for this tumor entity. Furthermore, this study reveals a unique mecha‑
nism of cell cycle inhibition as the basis for tumor suppressive functions of AMBRA1.
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Background
ATRT are highly malignant embryonal brain tumors that account for up to 50% of all 
central nervous system neoplasms in the first year of life [1–3]. ATRT preferentially 
occur in infants and young children, and isolated cases have been described in adults 
[4]. Loss-of-function alterations of SMARCB1, and rarely SMARCA4, serve as diagnostic 
molecular markers. The presence of alterations in these two components of the SWI/
SNF chromatin remodelling complex suggests a major role for epigenetic dysregula-
tion during initiation and progression of ATRT [5–8]. From a clinical perspective, how-
ever, the loss of a tumor suppressor gene (i.e., SMARCB1) cannot be directly exploited 
as a therapeutic drug target. Conventional next-generation sequencing studies have not 
detected any recurrent genetic alterations in druggable oncogenes [9, 10]. In spite of 
their consistent homogeneity on the genetic level, ATRT display a remarkable epigenetic 
and transcriptional heterogeneity [9, 11]. In fact, ATRT are currently segregated into 
three molecular subgroups primarily based on DNA methylation patterns: ATRT-SHH 
(formerly group 1), ATRT-TYR (group 2A), and ATRT-MYC (group 2B) [12]. Further-
more, additional sub-categorization within subgroups [13] and additional grouping of 
SMARCA4-mutated cases [14] has been suggested recently. While these distinct molec-
ular profiles correlate with distinct clinical features (e.g., patient age, tumor location), 
they currently do not serve as predictive signatures for molecular-driven therapeutic 
strategies. Thus, novel approaches are needed to reveal potentially druggable vulner-
abilities in ATRT.

To address this research gap, genome-scale perturbation screens serve as a powerful 
methodological approach to dissect genetic dependencies, context-dependent func-
tional networks, and chemogenetic interactors in cancer cells on a single gene level [15, 
16]. In particular, loss-of-function strategies using shRNA or CRISPR-Cas9-based tech-
niques have been used across a multitude of cancer entities to reveal genetic dependen-
cies that may provide the basis for discovery and prioritization of therapeutic targets 
[17, 18]. This approach might be particularly useful in malignancies with relatively stable 
genomes and a low abundance of targetable genetic alterations including ATRT [19].

We hypothesized that genome-wide functional screening will discover genetic depend-
encies that might serve as actionable molecular targets in ATRT despite their untargeta-
ble genetic profile. Thus, we employ here genome-wide CRISPR-Cas9 knockout screens. 
We discover a preferential sensitivity of ATRT cells to inhibition of these dependencies 
by targeted compounds including CDK4/6 inhibitors, independent of ATRT subgroups. 
Furthermore, we identify diverging cell cycle programs in ATRT, highlighted by diverse 
G1 phase cyclin essentiality profiles and diverse capabilities to modulate ATRT response 
to CDK4/6 inhibition. Additionally, we identify a previously unexplored cell type-spe-
cific role for the ubiquitin ligase substrate receptor AMBRA1 by acting as a potent tumor 
suppressor through regulation of factors involved in G2 and M phase progression.

Results
CRISPR‑Cas9 knockout screens reveal genetic dependencies of ATRTs

As a prerequisite for functional genomic screening, we first performed a detailed molec-
ular profiling of a set of seven human ATRT cell lines (BT12, BT16, CHLA02, CHLA04, 
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CHLA05, CHLA06, CHLA266; see “Methods”), providing evidence for a clear ATRT 
descent, including loss-of-function alterations in SMARCB1 in all cell lines (Fig.  1A; 
Additional file 1: Fig. S1A,B; Additional file 2: Table S1). Of note, our integrated analyses 
led to distinct subgroup assignments for these seven cell lines to ATRT-SHH (CHLA02, 
CHLA04, CHLA05) or ATRT-TYR/MYC subgroups (CHLA06, CHLA266, BT12, BT16) 
(Additional file 1: Fig. S1C-H; Additional file 14), being in line with previous subgroup 
assignments for these lines [12]. We next performed a total of 21 genome-wide CRISPR-
Cas9 knockout screens in seven ATRT cell lines, targeting 19,114 genes [20] (Fig.  1B; 
Additional file 3: Table S2). Our downstream bioinformatic pipeline included low-level 
read count-based quality control, correction for gene-independent effects, and screen 
performance evaluation using precision and sensitivity metrics for the classification 

Fig. 1 CRISPR‑Cas9 knockout screens reveal genetic dependencies of ATRT. A t‑SNE dimensionality reduction 
of global DNA methylation profiles from seven human ATRT cell lines (indicated in red) and a reference 
cohort of 2801 primary CNS tumors. B Overview of experimental approach using CRISPR‑Cas9 knockout 
screens to identify genetic dependencies in ATRT cells. C Precision‑recall‑curve analyses for seven ATRT 
cell lines based on distribution of known essential and non‑essential genes. Dashed line denotes 5% false 
discovery rate (FDR). D Ridgeline plot illustrating the distribution of gene Bayes factors for six ATRT cell 
lines calculated using BAGEL2. Vertical dashed line illustrates the lowest Bayes factor across cell lines at FDR 
< 10%. Rugs indicate genes with an FDR < 10% for depletion (neg. FDR) as determined by MAGeCK‑RRA. 
E Illustration of the number of dependent ATRT cell lines for all context‑specific essential fitness genes. 
F Correlation circle plots illustrating results from pairwise sPLS analyses integrating gene expression, 
gene promoter methylation and gene dependency. Shown are correlations of the top 100 variables 
with the first two components. In between the original variables, acute angles (< 90°) indicate positive 
correlations, while obtuse angels (> 90°) indicate negative correlations. G Bar graphs showing the density 
distributions of correlation coefficients for dependency and gene expression or dependency and gene 
promoter methylation of context‑specific essential genes. Red dashed line illustrates the null distribution as 
generated by random permutation. Statistics are derived from robust rank aggregation (MAGeCK RRA) or 
10‑fold cross‑validation (BAGEL2) (C, D), and a Wilcoxon rank sum test (G)
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of essential and non-essential genes (Fig.  1C; Additional file  1: Fig. S2A-D). Eighteen 
screens from six ATRT cell lines with high screening performance were kept for further 
analysis (Additional file 1: Fig. S2E-G).

We assessed gene essentiality using a combination of supervised (BAGEL2) and unsu-
pervised (MAGeCK RRA) gene fitness classification (Fig. 1D; Additional file 3: Table S2). 
We identified a median of 1592 (range 866–2100) fitness genes at FDR < 10% in each cell 
line, and dependency profiles generated with the Brunello library were well correlated 
with essentialities from ATRT cell lines within the Project Achilles which is based on the 
Avana library (Additional file 1: Fig. S3A) [21]. Next, we masked genes that are known to 
be common essential across human cancer cells [22, 23], leading to the identification of 
a total of 1768 (range 446–1108) context-specific essential genes in ATRT cells that are 
associated with several pathways amenable to therapeutic intervention such as cell cycle 
control, DNA organization, and growth factor signaling (Additional file 1: Fig. S3B,C).

We noted that the dependency profiles for these context-specific essentials varied con-
siderably across ATRT cell lines (Fig. 1E), and thus analyzed our screens for potential 
predictors of gene essentiality including genetic drivers, synthetic lethal interactions, 
and mRNA expression levels [24, 25]. We first used an in silico analysis to predict onco-
genic mutations present in our ATRT cell lines. While this approach yielded a total of 
37 potentially tumor-driving events in our cohort of ATRT cell lines (Additional file 2: 
Table S1), none of these were associated with a cell line-specific essentiality. In contrast, 
we identified several synthetic lethal dependencies [25], e.g., TP53 wild-type ATRT cell 
lines being sensitive to loss of negative regulators of p53 signaling MDM2 and MDM4 
(Additional file 1: Fig. S4A), further validating our screening approach. Due to the over-
all low mutational burden and stable genomes of ATRT, we reasoned that the major-
ity of dependencies might be driven by high expression of the corresponding gene, as is 
true for most cancer dependencies [25]. We therefore performed sparse projection to 
latent structures (sPLS) in an unsupervised fashion to explore the relationship of DNA 
promoter methylation, gene expression, and gene dependency scores in ATRT cells [26]. 
Top selected features showed strong clustering among the first two components in pair-
wise comparisons and revealed relevant associations both in pairwise as well as multi-
block comparisons (Fig.  1F; Additional file  1: Fig. S4B). Of note, while we found both 
positive as well as negative correlations of gene expression features with gene depend-
ency scores, our data revealed exclusive positive correlations of promoter methylation 
and dependency scores, where low promoter methylation levels that lead to higher 
gene expression are associated with gene dependency. Direct correlation of either gene 
expression or promoter methylation with gene dependency scores for context-specific 
fitness genes revealed a significant shift of correlation coefficients towards a more nega-
tive (gene expression) or positive (methylation) distribution as compared to the null dis-
tribution (Fig. 1G). Indeed, several targets with potential clinical relevance such as MYC, 
CDK6, and FGFR2 show a strong negative correlation with high gene expression lead-
ing to gene dependency (Additional file  1: Fig. S4C). Together these data suggest that 
context-specific essentiality in ATRT cells may be predicted to a useful extent by high 
gene expression which can serve as predictive molecular signature to inform biomarker-
guided targeted therapies.
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CRISPR screens guide the identification of chemical dependencies in ATRT 

Since genetic dependencies might nominate potential drugs for a functionally 
instructed targeted therapy in ATRT, we next interrogated the Drug Gene Interaction 
database (DGIdb) and explored known drug-gene interactions and potential drugga-
bility of context-specific essential genes [27], thereby discovering 261 candidate genes 
with known drug interaction (Fig. 2A; Additional file 4: Table S3). Based on these data, 
we generated a functionally instructed chemical library of 44 distinct small molecule 
inhibitors including 37 compounds as potential inhibitors of context-specific genetic 

Fig. 2 Functionally‑instructed chemical dependencies in ATRT. A Graphical summary for the generation of 
a functionally‑instructed drug library and drug screen analysis details. Venn diagram showing categorization 
of context‑specific essential genes into druggable categories as determined by the Drug Gene Interaction 
database highlighting selected drug classes. B Unsupervised hierarchical clustering (1 minus Pearson 
correlation, average linkage) of z‑scored GRiAOC values derived from a three‑dose drug screen (0.01 μM, 
0.1 μM, 1 μM for 72 hours) in 19 different human cancer cell lines. ATRT tumor cell lines are indicated 
in red. Broadly cytotoxic compounds are shown in orange, drugs previously shown to act in an ATRT 
subgroup‑dependent manner are shown in blue. C Kernel density estimation and statistical comparison of 
z‑scored  GRiAOC values from functionally‑instructed drugs grouped by ATRT and non‑ATRT cell lines. D Graph 
illustrating the  log2 fold change in  GRiAOC and the corresponding q value of ATRT cell lines as compared to 
non‑ATRT control cell lines. Selected drug classes are color coded. E Heat maps illustrating the Jaccard indices 
(top) and the corresponding significance (bottom) of pairwise intersections of context‑specific essential 
genes. The order of the heat map was determined by unsupervised hierarchical clustering (1 minus Pearson 
correlation, average linkage) of the samples based on their Jaccard indices. F 15 point GRi dose response 
curve analyses for selected small molecules in ATRT‑SHH (CHLA02, CHLA04, CHLA05) and ATRT‑TYR/MYC 
(BT12, BT16, CHLA06, CHLA266) cell lines. Mean  GRi50 values for ATRT‑SHH and ATRT‑TYR/MYC subgroup cell 
lines are shown
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dependencies in ATRT cell lines, five compounds previously shown to be efficacious 
in ATRT in a subgroup-dependent manner as positive controls (dasatinib, nilotinib, 
dorsomorphin, DAPT, ML329) [9, 11], as well as two broadly cytotoxic agents (vin-
cristine, doxorubicin). Using a three-dose drug screen, we determined the effects of 
this drug library on the viability of seven ATRT and 12 non-ATRT control cancer 
cell lines (Additional file 1: Fig. S5A,B; Additional file 5: Table S4), while employing 
growth rate inhibition (GRi) and area-over-the-curve-response curve (AOC) met-
rics [28] in order to account for differences in the division rate among cell lines (see 
“Methods”). As evidenced by unsupervised hierarchical clustering, the majority of 
ATRT cell lines showed a highly homogenous response to our drug library that was 
distinct from non-ATRT cell lines, and inhibitors with overlapping target profiles 
clustered together, suggesting on-target activity (Fig. 2B). Variable clustering of BT12 
cells to either ATRT or non-ATRT cells at different drug concentrations might sug-
gest distinct sensitivities of this cell line from other ATRT models (Additional file 1: 
Fig. S5B), and this is in line with a distinct gene expression profile in BT12 cells (Addi-
tional file 1: Fig. S7H). Overall, functionally instructed inhibitors were more potent in 
ATRT cell lines as compared to non-ATRT cell lines as a whole (Fig. 2C), and 14 out 
of 37 inhibitors displayed a significantly higher potency in ATRT cell lines compared 
to non-ATRT cell lines as judged by  GRiAOC values (Fig.  2D). Importantly, most of 
the drugs with a favorable activity profile in ATRT cells including EGFR and CDK4/6 
inhibitors showed reduced yet considerable efficacy in non-ATRT cells (Additional 
file 1: Fig. S5C; Additional file 5: Table S4), showing that their activity is not exclusive 
to ATRT cells. While we note that ATRT and non-ATRT cell lines in our drug screen 
are genetically distinct and that the predominantly adult cancer types in non-ATRT 
lines show a higher degree of genome instability (Additional file 1: Fig. S5D), our data 
strongly suggest that the genetically homogenous group of ATRT cells is preferen-
tially sensitive to our functionally instructed drug library.

