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Abstract 

While spatial transcriptomics offer valuable insights into gene expression patterns 
within the spatial context of tissue, many technologies do not have a single-cell 
resolution. Here, we present SMART, a marker gene-assisted deconvolution method 
that simultaneously infers the cell type-specific gene expression profile and the cel-
lular composition at each spot. Using multiple datasets, we show that SMART outper-
forms the existing methods in realistic settings. It also provides a two-stage approach 
to enhance its performance on cell subtypes. The covariate model of SMART enables 
the identification of cell type-specific differentially expressed genes across conditions, 
elucidating biological changes at a single-cell-type resolution.
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Introduction
Spatial transcriptomics (ST) is a cutting-edge technology that enables scientists to meas-
ure gene expression patterns across different tissue regions with spatial information 
[1–3]. For most of the current ST platforms, the measured spots on a tissue sample do 
not demonstrate single-cell resolutions but contain a complex mixture of multiple cell 
types [4–6]. This hinders our understanding of the spatial organization of these cells and 
precludes the identification of cell type-specific transcriptomic signatures [7]. Under-
standing the cellular proportions and gene expression of specific cell types could better 
highlight cells and genes contributing to disease pathogenesis and identify therapeutic 
targets [8]. In silico deconvolution has been a promising approach to resolve the cel-
lular composition at each measured spot. Most current ST deconvolution methods are 
reference-based, requiring a cell type-specific transcriptomic profile, usually generated 
from single-cell RNA-sequencing (scRNA-seq) experiments. With the reference pro-
file, the cell type composition at each spot in the targeted ST dataset can be inferred. 
For example, RCTD [9] learns the cell type profile from the reference dataset using a 
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probabilistic model and predicts the cell type composition of a spot with maximum like-
lihood estimation. SpatialDWLS [10] uses the scRNA-seq reference-derived signature to 
fit a dampened weighted least squares model to infer cell type composition. CARD [11], 
as an autoregressive-based deconvolution method, combines cell type-specific expres-
sion information learned from the scRNA-seq reference with correlation in cell type 
composition across the tissue spots. Cell2location [12] also borrows spatial information 
with a hierarchical Bayesian framework.

Despite the emerging number of scRNA-seq datasets, the desired reference profile 
may not be available for specific cell types or conditions [4]. The performance of these 
reference-based methods also highly depends on the quality, the sample processing 
techniques, and the data processing procedures of the reference profile. The inferred cell 
types are also limited to those available in the reference profile. Additionally, in some 
methods, the batch effects between the target ST dataset and the reference profile are 
not properly handled, resulting in inaccurate results [5]. Most importantly, by using a 
reference cell type-specific transcriptomic profile, it is assumed that the gene expres-
sion of each cell type is constant regardless of sample conditions such as disease status, 
ignoring the fact that there could be major differences in both the cell type composition 
and cell type-specific gene expression across different sample conditions.

In contrast, reference-free and marker-gene-assisted methods do not require a scRNA-
seq reference but rely on a list of marker genes for each cell type. STdeconvolve [13], a 
Latent Dirichlet Allocation [14]-based reference-free method, decomposes the ST data 
into latent topics and simultaneously infers the topic-specific transcriptomic signature 
and topic compositions. Subsequently, by comparing the inferred topic-specific signa-
ture against known cell type marker genes with a gene set enrichment analysis (GSEA), 
each topic can be labeled with a cell type name. However, the estimated topics are usu-
ally redundant and cannot accurately capture cell populations with low abundance. 
Users may obtain multiple topics corresponding to an abundant cell type and no topics 
for rare cell types. The estimates are also highly variable between runs, even when using 
the same dataset. Compared to STdeconvolve, which uses marker genes after decon-
volution, the marker-gene-assisted methods use marker genes during the deconvolu-
tion process. CARD offers a marker-gene-assisted version (CARDfree [11]) that takes 
a list of marker gene symbols as the input to infer the cell type composition. However, 
the inferred cell types can be difficult to interpret and need to be further labeled with 
a GSEA. Celloscope [15] is another Bayesian probabilistic model-based marker gene-
driven approach that inflates the prior means of the marker genes.