While many of these functionally instructed drugs significantly inhibit the growth 
of ATRT cells, they might also exhibit substantial toxicity to normal cells of the nerv-
ous system, thereby limiting their potential clinical utility. To test the neurotox-
icity profile of the most promising compounds in our library, we tested drugs with 
the most reliable efficacy in GRi across ATRT cell lines  (GRiMAX < 0.5 in at least 4 
ATRT lines, n = 20) on murine post-mitotic cerebellar granule neurons and human 
astrocytes. Overall, 9 compounds including inhibitors of CDK4/6, MAPK, and EGF 
signaling did not significantly inhibit viability of normal cells (Additional file 1: Fig. 
S5E,F), suggesting that these classes of compounds represent chemical vulnerabilities 
of ATRTs with a broad therapeutic window.

ATRT subgroups were suggested to exhibit distinct chemical sensitivities [11]. We 
therefore re-analyzed both our genetic and chemical dependency data in this regard, 
focusing on differential vulnerabilities of ATRT-SHH (group 1) and ATRT-TYR/MYC 
(group 2) cell lines. We first used multi-set intersection analyses [29] to investigate a 
potential subgroup-specific, differential enrichment of context-specific genetic depend-
encies from our ATRT CRISPR screens. We did not observe any apparent clustering of 
dependency intersections associated with ATRT subgroups across any combination of 
ATRT cell lines (Additional file  1: Fig. S6A), and pairwise dependency set overlaps as 
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measured by Jaccard indices and corresponding P values did not support a subgroup-
driven enrichment of single gene dependencies in ATRTs (Fig.  2E). Furthermore, we 
detected a highly significant positive correlation of  GRiAOC values from ATRT-SHH and 
ATRT-TYR/MYC cell lines in our three-dose drug screen testing 44 small molecules 
(Additional file 1: Fig. S6B), indicating that cell models from distinct ATRT subgroups 
show similar sensitivity to most drugs in our library. In addition, we performed detailed 
GRi dose-response analyses for selected compounds from our library including EGFR 
and CDK4/6 inhibitors as well as dasatinib and nilotinib, both multi-targeted kinase 
inhibitors previously described to selectively inhibit viability of ATRT-TYR/MYC cell 
lines [11]. None of these drugs showed a significant difference in their ability to inhibit 
the growth rate of either ATRT-SHH or ATRT-TYR/MYC cell lines (Fig. 2F; Additional 
file 1: Fig. S6C). In summary, while our data do not provide any evidence for subgroup-
specific genetic or chemical vulnerabilities in ATRT, we identify several drug classes 
including inhibitors of CDK4/6 and signaling pathways such as EGF and PI3K to be par-
ticularly efficacious in ATRT cells.

CDK4 and CDK6 are distinct predictors of CDK4/6 inhibitor sensitivity in ATRT 

Loss of SMARCB1 in rhabdoid tumors has been associated with deregulation of the 
cyclin D-CDK4/6-RB axis [30–32], and CDK4/6 inhibitors were among the inhibitors 
with the most promising activity profile in ATRT cells. CDK4/6 inhibition in ATRT 
cells led to cell cycle arrest in G1 phase and displayed a strong anti-tumor effect in all 
ATRT models including an ATRT-SHH cell line derived from a patient-derived ortho-
topic xenograft (PDOX) mouse model [33] (Additional file 1: Fig. S7A-C). Additionally, 
ATRT cell lines showed a similar sensitivity to abemaciclib in colony formation assays 
as MCF7 cells (Additional file 1: Fig. S7D), an  ER+ breast cancer line known to be highly 
susceptible to CDK4/6 inhibition [34], whereas other non-ATRT solid tumors showed 
substantially lower sensitivity to CDK4/6 inhibition. This is in line with results from our 
drug screen, and these results were not biased by genetic alterations within the p53 or 
cyclin D-CDK4/6-RB pathways previously described to modulate response to CDK4/6 
inhibition [35–38] (Additional file 1: Fig. S7E). Importantly, abemaciclib treatment sig-
nificantly prolonged survival in vivo in orthotopic xenograft mouse models using BT16 
cells, a model for ATRT-MYC, and ATRT310FH, a PDOX model for ATRT-SHH [33] 
(Fig. 3A). Together, these data suggest a preferential sensitivity of ATRT cells to CDK4/6 
inhibition.

We then aimed at investigating the molecular mechanisms underlying CDK4/6 inhibi-
tor sensitivity in ATRT. All ATRT cell lines depend either on CDK4 or CDK6 expression 
in a mutually exclusive manner, a pattern recapitulated by most human cancer cell lines 
[25], and most require expression of at least one out of three D-type cyclins (Fig.  3B; 
Additional file 1: Fig. S7F). Genetic silencing of CDKs and associated D-type cyclins in 
both CDK4 and CDK6-dependent ATRT cell lines confirmed the heterogenous depend-
ency on distinct G1 phase cell cycle regulators as predicted by our CRISPR-Cas9 screens 
(Fig. 3C). We reasoned that differential expression of members of the CDK/D-type cyc-
lin axis might be responsible for this heterogeneity, as suggested by our finding that high 
expression of CDK6 may predict CDK6 dependency (Additional file  1: Fig. S4C) and 
the lack of any obvious clustering of CDK4- and CDK6-dependent cell lines based on 
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global gene expression profiling (Additional file 1: Fig. S7G,H). Indeed, protein expres-
sion of CDK4, CDK6, and associated D-type cyclins revealed a striking heterogeneity 
in ATRT cells, which was highly reminiscent of the corresponding dependency profiles 
of these genes (Fig. 3D; Additional file 15). We identified CCND2/cyclin D2 and CDK6/
CDK6 expression as predictors of CDK4- and CDK6-dependent cell lines, respectively 
(Fig. 3D,E). While CDK4/CDK4 levels were not associated with CDK4 essentiality, CDK4 
dependency scores showed strong negative correlation with CCND2/cyclin D2 expres-
sion (i.e., ATRT cells that dependent on CDK4 show high CCND2/cyclin D2 expression), 
with CDK4-dependent cells showing no detectable CDK6 protein expression. In con-
trast, CDK6 dependency scores showed strong negative correlation with CDK6/CDK6 
expression and were positively correlated with CCND2/cyclin D2 levels. Notably, these 
correlations are conserved across human cancer cell lines, where CDK6 expression is 
positively correlated with CDK4 dependency scores, while showing strong negative 

Fig. 3 CDK4 and CDK6 are distinct predictors for CDK4/6 inhibitor sensitivity in ATRT. A Kaplan‑Meier survival 
analyses of intracranial transplantation tumor mouse models (BT16 and ATRT310FH) treated daily with 75 
mg/kg abemaciclib or vehicle (n = 7 for each condition and model), monitored for 150 days after tumor 
cell transplantation. B Heat map illustrating gene level  log2 fold changes and corresponding FDR statistics 
for CDK4, CDK6, and all D‑type cyclins in ATRT CRISPR knockout screens. C Bar graphs showing the effect of 
shRNA‑mediated knockdown of CDK4, CDK6, CCND1, CCND2, and CCND3 in BT16 and CHLA06 cells (n = 
3 independent experiments, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Control shRNAs target the 
pan‑essential gene RPL14 or the luciferase gene for normalization. D Western blot analyses showing the 
protein expression levels of CDK4, CDK6, and D‑type cyclins in the indicated ATRT cell lines. Note that profiles 
for CDK4 or CDK6 dependency were not available for CHLA02 cells. E Correlation analyses to illustrate CDK4 
or CDK6 dependency prediction by CCND2 and CDK6 mRNA expression. Dependency for the gene on the 
y axis is indicated by red color. F Representative H&E stains and immunohistochemistry for CDK6 and cyclin 
D2 in tumor tissue from 6 ATRT patients (each column corresponds to one patient). G Correlation analysis of 
immunoreactivity for CDK6 and cyclin D2 in all analyzed ATRT patient tissues (n = 17). Dashed lines indicate 
the 95% confidence interval. Data are shown as mean ± SEM (C). Statistics are derived from a Log‑rank test 
(A), robust rank aggregation (B), two‑way ANOVA with Dunnett correction (C), and t tests (E, G)
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correlation with CDK6 dependency scores [25]. We validated this expression pattern 
in 17 human ATRT patient samples by immunohistochemistry stainings for CDK6 and 
cyclin D2 (Fig. 3F). Indeed, we observed a negative correlation of CDK6 and cyclin D2 
protein expression, where low CDK6 expression correlated with high cyclin D2 expres-
sion, and vice versa (Fig. 3G). Taken together, these data suggest that ATRT cells employ 
distinct cell cycle programs and diverging usage of G1 phase cyclins and CDKs, and this 
predisposes to differential dependencies for these cell cycle regulators.

G1 phase cyclins are diverging regulators of response to CDK4/6 inhibition and cell cycle 

progression in ATRT cells

We next aimed to test whether diverging cell cycle programs in different ATRT cell lines 
result in differential modulation of CDK4/6 inhibition, and thus performed chemoge-
netic CRISPR screens (Additional file 1: Fig. S8A; see “Methods”). We first investigated 
the role of gene activations for potential modulation of drug response in a CRISPR-
dCas9-VP64 approach using two distinct ATRT cell lines based on their differential 
dependency on either CDK4 (CHLA06) or CDK6 (BT16). Data from activation screens 
for two distinct CDK4/6 inhibitors (abemaciclib and palbociclib) strongly correlated by 
cell type, but not by individual CDK4/6 inhibitors (Additional file 1: Fig. S8B; Additional 
file  6: Table  S5). In fact, activation of E-type cyclin genes, in particular CCNE1, con-
ferred resistance to CDK4/6 inhibition in CHLA06 cells but not in BT16 cells (Fig. 4A). 
Additionally, these screens identified D-type cyclins as positive regulators of cell cycle 
progression only in CHLA06 cells but not in BT16 cells. Contrasting these results, all 
ATRT cell lines relied on at least one D-type cyclin for survival while E-type cyclins were 
uniformly dispensable (Additional file 3: Table S2), illustrating further functional hetero-
geneity with regard to pure cell survival and cell cycle progression. Accordingly, over-
expression of G1 phase cyclins showed highly diverging effects on the proliferation of 
ATRT cells (Additional file 1: Fig. S8C,D; Additional file 16), suggesting that cell cycle 
progression is regulated differently in ATRT cells by a distinct combination of G1 phase 
cyclins in ATRT cells.

We next assessed the capacity of G1 phase cyclin overexpression to confer resistance 
to CDK4/6 blockade using GRi metrics of dose-response data and clonogenic survival 
assays. Activation of CCNE1, and to a lesser extent CCND1 while not being a clear screen 
hit for a buffering effect, conferred resistance in CHLA06 but none of the other cell lines 
(Fig. 4B,C; Additional file 1: Fig. S8E). In contrast, all other ATRT cell lines were ame-
nable to activation of CCND3 and CCNE2 to potentially confer resistance to CDK4/6 
inhibition. Of note, activation of CCNE2 also decreased sensitivity of CHLA06 cells to 
CDK4/6 blockade, but to a lesser extent than CCNE1. We hypothesized that these dif-
ferences in sensitivity profiles might be related to gene expression changes downstream 
of CDK4/6 inhibition in the individual ATRT cell lines, based on the idea that re-activa-
tion of drug-suppressed genes might confer resistance. Global gene expression profil-
ing for two ATRT cell lines under abemaciclib treatment revealed common expression 
changes associated with G1 phase arrest, but also significant differences in gene regula-
tion (Fig.  4D; Additional file  1: Fig. S8F,G). Among the top differentially affected cyc-
lins by abemaciclib treatment, cell type-specific downregulation of CCNE1 expression 
in CHLA06 cells was associated with resistance when re-activated, while endogenous 
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levels of CCNE1 in BT16 cells increased by CDK4/6 blockade and overexpression failed 
to confer resistance (Fig. 4E; Additional file 1: Fig. S8H). In contrast, CCNE2 expression 
was decreased in both ATRT cell lines under abemaciclib treatment and overexpression 
conferred resistance in both cell lines. Gene expression changes for D-type cyclins upon 
CDK4/6 blockade were similar across ATRT cell lines, with the exception that CCND2 
was only upregulated in the context of detectable baseline expression. Furthermore, 
CCND1 and CCND2 were exclusively upregulated, whereas CCND3 showed a significant 
but minor decrease in expression upon CDK4/6 inhibition. Together, overexpression of 
distinct E-type cyclins conferred resistance in a cell context-specific manner, and this 
degree of resistance was much more pronounced than that conferred by overexpression 
of D-type cyclins. Mechanistically, resistance conferred by E-type cyclins was associated 

Fig. 4 G1 phase cyclins are diverging regulators of response to CDK4/6 blockade and cell cycle progression 
in ATRT cells. A Scatter and rank plots for screening data from CRISPR‑dCas9‑VP64 chemogenetic screens. 
BT16 (left) and CHLA06 cells (right) were treated with the CDK4/6 inhibitors (abemaciclib or palbociclib) or 
DMSO, and MAGeCK MLE was used to model common differences in CDK4/6 inhibitor treated screens as 
compared to either the DMSO control or the plasmid DNA reference (pDNA). B GRi dose response curve 
analyses for ATRT cells overexpressing G1 phase cyclins and comparison of  GRiAOC values. Statistically 
significant differences in  GRiAOC values are highlighted. C Analyses of clonogenic survival of ATRT cell 
lines under increasing concentrations of abemaciclib (200 nM to 800 nM). See Additional file 1: Fig. S8E for 
statistics. D Scatter plot illustrating common and differential gene expression changes in BT16 and CHLA06 
cells upon CDK4/6 blockade. Common suppression of S and G2/M phase‑associated genes as a result of 
G1 phase arrest is indicated in orange/yellow. Genes with differential gene expression changes in both cell 
lines as determined by likelihood ratio test (LRT) are highlighted in magenta. E Volcano plot associating the 
absolute difference in gene expression changes between BT16 and CHLA06 cells and its corresponding 
LRT P value for all annotated cyclins. Data are shown as mean ± SD (B). Statistics are derived from 
maximum likelihood estimation (A), one‑way ANOVA with Dunnett correction (B), and a likelihood ratio test 
(D, E)
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with gene re-activation, while resistance conferred by cell line-specific overexpression of 
distinct D-type cyclins was not necessarily associated with re-activation of D-type cyclin 
genes after CDK4/6 blockade. These data further provide evidence for distinct cell cycle 
programs and particularly different regulation of cell cycle progression in ATRT cells as 
a potential mechanism of resistance to CDK4/6 inhibition.

AMBRA1 acts as a context‑dependent tumor suppressor in ATRT 

In parallel to gain-of-function chemogenetic screens described above, we performed 
genome-wide screening to identify loss-of-function alterations that might modify 
response to CDK4/6 blockade as well as to delineate general regulators of cell cycle pro-
gression in ATRT cells (Additional file 1: Fig. S9A; Additional file 7: Table S6). Again, 
correlation analyses of screening data for distinct CDK4/6 inhibitors in two ATRT cell 
lines suggested a cell line-specific response to CRISPR-Cas9 mediated gene knockouts 
under drug treatment (Additional file  1: Fig. S9B). However, the top hits modulating 
drug response were shared in both cell lines, with loss of RB1 and FBXW7 being among 
the top scoring genes to confer resistance to CDK4/6 blockade (Fig.  5A) as expected 
[35, 39]. The top differential hit across both cell lines was the autophagy-related gene 
AMBRA1, which was predicted to act as a strong negative regulator of cell cycle pro-
gression only in CHLA06 cells. AMBRA1 was recently described as a potent tumor sup-
pressor, which regulates the stability of D-type cyclins and S phase entry, and loss of 
AMBRA1 has been suggested to decrease sensitivity to CDK4/6 blockade [40–42]. Our 

Fig. 5 AMBRA1 is a context‑dependent tumor suppressor. A Scatter and rank plots for screening data from 
CRISPR‑Cas9 knockout drug screens. MAGeCK MLE was used to identify common screen hits in BT16 (left) 
and CHLA06 cells (right) that were treated with CDK4/6 inhibitors (abemaciclib or palbociclib) and DMSO by 
comparing drug screens to either the DMSO control or the plasmid DNA reference (pDNA). B Effect of loss 
of AMBRA1 on the proliferation of ATRT cells as measured by  log2 fold change in cell number over 8 days for 
AMBRA1 knockout cells compared to control cells. C Alluvial plots illustrating changes in cell cycle distribution 
of ATRT cells upon loss of AMBRA1. See Additional file 1: Fig. S9G for statistics. D Effect of AMBRA1 knockout 
in 1150 human cancer cell lines from DepMap. Boxes illustrate primary diseases in which the knockout effect 
of AMBRA1 significantly differed from all other cell lines. HNSCC: Head and Neck Squamous Cell Carcinoma. E 
The top 100 pre‑computed genetic associations for AMBRA1 in DepMap. Selected genes that show a skewed 
gene effect distribution across human cancer cell lines are indicated. F Correlation of AMBRA1 and BRAF gene 
knockout effects in DepMap, highlighting melanoma and rhabdoid cancer cell lines. Data are shown as mean 
± SD (B). Statistics are derived from maximum likelihood estimation (A), and t tests (B, D)
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screen did not suggest a major role for AMBRA1 in ATRT cells in modulating response 
to CDK4/6 inhibitors per se, and functional validation did not provide any evidence that 
loss of AMBRA1 confers resistance to CDK4/6 blockade in ATRT cells (Additional file 1: 
Fig. S9C-F). In contrast, loss of AMBRA1 selectively enhanced proliferation in a subset 
of ATRT cell lines (Fig. 5B), and this was paralleled by a strong increase in G2/M rather 
than S phase cells upon loss of AMBRA1 in a cell line-specific manner (Fig. 5C; Addi-
tional file 1: Fig. S9G).

In order to put these findings into a broader context, we interrogated the Dep-
Map (https:// depmap. org/) for knockout effects and potential genetic interactions of 
AMBRA1 across 1150 human cancer cell lines. Indeed, while knockout of AMBRA1 
did not affect the vast majority of cell lines, individual primary diseases showed a 
unique response pattern, and knockout effects in melanoma and rhabdoid cancer cell 
lines suggested a tumor suppressive role for AMBRA1 (Fig. 5D; Additional file 1: Fig. 
S10A). In line with these data, we found a strong direct correlation of AMBRA1 with 
several tumor suppressors including TP53 across DepMap, while inverse correlation 
was seen for selectively essential transcription factors defining neural crest (SOX10) 
and melanocyte (MITF) lineage (Fig.  5E). In melanoma, tumor suppressive activity 
of AMBRA1 was correlated with oncogenic BRAF signaling (Fig. 5F), corroborating 
previous results [43]. In line with that, genetic alterations of both AMBRA1 and BRAF 
are prevalent in melanoma (Additional file  1: Fig.  10B), while no AMBRA1 altera-
tions have been identified in ATRT so far [9, 11]. Interestingly, even though rhabdoid 
tumors have been suggested to potentially derive from neural crest cells similar to 
melanocytes [44–46], neither rhabdoid cell lines from DepMap nor ATRT cell lines 
from our study were dependent on SOX10 or MITF (Additional file 1: Fig. S10C,D). 
Furthermore, while context-dependent tumor suppressive activity of AMBRA1 has 
been associated with oncogenic KRAS signaling in lung adenocarcinoma [42], we 
did not find any correlation of KRAS and AMBRA1 in tumors which show recur-
rent oncogenic KRAS mutations (Additional file 1: Fig. 10E). Together, these analyses 
reveal context-specific tumor suppressor activity of AMBRA1 which might be related 
to descent from the neural crest lineage.

AMBRA1 tumor suppressor activity is associated with regulation of G2/M phase mediators

Since tumor suppressive activity of AMBRA1 has been attributed to its role as substrate 
receptor for a cullin4-RING E3 ubiquitin ligase (CRL4) [40–42], we next aimed to delin-
eate changes in protein levels of cell cycle regulators upon loss of AMBRA1 in ATRT 
cells with clear AMBRA1-associated tumor suppressive activity (hereafter referred to 
as AMBRA1 responders), and compare those to ATRT cells where loss of AMBRA1 
does not show any proliferative or cell cycle-associated effects (hereafter referred to as 
AMBRA1 non-responders). Employing a bead-based western blot system [47] with a 
total of 59 distinct antibodies recognizing unmodified and phosphorylated residues for 
a total of 39 cell cycle regulators, we confirmed significant reduction of AMBRA1 pro-
tein levels following CRISPR-Cas9-mediated knockout and concomitant increase of G1 
phase regulators such as D-type cyclins, CDK4, and p27 across all ATRT cells (Fig. 6A; 
Additional file 1: Fig. S11A-C; Additional file 8: Table S7) as expected [42]. In particu-
lar, when comparing changes in protein abundance in AMBRA1 responder to AMBRA1 

https://depmap.org/
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non-responder cell lines, we found that AMBRA1 responder cell lines showed a signifi-
cant upregulation of cell cycle regulators upon loss of AMBRA1 that are known to act 
during G2 and M phase of the cell cycle, including AURKA, AURKB, and their down-
stream target histone H3-pS10 (Fig. 6A; Additional file 1: Fig. S11D). Of note, cyclin A2 
and cyclin B1 levels were not significantly altered in this comparison, suggesting that 
upregulation of G2/M phase regulators in AMBRA1 responder cells is not due to an 
increase in G2/M phase cells per se, but instead might have functional relevance for the 
context-dependent tumor suppressive activity of AMBRA1 in those cells. These data 
suggest a model in which AMBRA1, beyond previously described actions on D-type sta-
bility alone, acts as a tumor suppressor by simultaneously regulating several cell cycle 
regulators at once. Consistent with this model, overexpression of AURKA enhanced 
proliferation both in AMBRA1-deleted AMBRA1 responder (CHLA06) as well as 
non-responder (BT16) cells, while this was not the case in corresponding control cells 
(Fig.  6B,C; Additional file  17). Together, stabilization of D-type cyclins as a result of 
AMBRA1 loss in combination with AURKA overexpression led to an increase of G2/M 
phase cells in both CHLA06 and BT16 cells (Fig. 6D).

Fig. 6 AMBRA1 tumor suppressor activity is associated with regulation of G2/M phase mediators. A Volcano 
plots showing changes in protein levels for 39 cell cycle‑associated regulators in ATRT cells upon loss of 
AMBRA1 as assessed by DigiWest. Left, common changes in protein levels across four ATRT cell lines upon 
AMBRA1 knockout. Right, context‑specific changes in protein levels in AMBRA1 responder (CHLA06 and 
CHLA266) as compared to AMBRA1 non‑responder ATRT cell lines (BT12 and BT16) upon loss of AMBRA1. 
B Western blot analyses for control and sgAMBRA1 CHLA06 cells with or without overexpression of AURKA 
(AURKA OE). Note AURKA and CDK1 overexpression driven by loss of AMBRA1 alone. C Effect of gain of AURKA 
on the proliferation of ATRT cells on control and sgAMBRA1 background. D Effect of gain of AURKA on cell 
cycle phase distributions of control and sgAMBRA1 ATRT cells. Data are shown as mean ± SD (B). Statistics are 
derived from and Welch’s t tests (A), and from paired t tests (C)
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Fig. 7 AMBRA1 regulates ubiquitin‑dependent degradation of aurora kinases in a context‑dependent 
manner. A Complex structure prediction using AlphaFold2_mmseqs2 for  AMBRA1WD40 with DDB1, cyclin 
D1, AURKA or AURKB. Top, cartoon illustration of predicted heteromeric protein complexes. Interchain 
AlphaFold2 contacts (< 8 Å) are shown as straight lines colored by predicted alignment error (PAE). AMBRA1 
residues implicated in DDB1 binding are highlighted in green. Predicted template modeling scores (pTM) 
are indicated. Bottom, pairwise PAE scores for all protein complexes. B Heat map showing  log2 fold changes 
of label‑free quantification values from FLAG affinity purification and mass spectrometry detection in 
AMBRA‑FLAG versus FLAG expressing ATRT cells. Cells were investigated with and without treatment of the 
CRL inhibitor MLN4924. C Co‑immunoprecipitation analyses followed by western blot for selected potential 
AMBRA1 interactors and substrates. Previously identified interactors and substrates of AMBRA1 (CUL4A, 
DDB1, and cyclin D1) were included as controls. D Top: Immunoassays of cyclin D1, cyclin D3, AURKA, and 
AURKB for BT12 and CHLA06 cells, both in wildtype and AMBRA1‑knockout conditions. Cells were treated with 
DMSO, 0.4 μM Baf‑A1, or 1 μM MLN4924 for 4 h (cyclin D) or 12 h (aurora kinases). Increase in LC3B‑II levels 
was used as a validation of autophagy inhibition. Bottom: Quantification of protein expression levels relative 
the corresponding DMSO control conditions. E Left: Immunoassays from His pull‑down experiments for BT12 
and CHLA266 cells, both in wildtype and AMBRA1‑knockout conditions, transfected either with 6xHis‑empty 
or 6xHis‑tagged ubiquitin 48 h prior to pull‑down. Right: Quantification of AURKA and AURKB ubiquitylation 
relative to total protein levels. F Model of context‑dependent,  CRL4AMBRA1‑associated blockade of cell cycle 
regulators via degradation by the ubiquitin‑proteasome system. Data are shown as mean ± SD (D, E).  
Statistics are derived from two‑way ANOVA tests with Dunnett’s (D) or Sidak’s correction (E). *P < 0.05,  
**P < 0.01,***P < 0.001, ****P < 0.0001
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CRL4AMBRA1 activity regulates G2/M phase mediators