To address these challenges, we present Spatial transcriptomics deconvolution using 
MARker-gene-assisted Topic model (SMART), a marker-gene-assisted deconvolution 
method based on semi-supervised topic models (Fig.  1). In natural language process-
ing, the topic models were used to identify the topic distribution from the words in 
a large number of unlabeled documents, as well as the word frequencies within each 
topic. In the context of ST deconvolution, SMART simultaneously infers the cell type 
composition of the spots and the cell type-specific gene expression profile. Compared 
to unsupervised approaches such as STdeconvolve, which uses the marker information 
after the deconvolution process to label the latent topics, SMART directly incorporates 
marker gene information as prior knowledge during the topic inference procedures to 
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guide cell type identification and, thus, improves the predictive accuracy and minimizes 
the variability. Using three datasets simulated from single-cell ST data and two real ST 
datasets, we demonstrate that SMART accurately estimates cell type composition and 
cell type-specific gene expression. Without needing a reference dataset, it outperforms 
some of the best-performing reference-based and reference-free methods for ST data 
[16–18] when an ideal reference dataset is unavailable. Instead of a scRNA-seq refer-
ence, SMART uses a list of marker gene symbols for each cell type as the input. SMART 
also allows the inclusion of cell types with no marker gene information (“no-marker” cell 
types), which can be helpful in identifying novel cell types. The performance of SMART 
on cell subtypes can be augmented using a two-stage approach. SMART also provides 
condition-specific estimates with a covariate model, elucidating molecular changes 
across different biological conditions.

Results
SMART accurately predicted cell type composition and cell type‑specific gene expression 

in simulated ST data

To evaluate the performance of SMART, we used publicly available single-cell ST 
data in mouse kidneys (MK) [19], which were profiled using the Vizgen Multiplexed 

Fig. 1  Overview of SMART. SMART takes the spatial transcriptomics data (a gene-by-spot matrix) and a list 
of marker gene symbols for each cell type as the inputs. Then, SMART uses a semi-supervised topic model 
to predict the cell type composition (a cell type-by-spot matrix) and the cell type-specific gene expression 
(a gene-by-cell type matrix) simultaneously. Both the cell type proportions θ and the cell type-specific gene 
expression are modeled as Dirichlet distributions. Assuming marker genes have a higher expression than 
non-marker genes in a cell type k , the final cell type-specific gene expression is modeled as a mixture of two 
Dirichlet distribution φ̃k for marker genes and φk for all genes, so that the marker genes have higher prior 
means than the non-marker genes. Controlling by the Bernoulli variable sdi for the i  th molecule in spot d , 
the mRNA molecule wdi is sampled based on either φk or φk . The model is described in more detail in the 
“ Methods” section
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Error-Robust Fluorescence in  situ Hybridization [20] (MERFISH) platform. The MK 
dataset contains the expression of 304 genes from 126,241 cells annotated to eight cell 
types. We simulated ST data by dividing the single-cell ST data of the MK dataset into 
2474 spatially contiguous squares and aggregated the gene expression of cells within 
each square to mimic the spots of ST data (Fig. 2A and B). The ground truth (GT) cell 
type proportion, cell type-specific gene expression, and marker genes can be obtained 
accordingly from the simulated ST data and the original single-cell ST data (Fig.  2C). 
Then, we applied SMART to the simulated data along with the GT marker genes to 