We hypothesized that upregulation of G2/M phase mediators upon loss of AMBRA1 
might be linked to loss of  CRL4AMBRA1 activity similar to the mechanism driving the 
increase of D-type cyclins. Heteromeric protein complex structure prediction using 
ColabFold, an extension of the AlphaFold2 algorithm [48, 49], showed highly similar 
complex formations for the  AMBRA1WD40 domain, previously shown to be important 
for DDB1 binding [50], with all G2/M phase regulators upregulated upon AMBRA1 loss 
(Fig. 7A; Additional file 1: Fig. S12A). Of note, model accuracy estimates were higher for 
substrates shown to be affected by loss of AMBRA1 (pTM range 0.68–0.59) than esti-
mates for cyclin genes unaffected by ablation of AMBRA1 (pTM=0.54 for cyclin A2 and 
cyclin B1) (Additional file 1: Fig. S12B). For all potential substrates, strong interaction is 
predicted for the cyclin D1-binding interface of the  AMBRA1WD40 domain, residing con-
tralaterally to the DDB1 binding side. To strengthen these findings, we performed affin-
ity purification coupled with mass spectrometry analyses to identify proteins interacting 
with AMBRA1 in ATRT cells (see “Methods”). We found core components of CRL4 as 
well as CRL2/5 to be among the top interactors of AMBRA1 across all cell lines (Fig. 7B; 
Additional file 1: Fig. S12C,D; Additional file 9: Table S8). Inhibition of CRLs strongly 
increased interaction of AMBRA1 with D-type cyclins, as expected for this ubiquitin 
ligase substrate interaction, as well as a wide selection of CRL2/5 substrate receptors, 
further providing evidence for a previously described CRL cross-regulation [51]. Of note, 
AURKB and CDK1, two regulators shown to be upregulated upon loss of AMBRA1, did 
interact with AMBRA1 in this initial experiment. However, this interaction did not seem 
to increase upon CRL inhibition as suggested for a ubiquitin ligase substrate. We noted 
that this experiment did not detect some expected interactions of D-type cyclins and 
AMBRA1 altogether (e.g., BT12 cells), indicating that AMBRA1 interactions in particu-
lar with substrates for degradation are highly dynamic and potentially short lived. We 
therefore validated our mass spectrometry approach by performing co-immunoprecipi-
tation followed by western blot analyses (Fig. 7C; Additional file 18). Interactors such as 
CUL4A and DDB1 co-immunoprecipitated invariably with AMBRA1-FLAG. However, 
cyclin D1 again showed variable precipitation across MLN4924-treated ATRT cell lines. 
Of note, interaction of AURKA with AMBRA1 was only seen in AMBRA1 responder 
cell line CHLA266 but not in BT12 cells, and AURKB also showed a weak signal only in 
CHLA266 cells.

Based on our results so far, we hypothesized that AMBRA1 may directly interact with 
aurora kinases in a cell context-specific manner. Thus, we aimed at investigating the 
mechanism of the degradation process. Acute inhibition of all CRLs, but not inhibition 
of autophagy, increased levels of D-type cyclins and aurora kinases in both AMBRA1 
responder and non-responder cell lines (Fig. 7D; Additional file 18). Also, cyclin D and 
aurora kinase levels did not further accumulate in AMBRA1 knockout cells upon CRL 
inhibition. Thus, in AMBRA1 responder cell lines, aurora kinase stability seems to be 
regulated by  CRL4AMBRA1 activity, similarly to D-type cyclins. While AMBRA1 knock-
out is not sufficient to increase aurora kinase levels in AMBRA1 non-responder lines 
(Fig. 6D), surprisingly loss of AMBRA1 still impeded the accumulation of aurora kinase 
levels induced by CRL inhibition in these cells. These data suggest that the stability 
of aurora kinases in AMBRA1 non-responder cell lines is regulated by a cullin-RING 
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ubiquitin ligase other than  CRL4AMBRA1, while indicating that there might be crosstalk 
between  CRL4AMBRA1 and the CRL degradation pathway in these cells as well. Only in 
AMBRA1 responder cell lines, however, loss of AMBRA1 clearly reduced levels of ubiq-
uitylated AURKA and AURKB (Fig. 7E; Additional file 18). In AMBRA1 non-responder 
cell lines, on the other hand, AMBRA1 status did not affect the ubiquitylation of aurora 
kinases.

Together, our data provide evidence that AMBRA1 acts as a context-specific tumor 
suppressor in ATRT cells, where tumor suppressive activity is associated with negative 
regulation of mitotic regulators. While D-type cyclins are degraded by  CRL4AMBRA1 
activity regardless of the cellular context, AMBRA1 facilitates the context-dependent 
degradation of aurora kinases, and potentially other G2/M phase regulators, by substrate 
ubiquitylation and proteasomal degradation (Fig. 7F).

Synthetic lethality of AURKA and CDK4/6 inhibition upon loss of AMBRA1

Our data highlighted an unanticipated tumor suppressive role of AMBRA1 mediated by 
the regulation of G2/M phase mediators in combination with D-type cyclins, suggesting 
that corresponding cells might be particularly dependent on these mitotic regulators. In 
fact, upregulation of AURKA upon loss of AMBRA1 in ATRT responder cells strongly 
sensitized cells to AURKA inhibition, while AMBRA1 status did not affect sensitivity 
towards AURKA inhibition in AMBRA1 non-responder cells (Fig.  8A). We reasoned 

Fig. 8 Inhibition of AURKA is synthetic lethal upon oncogenic loss of AMBRA1. A Dose response analyses 
for the AURKA inhibitor LY3295668 in AMBRA1 proficient and knockout ATRT cells. B Duration of mitosis in 
BT12 and CHLA06 cells, both AMBRA1 proficient and knockout cells, treated with 200 nM LY3295668. C Drug 
synergies as determined by the Bliss model for the combination of the CDK4/6 inhibitor abemaciclib and the 
AURKA inhibitor LY3295668 in AMBRA1 proficient and knockout ATRT cells. Data are shown as mean ± SD (B, 
D). Statistics are derived from paired t test (B), and two‑way ANOVA test for interaction (E)
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that gain of mitotic factors enforced a higher proliferation rate, but might also render 
those cells dependent on high activity of those regulators to progress through M phase. 
In line with this hypothesis, prolongation of mitosis by AURKA inhibition was signifi-
cantly associated with AMBRA1 status only in AMBRA1 responder cells, with loss of 
AMBRA1 significantly delaying M phase progression compared to the respective control 
cells (Fig. 8B; Additional files 10–13: Movies S1-4). Simultaneous blockade of cell cycle 
progression in G1 and G2/M phase using CDK4/6 and AURKA inhibitors showed syner-
gistic interaction only in AMBRA1 responder cells with an AMBRA1 knockout (Fig. 8C), 
further suggesting that tumor cells in which AMBRA1 fulfills a tumor suppressive role 
might be particularly sensitive to AURKA inhibition. Together, our findings indicate a 
multi-level regulation of cell cycle progression by AMBRA1. Mechanistically, regulation 
of protein levels of D-type cyclins in G1 and other factors such as aurora kinases at later 
stages implicate AMBRA1 as a critical regulator of the cell cycle, and context-specific 
ability of AMBRA1 to regulate these factors simultaneously might provide the basis for 
context-specific tumor suppressive activity.

Discussion
In this study, we applied a functional genomics approach to ATRT, an incurable pediat-
ric brain tumor, in order to define genetic vulnerabilities that can guide targeted thera-
pies for this tumor entity. We here provide evidence for a particular sensitivity of ATRT 
to CDK4/6 inhibition, and investigate genetic modulators of response to CDK4/6 inhibi-
tors. Surprisingly, our study reveals a very interesting and novel context-specific tumor 
suppressive activity of the autophagy regulator AMBRA1 in ATRT that depends on the 
negative regulation of G2/M phase mediators.

Our study provides an unprecedented view of genetic dependencies in ATRT at 
genome scale and illustrates various molecular mechanisms underlying tumor cell-
specific dependencies. Small molecule inhibitor screening revealed a striking sensitiv-
ity of ATRT cells over non-ATRT cells to functionally instructed compounds based 
on genome-wide CRISPR-Cas9 screens. Among others, these include several classes 
of inhibitors that did not show any neurotoxicity in our study and present manageable 
toxicity profiles in the clinic for CDK4/6 [52–54] and EGFR inhibitors [55, 56], while 
others such as MAPK inhibitors show promising results in preclinical research [57, 58]. 
Of note, the dependencies identified by CRISPR screening and corresponding chemical 
vulnerabilities in our study did not show any particular association with epigenetically 
defined ATRT subgroups, contrasting previous studies [11, 59]. Yet, these studies relied 
on relative viability assays which can be largely confounded by the cell division rate of 
the investigated in vitro model systems [28, 60]. This might be of particular importance 
when using ATRT cell lines as these cells present a wide range of doubling times (range 
of 38 h to 135 h for ATRT cell lines in this study). Our analyses using growth rate inhibi-
tion drug dose-responses are in line with intersection analyses of genetic dependencies 
from ATRT cells, which did not provide any evidence for subgroup-specific enrichment. 
Together, these data suggest that chemical vulnerabilities in ATRT are a result of entity-
specific molecular mechanisms, rather than a consequence of age and epigenetic or tran-
scriptional features defining ATRT subgroups in previous studies. Yet, all these studies 
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including ours are limited by the number of available cell lines representing individual 
ATRT subgroups, and novel model systems are warranted to further examine potential 
subgroup-specific differences.

CDK4/6 inhibitors were among the top compounds differentially affecting viability 
of ATRT cells as compared to non-ATRT cells. In general, TP53 wild type tumors are 
predicted to show increased sensitivity to CDK4/6 inhibition as a result of p53-medi-
ated upregulation of the cell cycle inhibitor p21 and downstream inhibition of CDK2 
[61, 62], being well in line with findings of p53 pathway deregulation in patients treated 
with CDK4/6 inhibitors [35, 37]. However, in our collection of cell lines used for drug 
screening, we did not find evidence for a potential bias of increased sensitivity for ATRT 
cell lines based on p53 pathway deregulation. On the other hand, preferential sensitivity 
of ATRT cells to CDK4/6 blockade might be due to deregulation of the D-type cyclin-
CDK4/6-RB1 axis downstream of loss of SMARCB1  [32, 63, 64]. While these previous 
studies have focused on the role of cyclin D1 in rhabdoid tumors, our analyses shed new 
light on the functional diversity of distinct D-type cyclins and associated CDKs in ATRT 
to drive cell cycle progression and possibly response to CDK4/6 blockade. In fact, ATRT 
cells express a variable set of at least one D-type cyclin, and dependency for these cyc-
lins strongly correlated with their expression. In contrast, E-type cyclins were uniformly 
expressed in all ATRT cells and did not represent a dependency in any of the ATRT cells 
investigated, arguing that ATRT cells strictly rely on the D-type cyclin-CDK4/6-RB1 axis 
to progress from G1 to S phase of the cell cycle. A strong correlation of cyclin D expres-
sion and dependency has been suggested before, together with lineage-specific associa-
tions of CDK6 with cyclin D3 in hematopoietic and CDK4 with cyclin D1 in solid tumor 
cell lines [25]. CDK4 and CDK6 are mutually exclusive dependencies in ATRT, and best 
correlation of CDK4 dependency was seen for CCND2 expression in vitro and in vivo. 
These data further illustrate the heterogeneity of programs that drive cell cycle progres-
sion in single tumor entities which extents obvious lineage associations [65].

In line with the uniform dependency on the D-type cyclin-CDK4/6-RB1 axis to pro-
gress through the cell cycle, loss of RB1 rescued cells from CDK4/6 blockade, but gain-
of-function for G1 phase cyclins was again much more heterogenous in terms of their 
ability to confer resistance. E-type cyclins scored as top hits conferring resistance to 
CDK4/6 blockade after overexpression, being well in line with observations of E-type 
cyclin overexpression in preclinical models of acquired resistance to CDK4/6 inhibitors 
as well as resistant biopsies [35, 66]. Of note, resistance by gain of CCNE1 or CCNE2 
expression was associated with re-activation after CDK4/6 inhibition, illustrating a cell 
line-specific adaptation of G1 phase cyclins to CDK4/6 blockade. In contrast, the abil-
ity of gain-of-function alterations of D-type cyclins to decrease sensitivity to CDK4/6 
inhibitors was less pronounced and restricted to distinct D-type cyclins in a cell line-
specific manner. In fact, resistance mechanisms within the D-type cyclin-CDK4/6 axis 
have been largely attributed to overexpression or amplification of CDK4 or CDK6 [38, 
67, 68]. While alterations leading to increased D-type cyclin levels have been suggested 
as potential biomarkers for sensitivity to CDK4/6 inhibitors in cancer cell lines [36], this 
was not observed for primary breast cancer [69], and data suggest that high levels of cyc-
lin D might also desensitize cells to CDK4/6 blockade by formation of cyclin D-CDK2 
complexes which are expected to be insensitive to CDK4/6 inhibitors [40]. Together, our 
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data highlight potentially different routes of resistance to CDK4/6 inhibitors which cor-
respond to the diverging usage of G1 cyclins for cell cycle progression in ATRT.

Our loss-of-function screening approaches in ATRT cells under CDK4/6 inhibition 
further revealed an unanticipated diverging role of the  CRL4AMBRA1 ubiquitin ligase for 
cell cycle progression. AMBRA1 has been described as a WD40 domain protein involved 
in autophagy and development of the nervous system by acting as a substrate receptor 
of CRL4 [70–72]. Several studies have revealed extensive CRL crosstalk mediated by 
AMBRA1 [50, 51], and our data from ATRT cells expand these data by showing substan-
tial interaction of AMBRA1 in particular with substrate receptors of CRL2/5. In addition 
to its prominent role during autophagy, recent studies highlighted the role of AMBRA1 
during cell cycle progression, providing an intriguing explanation for the effects seen after 
loss of AMBRA1 during neurodevelopment [40–42]. In contrast to the expected increase 
in S phase cells upon cyclin D stabilization as a result of AMBRA1 deficiency, we find that 
tumor suppressive activity of AMBRA1 in a subset of ATRT cells is directly correlated 
with deregulation of mitotic factors and a concomitant increase in G2/M phase cells. Of 
note, negative regulation of mitotic factors by AMBRA1 including aurora kinases was 
suggested before, but has been disregarded for lack of reproducibility [42].

 We provide several lines of evidence including in silico protein complex mode-
ling as well as immunoprecipitation approaches for a direct interaction of AMBRA1 
with several G2/M phase regulators. These include both aurora kinase A and aurora 
kinase B, and protein levels of both kinases together with their established target 
phospho-Histone H3 (Ser10) [73, 74], a hallmark feature of mitosis, increase in 
response to loss of AMBRA1 in a cell type-specific manner. We show that aurora 
kinases are regulated in AMBRA1 responder cells by AMBRA1 acting as a sub-
strate receptor for cullin4-RING ligases, rather than its involvement in autophagy-
associated processes. Of note, while aurora kinases are known to be degraded by 
the anaphase-promoting complex/cyclosome (APC/C) [75, 76], inhibition of CRLs 
in our study using the neddylation inhibitor MLN4924, which is specific for ned-
dylation-dependent cullins not present in the APC/C, provides evidence for the 
degradation of aurora kinases by CRLs. Surprisingly, however, inhibition of CRLs 
increased aurora kinases levels in AMBRA1 responder and non-responder cells 
alike, suggesting that, depending on the cellular context, this regulation is conveyed 
either by  CRL4AMBRA1 or another AMBRA1-independent CRL. Together, we identify 
 CRL4AMBRA1 as a context-dependent regulator of the stability of aurora kinases, and 
potentially other G2/M regulators, highlighting a broader role of AMBRA1 and its 
function as a CRL substrate receptor in the regulation of the cell cycle beyond the 
destabilization of D-type cyclins.

 While we provide evidence for a direct regulation of aurora kinases by AMBRA1, 
the mechanism of cell type-specific tumor suppressive activity of AMBRA1 has still 
to be elucidated. AMBRA1 has been described as a tumor suppressor in diffuse large 
B-cell lymphoma (DLBCL) [40], lung adenocarcinoma (LUAD) [41, 42], melanoma 
[43], and these entities may harbor mutations in AMBRA1. While it is surprising that 
ATRT do not seem to harbor AMBRA1 mutations [9, 11], both loss-of-function studies 
in ATRT cells as well as genetic interaction analyses from DepMap performed in this 
study strongly support a tumor suppressive role of AMBRA1 in neural crest derivatives 
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including melanoma and rhabdoid tumors. In addition to a potential lineage association, 
oncogenic KRAS signaling is the best predictor for a tumor suppressive role of AMBRA1 
in LUAD [42], and oncogenic BRAF signaling correlates with AMBRA1 tumor sup-
pressive activity in melanoma in DepMap. In fact, all genetic mouse models describing 
tumor suppressive activity of AMBRA1 so far have been generated on a mutated KRAS/
BRAF/MAPK signaling background, and mutations of the KRAS/BRAF/MAPK path-
way are common in DLBCL, LUAD, and melanoma [77, 78]. Both oncogenic BRAF and 
KRAS signaling have recently been shown to act through regulation of kinases involved 
in mitosis including aurora kinase A and B [79, 80], and based on our findings of an 
AMBRA1-dependent regulation of mitotic kinases, it seems plausible that tumors with 
high activity of mitotic regulators might be particularly vulnerable to loss of AMBRA1. 
However, further genetic and biochemical studies will be necessary to decipher the exact 
molecular mechanism of cell type-specific selectivity of AMBRA1-dependent regulation 
of mitotic regulators.

 Conversely, KRAS mutated tumors have been shown to present synthetic lethali-
ties particularly for mitotic regulators [81], and we here find that ATRT cells with 
an oncogenic loss AMBRA1 are particularly sensitive to AURKA inhibition. Also, 
while only tested in a small number of ATRT models, oncogenic loss of AMBRA1 
might also predispose to synthetic lethality of CDK4/6 and AURKA inhibition, 
likely a result of the concerted regulation of these important G1/S and G2/M phase 
mediators by AMBRA1. However, ATRT cell do not typically present alterations of 
AMBRA1, and other potential mechanisms of AMBRA1 downregulation need to be 
determined. Furthermore, the generalizability of this synthetic lethality needs to be 
further investigated in tumors that frequently present AMBRA1 alterations.

Conclusions
In summary, we present a comprehensive and unprecedented resource for further 
investigations on molecular-based therapeutic strategies for ATRT. Our results 
particularly warrant further clinical translation of CDK4/6 inhibitors as a promis-
ing therapeutic approach for ATRT. Mechanistically, we provide evidence for a 
previously unappreciated context-dependent role of the ubiquitin ligase receptor 
AMBRA1 in inhibiting cell cycle progression at the level of mitosis that contributes 
to an understanding of context-specific differences in tumor suppressive activity.

Methods
Experimental design

For genome-wide CRISPR-Cas9 knockout screens, we used ATRT cancer cell lines to 
identify genetic dependencies following rigorous quality assessment. Together with a set 
of human cancer cell lines representing other tumor entities (total of 12 human cancer 
cell lines representing 6 lineages), we performed drug screening to identify most effi-
cacious drugs in ATRT cells. Neurotoxicity of selected drugs was assessed in murine 
cerebellar granule neurons and human astrocytes. Efficacy of CDK4/6 inhibitors was 
assessed both in  vitro and in  vivo using stable cell lines as well as established PDOX 
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models. Correlation of CDK6 and cyclin D2 protein levels was assessed in human pri-
mary ATRT tissue by immunohistochemistry. Chemogenetic CRISPR-Cas9 screens 
were performed both in gain-of-function and loss-of-function mode to identify modula-
tors of response to CDK4/6 inhibition in ATRT cell lines, identifying the ubiquitin ligase 
receptor AMBRA1 as differential hit in two ATRT cell lines. Identification of substrates 
of AMBRA1 was performed using in silico complex prediction and co-immunoprecipi-
tations, and validated in biochemical assays.

Cell lines

The following cell lines were used in this study: CHLA02 (RRID: CVCL_B045), 
CHLA04 (RRID: CVCL_0F38), CHLA05 (RRID: CVCL_AQ41), CHLA06 (RRID: 
CVCL_AQ42), CHLA266 (RRID: CVCL_M149), BT12 (RRID: CVCL_M155), BT16 
(RRID: CVCL_M156), H1048 (RRID: CVCL_1453), A172 (RRID: CVCL_0131), LN229 
(RRID: CVCL_0393), LNZ308 (RRID: CVCL_0394), DAOY (RRID: CVCL_1167), 
UW228 (RRID: CVCL_0572), Rh30 (RRID: CVCL_0041), HL60 (RRID: CVCL_0002), 
Jurkat (RRID: CVCL_0367), HT1080 (RRID: CVCL_0317), TC71 (RRID: CVCL_2213), 
MCF7 (RRID: CVCL_0031), and ATRT-311FHTC [33]. CHLA02, CHLA04, CHLA05, 
CHLA06, A172, LN229, LNZ308, HT1080, and MCF7 were obtained from ATCC. BT12, 
CHLA266, Rh30, and TC71 cells were obtained from the Childhood Cancer Repository. 
BT16 cells were generously provided from Peter Houghton, Greehey Children’s Cancer 
Research Institute, San Antonio, USA. H1048 cells were generously provided by Roman 
Thomas, University of Cologne, Germany. DAOY and UW228 cells were generously 
provided by Ulrich Schüller, University of Hamburg, Germany. HL60 and Jurkat cells 
were generously provided by Julia Skokowa, University of Tübingen, Germany. ATRT-
311FHTC cells were obtained from the Fred Hutch Research Cell Bank, Seattle, USA. 
CHLA02, CHLA04, CHLA05, and CHLA06 cell were grown in DMEM/F12 media sup-
plemented with B27, EGF, FGF, GlutaMAX, and HEPES. CHLA266, BT12, Rh30, and 
TC71 cells were grown in IMDM media supplemented with 10% FCS and 1x ITS (Insu-
lin-Transferrin-Selenium). BT16, DAOY, HL60, Jurkat, and HT1048 cells were grown in 
RPMI media supplemented with 10% FCS. A172, LN229, LNZ308, HT1080, and MCF7 
cells were grown in DMEM media supplemented with 10% FCS. All cell line media were 
supplemented with gentamycin. PDOX-derived ATRT-311FHTC cells were grown in 
laminin-coated plates in NeuroCult NS-A Basal media supplemented with NS-A Pro-
liferation Supplement, EGF, FGF, Heparin, and penicillin/streptomycin. All cells were 
authenticated by STR profiling at the Leibniz Institute, DSMZ-German Collection of 
Microorganisms and Cell Cultures GmbH, Braunschweig, Germany. All cell lines were 
regularly tested in-house negative for mycoplasma contamination.

Genetic dependency screens

CRISPR-Cas9 screens using a genome-wide knockout gRNA library were performed 
as previously described [20]. Briefly, ATRT cell lines were transduced by spinfection 
with lentiviral particles representing the gRNA library in an all-in-one version contain-
ing Cas9 enzyme at a MOI ~0.3. Cell numbers were estimated to ensure a 500x library 
coverage in the transduced cell population. On the second day, cells were split to three 
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pseudo-replicates, selected by puromycin for 5 days, and kept in culture for a total for 21 
days to allow for the depletion of cells where gRNA-guided knockouts affect cell survival 
or proliferation. For each ATRT cell line individually, optimal transduction and growth 
conditions were pre-determined. Library coverage was kept at 500x at all sub-culturing 
steps. After 21 days, genomic DNA was isolated using the QIAamp Blood Maxi kit (Qia-
gen), and subjected to next-generation sequencing for quantification of gRNA distribu-
tion in the remaining cell population. Illumina sequencing was performed as previously 
described [20].