Fig. 2  Performance evaluation of SMART using simulated ST data in mouse kidney. A Spatial image of the 
single-cell MERFISH data. B A zoom-in view of a selected area. C The cell type composition of the selected 
area. D The SMART-predicted cell type composition of the selected area. E A heatmap showing the Pearson 
correlation coefficients between the predicted and the GT cell type proportions of each cell type. F The 
Pearson correlation between the gene rank of the ground truth gene expression and the gene rank of the 
predicted gene expression for each cell type. Genes with relative gene count frequency < 0.1% were excluded 
due to low expression. G The per-spot RMSE between the predicted and the GT cell type proportions using 
the GT markers/reference (left), the TMS markers/reference (middle), and literature-based markers (right). 
Blue = marker-gene-assisted/reference-free methods; Red = reference-based methods. Abbreviations: 
endothelial cell (Endo), epithelial cell of the proximal tubule (PTEpi), immune cell (IC), collecting duct 
epithelial cell(CDEpi), distal convoluted tubule epithelial cell (DCTEpi), loop of Henle epithelial cell (LoHEpi), 
pericyte (Peri), podocyte (Podo)
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simultaneously infer the cell type composition at each spot (Fig. 2D) and the cell type-
specific gene expression profile. We observed a strong correlation (> 0.70) between 
the predicted cell type composition and the ground truth cell type composition in all 
cell types (Fig. 2E). Additional file 1: Fig. S1 shows the top 10 genes based on the pre-
dicted relative gene frequencies for each cell type. The top 10 genes in each cell type 
were significantly enriched with marker genes used for deconvolution (Fisher’s exact test 
P < 0.001). We also observed a strong correlation (> 0.70) between the rank of the genes 
in the GT gene expression profile and that in the predicted gene expression profile for 
each cell type (Fig. 2F).

SMART demonstrated superior performance to existing methods in realistic settings

To compare the performance of SMART against existing deconvolution methods, we 
next applied some of the best-performing reference-free/marker-gene-assisted (STde-
convolve, CARDfree, Celloscope) and reference-based methods (RCTD, CARD, cell-
2location, spatialDWLS) [16–18] to the simulated MK dataset. Since STdeconvolve still 
needs to use marker genes to label the inferred cell types, in this benchmarking analy-
sis, we considered it a marker-gene-assisted method. We first assessed the methods in 
an ideal situation where a reference dataset with the same biological and experimen-
tal detail is available. For reference-based methods, the original single-cell ST dataset 
used to simulate the ST data was used as the reference dataset; for marker-gene-assisted 
methods, the GT marker genes derived from the original single-cell ST dataset were used 
to infer the cell types to make the results more comparable to reference-based methods. 
We quantified the performance of each method with the Pearson correlation coefficient 
(PCC) and the root mean square error (RMSE) between the predicted and the GT cell 
type proportions of all spots across all cell types, as well as the per-spot RMSE between 
the predicted and the GT cell type proportions at each spot. In the simulated MK data-
set, SMART demonstrated better performance than most of the methods (mean per-
spot RMSE = 0.0666, PCC = 0.937, RMSE = 0.0715, Diebold-Mariano P < 0.001) except 
for RCTD (mean per-spot RMSE = 0.0572, PCC = 0.955, RMSE = 0.0565) (Fig. 2G left, 
Additional file 1: Fig. S2A left, and Additional file 1: Fig. S2B left), which showed slightly 
better performance than SMART. However, using the original single-cell ST dataset as 
the reference profile to predict the ST dataset simulated from it will likely provide the 
best possible results for reference-based methods. Therefore, the reference-based meth-
ods were given a testing advantage over the marker-gene-assisted methods. In reality, 
such an ideal reference profile with the same cell types and technical details rarely exists.

To examine the performance of the above methods in a more realistic situation where 
an ideal reference dataset is unavailable, we collected single-cell RNA-seq data in mouse 
kidneys from the Tabula Muris Senis (TMS) cell atlas [21]. The TMS single-cell dataset 
was used as the reference profile for reference-based methods to deconvolve the simu-
lated MK dataset; the marker genes derived from the TMS dataset were used for marker-
gene-assisted methods to make the results comparable to reference-based methods. In 
this situation, SMART demonstrated the best performance over all the other methods 
(per-spot RMSE = 0.0860, PCC = 0.921, RMSE = 0.0786, Diebold-Mariano P < 0.001, 
Fig. 2G middle, Additional file 1: Fig. S2A middle, and Additional file 1: Fig. S2B middle).
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Finally, to demonstrate the advantage of SMART as a marker-gene-assisted 
method that does not rely on any reference datasets, we collected marker gene sym-
bols from the existing literature [22] and the CellMarker 2.0 database [23]. Next, we 
apply the marker-gene-assisted methods with these marker genes. We showed that 
SMART demonstrated the best performance among the four marker-gene-assisted 
approaches (mean per-spot RMSE = 0.0712, PCC = 0.924, RMSE = 0.0772, Diebold-
Mariano P < 0.001, Fig.  2G right, Additional file  1: Fig. S2A right, and Additional 
file 1: Fig. S2B right).