Chemogenetic screens

CRISPR screens can be used to functionally investigate gain-of-function or loss-of-func-
tion gene alterations and their potential to enhance or suppress the activity of chemical 
compounds, but also to identify cell cycle regulators in combination with a cytostatically 
or cytotoxically active drug. These chemogenetic screens were performed in BT16 and 
CHLA06 cells using genome-wide CRISPR-Cas9 knockout and CRISPR-dCas9-VP64 
activation libraries [16, 20]. Cas9 or dCas9-VP64 derivatives were generated by trans-
ducing with the lentiviral vector lentiCas9-Blast (Addgene #52962) or lentidCas9-VP64 
(Addgene #61425) and selection by blasticidin. Cells were transduced with the CRISPR 
libraries using spinfection with a predetermined amount of virus to achieve at a MOI 
~0.3. Cells were selected 24 h after transduction with puromycin for 5 days, and suc-
cess of viral transduction and transduction rate was assessed using an inline assay. One 
week after transduction with CRISPR libraries, cells were split to either drug or DMSO 
control conditions keeping a minimum 500x library coverage for the respective libraries. 
Drug screens were treated with abemaciclib or palbociclib at predetermined concentra-
tions to yield a complete cytotoxic effect (for activation screens) or complete cytostatic 
effect (for knockout screens), in order to prioritize genes conferring resistance or syn-
thetic lethalities, respectively. After 2 weeks of drug or vehicle treatment, genomic DNA 
was isolated using the QIAamp Blood Maxi, Midi, or Mini kit (Qiagen) depending on 
the number of surviving cells, and gDNA was subjected to next-generation sequencing.

Analysis of CRISPR screens

Reads from next-generation sequencing were aligned to the respective CRISPR librar-
ies using PoolQ (v3.6.3). Replicate correlation was performed using gene-level  log2 
fold changes using the top3% most variable genes across all screens, and intra as well 
as inter cell line Pearson correlation coefficients were calculated. To account for gene-
independent effects in knockout screens, we corrected sgRNA-level  log2 fold changes 
using CRISPRcleanR [82]. To assess quality of knockout screens, we used Cohen’s D 
[83] and null-normalized median difference (NNMD) as replicate-level and F-measure 
at bayes factor five [83] as cell line-level statistics based on known essential and non-
essential genes [22]. Additionally, we performed precision-recall curve analyses as 
implemented in the BAGEL2 algorithm [83]. Finally, depletion of well-known gene sets 
associated with essential cellular processes was verified by gene set enrichment analyses 
as implemented in the CRISPRcleanR [82] and MAGeCK-MLE (v0.5.9.5) [84] packages. 
Screens for one ATRT cell line (CHLA02) performed poorly according to all our qual-
ity metrics, and these screens were excluded from further analyses. To further assess 
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significantly affected genes in dependency screens, either depleted or enriched, we fol-
lowed two distinct strategies. One, we scored genes using a semi-supervised algorithm 
(MAGeCK-RRA ), considering all genes with FDR < 0.1. Second, we scored genes using 
the supervised BAGEL2 algorithm, which quantifies the degree of support for each 
single gene to act like an essential or non-essential gene [83]. The Bayes Factor given 
by BAGEL2 can be regarded as a combined metric for both statistical significance and 
effect size. All genes in a given cell line that scored at FDR < 0.1 by both algorithms were 
considered an essential gene in that cell line. For chemogenetic screens, we averaged 
across two distinct screens, representing two distinct CDK4/6 inhibitors, for each cell 
line and compared sgRNA abundance to either the DMSO control for that cell line or 
the plasmid DNA using the MAGeCK MLE algorithm [84]. All genes that scored at FDR 
< 0.1 in the drug conditions versus the DMSO control, either enriched or depleted, were 
considered as potential drug modifier. To distinguish between a bona fide drug modifier 
or a general regulator of cell cycle progression, a nine-square model was used compar-
ing both the drug screens and the DMSO control to the plasmid DNA. Screen results 
were visualized using the R package MAGeCKFlute. CRISPRcleanR and MAGeCKFlute 
were run on Rstudio (v4.0.5). BAGEL2, MAGeCK-RRA , and MAGeCK-MLE were run on 
Python (v3.9.7).

DNA methylation profiling by 850k EPIC array

Global DNA methylation from seven human ATRT cell lines was assessed using Illumina 
Infinium MethylationEPIC 850k arrays according to the manufacturer’s instructions. 
Raw idat files were read and processed using the minfi Bioconductor package in R (3.6.0). 
Briefly, all probes (n = 865,859) were subjected to quality control metrics, removing all 
probes with P detection values > 0.01. Furthermore, all probes targeting site on sex chro-
mosomes were removed. Also, all probes with SNPs at the CpG site were removed. In 
total, 813,439 distinct probes were kept in order to generate β values. For prediction of 
ATRT subgroups, we first generated several models using machine-learning algorithms 
using a test cohort of 150 primary ATRTs [9]. In order to combine 450k and 850k meth-
ylation arrays, we generated virtual arrays using the minfi package. Employing the top 
2% probes (n = 8513) showing highest variability across all three molecular subgroups 
in the test cohort, we generated prediction models using the caret package with the 
following machine-learning algorithms: random forest (rf ), stochastic gradient boost-
ing (gbm), support vector machine (SVM), linear discriminant analysis (lda), k-nearest 
neighbors (knn), nearest shrunken centroids (PAM), decision tree (dt), and classification 
and regression trees (cart). The three models that predicted ATRT subgroups with high-
est accuracy in the test cohort (rf, gbm, svm) were used for further prediction studies. 
Our random forest model was last evaluated on a validation cohort comprising 121 pri-
mary ATRTs [85]. t-SNE dimensionality reduction of global DNA methylation data from 
human ATRT cell lines and a primary CNS tumor reference (n = 2801) was performed 
as previously described [85].



Page 24 of 38Merk et al. Genome Biology          (2024) 25:301 

Custom next‑generation onco‑panel sequencing

For DNA sequencing, 200 ng of genomic DNA was fragmented to 150–200-bp pairs 
using ultrasonication on the LE220 Focused-ultrasonicator (Covaris). Library prepa-
ration was performed using the SureSelect XT Library Prep Kit (Agilent Technolo-
gies) and enrichment of gene of interest was performed using the SureSelect XT Target 
Enrichment System with custom-designed bait-sets (ssSC v5) covering 708 cancer-
related genes, 7 promoter regions and selected fusions. The libraries were sequenced as 
paired-end 75 bp reads on an Illumina NextSeq500 (Illumina) with a sequencing depth 
of approximately 25 million clusters per sample. DNA raw data QC and processing was 
performed using the in-house megSAP Pipeline (https:// github. com/ imgag/ megSAP, 
version 0.1–1223-gf2879e3) combined with ngs-bits package (https:// github. com/ imgag/ 
ngs- bits, version 2019_08) [86]. Briefly, sequencing reads were aligned to the human ref-
erence genome (GRCh37) by BWA-MEM, variants were called using Strelka2 [87] and 
annotated with VEP [88]. To obtain high-confidence results, filter criteria for variants 
were defined as a tumor and normal depth of at least 20x, an allelic frequency of 5% or 
more and a minimum of 3 reads. NGS onco-panel data were analyzed to retrieve acti-
vating mutations of oncogenes as possible driver mutations. Therefore, artefacts, silent 
mutations (synonymous amino acids), nonsense mutations (gain of stop-codon), and 
out-of-frame frameshift mutations were rejected. The missense mutations were analyzed 
using Ensembl Variant Effect Predictor (VEP, https:// grch37. ensem bl. org/ Tools/ VEP). 
Thirty mutations were rated as deleterious in the SWIFT database, as (probably) damag-
ing in the PolyPhen database and/or case reports that these mutations may have clinical 
impact were available. Sixteen of the detected mutations were rated as oncogenes using 
the literature based CancerMine database (http:// bionlp. bcgsc. ca/ cance rmine/).

Gene expression profiling using bulk RNA sequencing

For RNA sequencing, mRNA fraction was enriched using polyA capture from 200 ng of 
total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB). Next, 
mRNA libraries were prepared using the NEB Next Ultra II Directional RNA Library 
Prep Kit for Illumina (NEB) according to the manufacturer’s instructions. The libraries 
were sequenced as paired-end 50bp reads on an Illumina NovaSeq6000 (Illumina) with 
a sequencing depth of approximately 25 million clusters per sample. RNA raw data QC 
and processing was performed using megSAP (version 0.2–135-gd002274) combined 
with ngs-bits package (version 2019_11-42-gflb98e63). Reads were aligned using STAR 
v2.7.3a [89] to the GRCh38, and alignment quality was analyzed using ngs-bits. Normal-
ized read counts for all genes were obtained using Subread (v2.0.0) and edgeR (v3.26.6). 
Further details can be found under https:// nf- core. re/ rnaseq.

Copy number analysis

We followed two distinct strategies in this study to assess copy number changes in 
ATRT cell lines to complement each other. One, for DNA methylation-based analy-
sis of copy-number variation from 850k EPIC arrays, we used the conumee package 
in R (http:// bioco nduct or. org/ packa ges/ conum ee/). Two, for somatic copy number 
alteration detection, we used ClinCNV (version 1.16). By analyzing off-target reads, 
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the tool can generate copy-number information about the whole genome, also for tar-
geted panel sequencing data. A gene with an integer copy-number (CN) of ≥ 4 was 
defined as amplified. A heterozygous deletion was assumed with an integer CN = 1, a 
homozygous deletion when CN = 0.

Integration of dependencies, methylation, and gene expression

We used sparse projection to latent structures for the unsupervised integration of 
ATRT molecular features using the mixOmics package (v6.23.4) [90]. As suggested by 
the package, we reduced the number of molecular features per omics data set by using 
the top features extending more than 1.5 standard deviations from the mean across all 
cell lines, resulting in a total of 16,571, 13,116, and 11,404 data points for dependen-
cies (dependency scores, scales  log2 fold changes), gene expression (normalized read 
counts, median of ratios method) and promoter methylation (β values). Pairwise sPLS 
models were generated while keeping 100 features for the first two latent structures 
for each data set, and correlations of the respective features with the first two latent 
structures were visualized using correlation circle plots. In order to integrate all three 
data sets simultaneously, we performed multiblock sPLS as outlined in the package 
vignette using the top 50 features for the first two latent structures for all omics sets. 
Multiblock sPLS analysis was visualized using a Circos plot. Direct correlation of 
either dependency and gene expression or dependency and promoter methylation for 
all context-specific genes was performed by assessing Pearson correlation coefficients 
in R. For the null distribution, we randomly permutated the dependency data set 
and repeated the correlation analysis. Normality of Pearson correlation coefficients 
was rejected based on a Shapiro-Wilk test for all comparisons, and a Wilcoxon rank 
sum test was used to test differences of distributions. Based on the results from the 
above explained sPLS analyses, the alternative hypothesis was set to “two-sided” and 
“greater” for the RNAseq and methylation analyses, respectively.

AMBRA1 gene effect associations in DepMap

In order to investigate the effect of AMBRA1 loss-of-function across human cancer 
cell lines, we interrogated the Broad Dependency Map (DepMap, DepMap Public 
24Q2) including data from 1150 human cancer cell lines. Enriched primary diseases 
based on AMBRA1 gene effect were identified using a t-test and P value cutoff of 
0.0005, comparing individual primary diseases with the corresponding rest of cancer 
cell lines. For genetic interactors, we used the top 100 co-dependencies pre-computed 
by the DepMap for AMBRA1. Genetic interactors were further prioritized for genes 
that show a skewed t-distribution across human cancer cell lines [91], meaning that 
they harbor distinct gene effects across human cancer cell lines.

DigiWest analyses

LDS Lysis buffer (Life Technologies, Carlsbad, CA, USA), supplemented with 10% 
reducing agent (Thermo Fisher Scientific, Waltham, MA, USA), 4% Protease-Inhibitor 
(Roche Diagnostics GmbH, Mannheim, Germany), and 10% Phosphatase-Inhibitor 
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(Roche) were added to cell pellets on ice. Proteins were denatured by heating to 95°C 
for 10 min before the lysates were transferred to QiaShredder Eppendorf tubes (Eppen-
dorf, Hamburg, Germany). After centrifugation (16,000g, 5 min, RT), eluates were stored 
at −80°C until further use. Protein quantification was performed using in-gel staining. 
One microliters of each original lysate was diluted 1:10 (v/v) in lysis buffer. Ten micro-
liters of the respective aliquots was loaded onto a NuPAGE 4–12% Bis-Tris precast gel 
(Thermo Fisher Scientific) and run according to the manufacturer’s instructions. The gel 
was washed with water and proteins were stained with BlueBandit (VWR, Darmstadt, 
Germany) for 1 h. The gel was de-stained overnight with ddH2O before detection at a 
LI-COR (LI-COR, Bad Homburg, Germany) instrument. Analysis and protein quantifi-
cation were performed using ImageStudio. DigiWest was performed as published [47]. 
In brief, 10–12 μg of cellular protein was loaded on an SDS- polyacrylamide gel and size-
separated using the commercial NuPAGE system (Life Technologies). Size-separated 
proteins were blotted onto a PVDF membrane and biotinylated on the membrane using 
NHS-PEG12-Biotin (50 µM) in PBST for 1 h. After washing with PBST and drying of the 
membrane, the individual samples lanes were cut into 96strips of 0.5 mm width using an 
automated cutting plotter (Silhouette America, West Orem, UT, USA) each correspond-
ing to a defined molecular weight fraction. Each of the strips was placed in one well of 
a 96-well plate and 10 µl elution buffer (8 M urea, 1% Triton-X100 in 100 mM Tris-HCl 
pH 9.5) was added. The eluted proteins were diluted with 90 μl of dilution buffer (5% 
BSA in PBS, 0.02% sodium azide, 0.05% Tween-20) and each of the protein fractions 
was incubated with 1 distinct magnetic color-coded bead population (Luminex, Austin, 
USA) coated with neutravidin. The biotinylated proteins bind to the neutravidin beads 
such that each bead color represents proteins of one specific molecular weight fraction. 
All 96 protein loaded bead populations were mixed resulting in reconstitution of the 
original lane. Aliquots of the DigiWest bead-mixes (about 1/200th per well) were added 
to 96-well plates containing 50 µl assay buffer (Blocking Reagent for ELISA; Roche, Rot-
kreuz, Switzerland) supplemented with 0.2% milk powder, 0.05% Tween-20, and 0.02% 
sodium azide. Beads were briefly incubated in assay buffer and buffer was discarded. 
Antibodies were diluted in assay buffer and 30 μl were added per well. After overnight 
incubation at 15°C, the bead-mixes were washed twice with PBST and species-specific 
PE-labelled (Phycoerythrin) secondary antibodies (Dianova, Hamburg, Germany) were 
added and incubated for 1 h at 23°C. Beads were washed twice with PBST prior to read-
out on a Luminex FlexMAP 3D. For quantification of the antibody-specific signals, an 
Excel-based analysis tool was employed [47] that automatically identifies peaks of appro-
priate molecular weight and calculates the peak area (reported as accumulated fluores-
cence intensity = AFI). Signal intensity was normalized to the total amount of protein 
loaded onto one lane. The software package MEV 4.9.0 was used for heatmap generation 
and statistical analysis along with GraphPad Prism (Version 9.0.0). Hierarchical cluster-
ing (HCL) was performed using Euclidian Distance and complete linkage. Welch’s t test 
was used for comparisons between groups unless stated otherwise, and P < 0.01 was 
considered significant. For the comparison of control (n=12) and sgAMBRA1 (n=12) 
lines, normalized values were median-centered and  log2 transformed. For the evalua-
tion of Ambra1 loss in specific cell lines, fold changes of each sgAMBRA1 sample vs its 
respective control were computed. Primary antibodies used in this study for DigiWest 
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were the following: β-actin (Sigma, A1978, AMBRA1 (Cell Signaling, 24907), ATM (Cell 
Signaling, 2873), ATR (Cell Signaling, 2790), AURKA (Cell Signaling, 4718), AURKB 
(Cell Signaling, 3094), BUB1B (Cell Signaling, 5421), Caspase3 (Cell Signaling, 9662), 
CDK1 (Cell Signaling, 9112), CDK1-pTyr15 (Cell Signaling, 4539), CDC25A (abm, 
Y021163), CDC25A-pSer75 (abm, Y011138), CDC25B (R&D, AF1649), CDC27 (Trans-
duction Laboratories, C40920), CDK2 (Cell Signaling, 2546), CDK2-pThr160 (Cell Sign-
aling, 2561), CDK3 (abcam, ab135805), CDK4 (Cell Signaling, 2906), CDK4-pThr172 
(Invitrogen, PA-64482), CDK5 (Cell Signaling, 2506), CDK6 (Cell Signaling, 13331), 
CDK6-pTyr13 (biorbyt, orb15013), CDK6-pTyr24 (biorbyt, orb15014), CHK2 (Cell 
Signaling, 3440), CHK2-pThr68 (Cell Signaling, 2661), c-MYC (Cell Signaling, 9402), 
c-MYC-pThr58 (ThermoFisher, PA5-37654), c-MYC-pThr62/Ser62 (abcam, ab32029), 
cyclin A (abcam, ab53054), cyclin B1 (abcam, ab32053), cyclin D1 (Cell Signaling, 2926), 
cyclin D1-pThr286 (ThermoFisher, PA5-37487), cyclin D2 (Cell Signaling, 3741), cyc-
lin D3 (Cell Signaling, 2936), cyclin E1 (Cell Signaling, 4129), cyclin E2 (Cell Signaling, 
4132), E2F-2 (Millipore, DR1095), E2F-4 (biorbyt, orb10571), histone H3-pSer28 (Mil-
lipore, 07–145), hisotne H3-pSer10 (Cell Signaling, 9701), MCM2 (Cell Signaling, 3619), 
MCM2-pSer139 (Cell Signaling, 8861), MDM2 (Santa Cruz, sc-965), MDM2-pSer166 
(Cell Signaling, 3521), p16 (ProteinTech Group, 10883-1-AP), p21 (Cell Signaling, 2947), 
p27 (Cell Signaling, 3698), p53 (Santa Cruz, sc-126), p53-pSer37 (Cell Signaling, 9289), 
p53-pSer15 (Cell Signaling, 9284), RB (Cell Signaling, 9313), RB-pSer807/Ser811 (Cell 
Signaling, 8516), RB-pSer780 (Cell Signaling, 3590), RB-pSer608 (Cell Signaling, 8147), 
RB-pSer795 (Cell Signaling, 9301), RBPSUH (Cell Signaling, 5313), RPA2 p34 (Millipore, 
04–1481), Survivin (Cell Signaling, 2802), TOPK (Cell Signaling, 4942), and TOPO 2 
alpha (Santa Cruz, sc-13058).

Mass spectrometry‑coupled immunoprecipitations

In order to overexpress either 3xFLAG tag alone or 3xFLAG-AMBRA1 in ATRT cells, 
we first generated lentiviral plasmids N174-MCS (Puro) (Addgene #81068) carrying 
either 3xFLAG or 3xFLAG-AMBRA1. 3xFLAG construct was generated using a DNA 
oligo hybridization approach, inserting recognition sites for EcoRI and MluI to be used 
for directed cloning into N174-MCS. 3xFLAG-AMBRA1 open reading frame was PCR 
amplified from pcDNA3.1-AMBRA1-3xFLAG using adequate primers to be used for 
directed cloning into N174-MCS using EcoRI/MluI sites. Lentiviral particles were gener-
ated and expression was verified by western blot.

Cells expressing 3xFLAG or 3xFLAG-AMBRA were lysed and processed for affin-
ity purification using anti-FLAG beads. For immunoprecipitations followed by mass 
spectrometry, experiments were performed with and without inhibition of CRLs by 
MLN4924 to potentially discriminate between interactors of AMBRA1 and substrates 
which are proteolytically degraded upon AMBRA1 binding. Briefly, a similar amount of 
total cellular lysates was loaded on slurry mixed anti-Flag M2 beads (SIGMA). Following 
overnight incubation at 4C in an end-over-end shaker, the supernatants were discarded, 
beads were washed twice with Tris Buffer (pH 7.4), and proteins were eluted from beads 
using on-beads enzymatic digestion. Trypsin and LysC (Thermo) were used to elute pep-
tides from the Flag beads. Peptides were desalted and purified using StageTips (Thermo) 
and stored at −80 °C prior to LC-MS analysis.
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Mass spectrometry analysis was performed as described [92] in Data Independent 
Analysis (DIA) mode. Briefly, MS was performed on an Ultimate3000 RSLC system 
coupled to an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific). 
Digested peptides were loaded onto a µPAC Trapping Column at 10 µl per min flow rate 
in 0.1% trifluoroacetic acid in HPLC-grade water. Peptides were eluted and separated 
on the PharmaFluidics 50 cm µPAC C18 nano-LC column by a linear gradient from 2 
to 30 % of buffer B (80% acetonitrile and 0.08% formic acid in HPLC-grade water) in 
buffer A (2% acetonitrile and 0.1% formic acid in HPLC-grade water) at a flow rate of 
300 nl per min. The remaining peptides were eluted by a short gradient from 30 to 95% 
buffer B; the total gradient run was 120 min. Spectra were acquired in DIA mode using 
30 variable-width windows (isolation windows: 66, 31, 27, 19, 19, 18, 16, 19, 14, 18, 19, 
17, 17, 17, 20, 21, 21, 24, 26, 21, 28, 31, 33, 32, 39, 45, 49, 63, 99, and 289) over the mass 
range 350–1500 m/z. MS2 scan range was set from 200 to 2000 m/z, with an AGC target 
of 5E4 and a maximum injection time of 54 ms.

MS RAW data were analyzed using DIA-NN 1.8.1 (https:// github. com/ vdemi chev/ 
DiaNN) in library-free mode against the human database (UniProt release October 
2022). Only high-accuracy spectra with a minimum precursor FDR of 0.01, and only 
tryptic peptides were used for protein quantification. The match between runs option 
was activated and no shared spectra were used for protein identification. Statistical anal-
ysis including label-free quantification ratios (LFQ), and one-sided corrected permuta-
tion-based T-test (250 permutations and a minimum p-value of 0.05) to identify putative 
interactors of AMBRA1 in each cell line, were done using the Perseus software suite ver-
sion 1.6.15.0.

Ni‑NTA pull‑down

Cell lines were transfected with pCMV (Clontech) vectors carrying either a 6xHis tag 
alone (control) or 6xHis-tagged ubiquitin 48 h prior to the experiment using Lipo-
fectamine 3000. Cells were collected after 6 h treatment with bortezomib (1 μM) in 
lysis buffer (10 mM Tris pH 8.0, 100 mM  NaH2PO4, and 8 M urea) containing 10 mM 
imidazole. Total protein (600 μg) was incubated with Ni-NTA agarose beads (Qiagen) 
overnight at 4 °C on shaker. Agarose beads were washed in lysis buffer (pH 6.3) contain-
ing 20 mM imidazole four times. Proteins were eluted in 2x Laemmli buffer at 95 °C, 
and input as well as pull-down was subjected to western blot analysis. For quantification, 
target proteins in the input samples were normalized to levels of β-tubulin to account 
for differences in total protein loaded. Protein signals in pull-down samples were nor-
malized to the total amount of ubiquitylated proteins per sample as assessed by probing 
with an His-specific antibody. Total ubiquitylation of AURKA or AURKB was defined as 
the normalized target signal in pull-downs relative to the normalized target signal in the 
corresponding input.

Protein complex prediction using ColabFold

To analyze heteromeric protein complexes, we used the amino acid sequence of the 
 AMBRA1WD40 domain together with full-length sequences of selected G2/M phase 
regulators. Complexes were modelled using the ColabFold (v1.5.2) available at github 

https://github.com/vdemichev/DiaNN
https://github.com/vdemichev/DiaNN
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(https:// github. com/ sokry pton/ Colab Fold). We used ColabFold that uses the Alpha-
Fold2 algorithm [48] together with MMseqs2 for sequence alignments. Alphafold_mul-
timer_v3 was used as model type for complex prediction with 20 recycling iterations. 
The corresponding protein data bank file from the top-ranking model was used as input 
for ChimeraX to generate protein cartoon structures. Corresponding .json file were 
used to visualize inter-chain alphafold contacts below eight angstroms. Plots illustrat-
ing predicted alignment errors for all pairwise residue comparisons in heteromeric com-
plexes and predicted template modeling scores were generated using a custom jupyter 
notebook.

Archived tissue samples from ATRT patients

For immunohistochemistry studies, we used archival tissue from 17 ATRT patients 
(3 females, 14 males), average age was 1.9 years ± 2.5. Molecular subgroups of ATRT 
tumors had been determined by global DNA methylation profiles within the clinical 
routine diagnostics using the methylation classifier for central nervous system tumors 
(www. molec ularn europ athol ogy. org).

Orthotopic xenograft mouse models

For orthotopic implantation of tumor cells, Crl:CD1-Foxn1Nu/Nu nude mice were used 
(Charles River). All mice were female, and between 8 and 10 weeks old at the time of 
tumor cell implantation. All mice were kept at a 12-h light/dark cycle, with a maximum 
of four animals per cage. Animal husbandry including supply of food, water, and litter 
was performed by professional animal care takers. Sample size calculation for experi-
mental groups was performed by a biometrician. For both orthotopic xenograft mouse 
models (BT16 and ATRT310FH), we injected 200,000 cells into the forebrain (2 mm 
lateral and 1 mm anterior to bregma). Subsequently, mice were randomly assigned to 
experimental groups. Abemaciclib treatment was scheduled daily at a concentration of 
75 mg/kg by oral gavage. Vehicle animals were treated with the same volume of isotonic 
NaCl solution. Treatments were performed for 3 weeks, with 2-day drug holidays on 
weekends.