In all three scenarios, SMART demonstrated the smallest variability in per-spot 
RMSE (Fig. 2G). Additional file 1: Fig. S3 and Additional file 1: Fig. S4 compare the 
PCC and RMSE in each cell type in all three scenarios. The three sets of marker 
genes that we used for SMART deconvolution are shown in Additional file  2: 
Table S1, and Additional file 1: Fig. S5 shows the overlap among these three sets of 
marker genes. To ensure that SMART works with high-resolution platforms such as 
10X Visium, we re-simulated the dataset to contain, on average, 10 cells per spot and 
repeated the benchmarking as a sensitivity analysis. We obtained similar results, and 
SMART showed the best performance when an ideal reference dataset was not avail-
able (Additional file 1: Fig. S6).

SMART demonstrated improved stability and interpretability than unsupervised methods

Similar to other marker-gene-assisted methods based on generative models with sam-
pling algorithms (i.e., STdeconvolve, Celloscope), the results of SMART may vary 
between runs according to the starting value. STdeconvolve, as an unsupervised 
approach, only uses marker genes after the deconvolution process to label the latent cell 
types, and sometimes, the results between runs can be completely different. In most 
cases, it can also be difficult to get an estimate for every cell type, particularly for rare 
cell types.

Both SMART and Celloscope are semi-supervised methods that use marker genes as 
prior knowledge during the deconvolution process to help improve prediction accuracy, 
stabilize performance, and make results more reproducible. To assess the variability in 
performance, we performed 100 repeats of SMART, Celloscope, and STdeconvolve on 
the MK dataset and examined the PCC and the RMSE between the predicted and GT 
cellular composition across all spots. As expected, we observed that both SMART and 
Celloscope delivered more consistent results than STdeconvolve with less variability 
(Additional file 1: Fig. S7A and S7B). To further improve the stability, SMART provides 
the option to perform a user-specified number of repeats in parallel and average the 
results. Additional file 1: Fig. S8 shows the PCC and the RMSE overall repeated runs in 
each cell type. Importantly, in many cases, STdeconvolve identified multiple latent topics 
for abundant cell types while identifying no topics for cell types that are less abundant. 
Out of the 100 repeats of STdeconvolve, 12 repeats identified only three cell types when 
using the GT marker genes in the GSEA to label the cell types; 58 repeats failed to iden-
tify more than five cell types; only four repeats were able to identify six cell types and 
no repeats identified all eight cell types. This indicates that the use of marker genes in 
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SMART not only stabilizes the deconvolution process but also ensures that we obtain an 
accurate estimate for each cell type.

SMART demonstrated improved performance with a two‑stage approach

Although marker genes can be shared across cell types in SMART, we recommend using 
marker genes with high specificity to achieve the best results. However, in some cases, 
marker genes can be very similar between cell types (i.e., monocyte, macrophage, and 
dendritic cells), especially those arising from the same lineage [24], which makes it dif-
ficult to select specific marker genes. This ambiguity may lead to a drop in the accu-
racy of deconvolution results. To mitigate this limitation, we implemented a two-stage 
approach to improve the performance in predicting individual cell subtypes. In this two-
stage approach, SMART was first applied to deconvolve the ST dataset into major cell 
types. Next, we extracted the gene counts explained by the cell type of interest. A second 
round of deconvolution was performed on the extracted gene counts to further decom-
pose the cell type of interest to its subtypes. By separating the deconvolution process 
into two stages, any non-specific marker genes shared between the major cell types and 
those that were discarded in the first stage may be re-used in the second stage to dis-
criminate the cell subtypes. In this manner, the selection of marker genes becomes easier 
for subtype identification compared to a one-stage approach that estimates all major cell 
types and cell subtypes at once.