Customized drug library for pharmacological validation

Based on all genetic dependencies identified in any of the ATRT cell lines, we used the 
Drug Gene Interaction database (DGIdb) to identify potential chemical vulnerabili-
ties [27]. DGIdb consolidates and organizes the druggable genome in a tissue/cell type 
agnostic manner in two classes: genes with known drug interactions, as well as genes 
that are in potentially druggable categories. All drug gene interactions with a potential 
small molecule inhibitor or antagonist were considered. The final library included 37 
small molecule inhibitors targeting ATRT genetic dependencies, five positive controls 
based on previous work (dasatinib, nilotinib, dorsomorphin, DAPT, ML329) [9, 11], as 
well as two broadly cytotoxic agents (vincristine, doxorubicin).

Cell culture and growth rate inhibition assays

Cells were cultured in the abovementioned media under empirically optimized condi-
tions. All cells were cultured in 100 µl supplemented with the corresponding compound 

https://github.com/sokrypton/ColabFold
http://www.molecularneuropathology.org
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at three distinct concentrations (10 nM, 100 nM, 1000 nM) in 96-well plates. Each plate 
contained a DMSO control that was used to normalize all data from this plate. Each 
condition on each plate contained 8 replicate values that were averaged upon analysis. 
We performed the drug screen in two sessions, and tested the coherence of both ses-
sions constructing a similarity index [93]. Cell viability was assessed using CellTiter-Blue 
(Promega).

Neurotoxicity assays

For assessment of neurotoxic activity of selected drugs from the ATRT compound 
library, we used postmitotic cerebellar granule neurons as well as human astrocytes 
as surrogates for normal cell types of the brain. Granule neurons were generated from 
wildtype pups at P5. Cerebella were dissected under the microscope, meninges removed, 
and cerebella were triturated in trypsin/EDTA containing DNase. After washing, cells 
were counted, and seeded in DMEM/F12 media supplemented with 10% FCS, 25 mM 
KCL, 1x GlutaMAX, and Pen/Strep onto polyornithine-coated 96-well plates. On the 
second day, 10 µM Ara-C were added for 4 days in order to enrich for postmitotic gran-
ule neuron cells. In order to test our compounds in a glia-representing lineage, we used 
normal human astrocytes (NHA) cells from Lonza which were cultured according to the 
manufacturer’s instructions.

Genetic validation experiments

For knockdown experiments of CDK4, CDK6, CCND1, CCND2, and CCND3, two 
distinct shRNA for each target gene were cloned into pLKO.1 puro (Addgene #8453) 
according to the corresponding protocol. shRNA sequences were as follows: shCDK4 
#1, 5’-TTT ATC TCT GAG GCT ATG GAC CTC GAG GTC CAT AGC CTC AGA GAT AAA 
-3’, shCDK4 #2, 5’-CTT TAT CTC TGA GGC TAT GGA CTC GAG TCC ATA GCC TCA GAG 
ATA AAG -3’, shCDK6 #1, 5’-CAG ATG TTG ATC AAC TAG GAA CTC GAG TTC CTA GTT 
GAT CAA CAT CTG -3’, shCDK6 #2, 5’-CCA GAA CAC CTC GGA GCT GAA CTC GAG 
TTC AGC TCC GAG GTG TTC TGG -3’, shCCND1 #1, 5’-ATT GGA ATA GCT TCT GGA 
ATC TCG AGA TTC CAG AAG CTA TTC CAATC-3’, shCCND1 #2, 5’-CCA CAG ATG TGA 
AGT TCA TTT CTC GAG AAA TGA ACT TCA CAT CTG TGG -3’, shCCND2 #1, 5’-GAA 
GGA CAT CCA ACC CTA CAT CTC GAG ATG TAG GGT TGG ATG TCC TTC -3’, shCCND2 
#2, 5’-AGG AAC TGT GTA CGC CAT TTA CTC GAG TAA ATG GCG TAC ACA GTT CCT 
-3’, shCCND3 #1, 5’-CGC TGT GAG GAG GAA GTC TTC CTC GAG GAA GAC TTC CTC 
CTC ACA GCG -3’, shCCND3 #2, 5’-CCA GCA CTC CTA CAG ATG TCA CTC GAG TGA 
CAT CTG TAG GAG TGC TGG -3’, shRPL14, 5’-GCG ATT GTA GAT GTT ATT GAT CTC 
GAG ATC AAT AAC ATC TAC AAT CGC -3’, shLuc, 5’-CGT GAT CTT CAC CGA CAA GAT 
CTC GAG ATC TTG TCG GTG AAG ATC ACG -3’. Lentiviral particles were produced in 
HEK293FT cells, and ATRT cell lines were subsequently transduced with viral super-
natants using spinfection. Forty eight hours after transduction, transduced cells were 
selected using puromycin for 5 days, and subsequently cultured in triplicates in 96-well 
plates. Cell viability was assessed at several time points after seeding using CellTiter-
Blue (Promega). Cell viability was compared as percent viability of a corresponding con-
dition using a shRNA directed against the luciferase gene.
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Knockout experiments for AMBRA1 were performed using lentiviral particles based 
on lentiCRISPRv2_AMBRA1#1 (Addgene #174152). For overexpression studies, full 
length open reading frames were PCR amplified for CCND1 (Addgene #172632), 
CCND2 (Addgene #172629), CCND3 (Addgene #172623), CCNE1 (Addgene #164144), 
and CCNE2 (Addgene #19935) using custom-made primers including restriction 
enzymes recognition sites for EcoRI and MluI for cloning into N174-MCS (Puro) 
(Addgene #81068). The open reading frame for AURKA (Addgene #23532) was PCR 
amplified for EcoRI/MluI directed cloning into N174-MCS (Addgene #81061). Len-
tiviral particles were produced in HEK293FT cells, and cells were transduced by spin-
fection. After transduction, cells were selected using either puromycin (N174-MCS 
(Puro)), or G418 (N174-MCS) under empirically determined concentrations. For over-
expression of AURKA in AMBRA-depleted cells, ATRT cells were first transduced with 
lentiCRISPRv2_AMBRA1#1 lentiviral particles, selected with puromycin, and subse-
quently transduced with N174-AURKA lentiviral particles and selected with G418.

Cell cycle analyses

Briefly, cells were collected and isolated using accutase and resuspended in PBS buffer 
with 1 g/L glucose. After spinning, cells were fixed by ice-cold ethanol. After washing, 
cells were rehydrated in buffer and stained with propidium iodide (50 µg/ml in 0.2% Tri-
ton X-100, RNase in buffer). After 15 min of staining, cells were subjected to measure-
ment on a MACSQuant machine. Data were analyzed using FlowJo.

Western blotting

Whole cell lysates were prepared using either RIPA (25 mM Tris-HCl pH 7.6, 150 mM 
NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) or urea buffer (10 mM Tris HCl 
pH 8.0, 100 mM  NaH2PO4, 8 M urea). Protein gels were run using 10% BOLT Bis-Tris or 
4–12% NuPAGE Bis-Tris polyacrylamide precast gels. Proteins were blotted onto PVDF 
or nitrocellulose membranes and detected using indicated antibodies as per standard 
methods. Visualization was done using HRP-coupled, species-specific secondary anti-
bodies. Primary antibodies used in this study for western blotting were the following: 
CDK4 (abcam, ab199728), CDK6 (Cell Signaling, 13331), cyclin D1 (Cell Signaling, 
55506), cyclin D2 (Cell Signaling, 3741), cyclin D3 (Cell Signaling, 2936), cyclin E1 (Cell 
Signaling, 20808), cyclin E2 (Cell Signaling, 4132), GAPDH (Cell Signaling 2118), Vin-
culin (Cell Signaling, 13901), β-tubulin (Cell Signaling, 86298), AMBRA1 (Cell Signal-
ing, 24907), AURKA (Cell Signaling, 14475), AURKB (Cell Signaling, 3094), CDK1 (Cell 
Signaling, 77055), LC3B (Cell Signaling, 83506), PDGFR β (Cell Signaling, 3169), DDB1 
(Cell Signaling, 6998), CUL4A (Cell Signaling, 2699), FLAG (Sigma-Aldrich, F7425), His 
(addgene, 184180).

Immunohistochemical analyses

To assess CDK6 and cyclin D2 expression in samples from ATRT patients via immu-
nohistochemistry, we used archived formalin-fixed, paraffin-embedded (FFPE) tumor 
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material. FFPE tissue specimens were cut to 2.5-µm-thick sections using a microtome, 
mounted on glass slides and subjected to immunhistochemical (IHC) staining. The 
stainings were performed using either CDK6 monoclonal rabbit anti-human antibody 
(Clone EPR4515, dilution 1:250, Abcam, Cambridge, UK) or Cyclin D2 monoclonal rab-
bit anti-human antibody (Clone D52F9, dilution 1:50, Cell Signaling, Cambridge, UK). 
The IHC procedure was conducted using an automated immunostainer (BenchMark 
ULTRA IHC/ISH Staining Module, Hoffmann-La Roche, Basel, CH) together with the 
respective reagents (as listed below) and according to the protocols provided by the 
manufacturer. For detection, the OptiView DAB IHC protocol was used including the 
following steps: Deparaffinization for 4 min at 72 °C, washing with EZ Prep, incubation 
with Cell Conditioner No.1 for 64 min at 100 °C, incubation with OV PEROX IHBTR for 
4 min, incubation with primary antibody for 32 min at 37 °C, and incubation in sequence 
with OV HQ UNIV LINKR, then incubation with OV HRP MULTIMER and then incu-
bation with OV DAB and OV H2O2 for 8 min each, last incubation with OV Copper 
for 4 min. The counterstaining was performed with hematoxylin for 20 min upon which 
the tissues were incubated with BLUING REAGENT for 8 min prior to mounting the 
coverslips. Multiple intervening washing steps were included. All images were derived 
from tissue areas with evident tumor pathology, corresponding to approximately 1500 
cells per sample and obtained using bright-field microscopy with a ×40 objective (Olym-
pus BX61). After adjusting a common threshold in all images to highlight stained cells, 
immunoreactivity was measured on ImageJ software as percentage area of CDK6 or cyc-
lin D2-positive cells.

Time‑lapse imaging

M phase duration was determined by live-cell phase contrast imaging using a Leica 
DMi8 microscope with a ×20 objective. Briefly, cells were seeded on Lab-Tek II 8 cham-
ber coverglass systems, treated with LY329568 at 200 nM, and imaged every 20 min for 
60 h. Time in M phase was measured as the time between cell round up/chromosome 
condensation and completion of cytogenesis. Quantification was done by tracking 50 
cells per cell line and condition in ImageJ.

Statistical analysis

No statistical methods were used to predetermine sample sizes except for in vivo stud-
ies, but the sample sizes here are similar to those reported in previous publications. 
Differences were considered statistically significant at P < 0.05 if not stated otherwise, 
and sample sizes are indicated in each figure legend. For the analysis of CRISPR-Cas9 
dependency screens, two distinct statistical approaches were performed. One, we used 
a Bayesian classifier implementing a cross-validation strategy to determine the log like-
lihood for either of two models, being the distributions of sgRNAs targeting known 
essential and non-essential genes. Two, we performed a ranking approach based on a 
negative binomial model and performed robust rank aggregation in order to identify 
negatively or positively selected genes. For chemogenetic screens modeling differences 
for several drug screens versus a common reference, we used a maximum likelihood 
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estimation approach. For all correlation studies, a line derived from nonlinear regres-
sion was fitted onto the data, and correlation was computed using Pearson’s r. For all 
correlations, Pearson’s r, R squared, and P values are shown. To compare the distribu-
tion of z scores relating to drug screen data, we used a Wilcoxon rank sum test and cal-
culated the corresponding effect size. Intersection analyses for genetic dependencies 
were calculated using the SuperExactTest package [29]. All growth rate inhibition assays 
were analyzed using the GRmetrics package [28]. For survival analyses, we used the Log-
rank test, and survival was defined as the time period between surgery and the onset of 
neurological symptoms, or the presence of any other exclusion criteria defined by local 
authorities. Differential gene expression analyses from RNA-seq data was performed 
using DESeq2 [94], using a cutoff of  log2 fold change > 1 and adjusted P value < 0.01 
for significance. For comparisons of more than 2 groups across more than 2 variables, 
we used two-way ANOVA with correction for multiple testing as indicated in the cor-
responding figure legends. All statistical analyses were performed in GraphPad Prism 
9 or R (v4.0.5). Additional information on statistical approaches can be found in the 
above subsections  "Analysis of CRISPR screens", "Integration of dependencies, meth-
ylation, and gene expression", "DigiWest analyses", and "Mass spectrometry-coupled 
immunoprecipitations".
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