To illustrate, we collected a human non-small cell lung cancer (NSCLC) single-cell ST 
dataset [25], which was profiled using the NanoString CosMx platform and simulated 
a ST dataset of 120 contiguous spots in the same manner (Fig.  3A). The NSCLC sin-
gle-cell dataset contains the expression of 960 genes from 32,272 cells. These cells were 
pre-annotated to ten major cell types or thirteen cell types with the inclusion of T cell 
subtypes (CD4 + T, CD8 + T, regulatory T) and dendritic cell (DC) subtypes (plasmacy-
toid DC and myeloid DC). In the two-stage approach, we first applied SMART to decon-
volve the ST dataset into the major cell types (Fig. 3B). Most cell types demonstrated a 
PCC > 0.90 between the GT and the predicted cell type composition (Fig. 3C). Next, we 
extracted the gene counts explained by the T cells to further deconvolve them into T cell 
subtypes. The T cell subtype proportions obtained from the two-stage approach showed 
stronger correlations with the GT T cell subtype proportions compared to a regular one-
stage approach (Fig. 3D top). Users can also choose to include a cell type that is tran-
scriptomically similar to the cell type of interest in the second round of deconvolution to 
recover potential incorrectly allocated gene counts. For example, to assist in the identifi-
cation of DC subtypes, we included macrophages, which showed the greatest similarity 
to DCs in gene expression, during the second-stage deconvolution of DCs. By doing this, 
the correlation between the GT and predicted cell type proportion showed a dramatic 
increase for both pDCs and macrophages while staying similar for mDCs (Fig. 3D bot-
tom). The marker genes used for deconvolution of the major cell types, T cell subtypes, 
and DC subtypes are shown in Additional file 3: Table S2.
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SMART identified condition‑specific genes for each cell type with a covariate model

While reference-based methods assume that the cell type-gene expression is constant 
regardless of the sample conditions and that only the cell type composition can be 
changed, SMART respects the fact that cell type-specific gene expression can also vary 
between conditions. This was achieved by allowing users to incorporate covariates to 
identify condition-specific gene signatures for each deconvolved cell type. For demon-
stration, we simulated a ST dataset using a single-cell ST dataset on mouse hypotha-
lamic preoptic area (MPOA) generated using the MERFISH platform [26] (Fig.  4A). 
The MPOA dataset contains the expression of 135 genes from 188,658 cells of 6 mice 
(3 female and 3 male). We applied the covariate model using sex as the covariate and 
obtained the sex-specific gene expression for each cell type and the cell type proportions 
(Fig. 4B). Again, to avoid any confounding factors that may affect the evaluation of the 
model, the GT marker genes were used with the covariate model of SMART (Additional 
file 4: Table S3). We observed a strong correlation of > 0.7 between the GT and the pre-
dicted cell type proportions in every cell type (Fig. 4C). Consistent with the literature, 
we observed that in excitatory neurons, Brs3 was up-regulated in the female mouse, and 

Fig. 3  Demonstration of the two-stage approach of SMART. A An example field of view of the single-cell 
Nanostring CosMx data in human non-small cell lung cancer. B The SMART-predicted cell type composition 
of the example field of view. C A heatmap showing the Pearson correlation coefficients between the 
predicted and the GT cell type proportions of each cell type. D A comparison between the one-stage 
approach and the two-stage approach on predicting T cell subtypes (top) and dendritic cell subtypes 
(bottom)
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Cyp19a1 was up-regulated in male mice [26] (Fig. 4D top); in inhibitory neurons, Esr1 
was up-regulated in female mice while Sytl4, Cyp19a1, and Greb1 were up-regulated in 
male mice [26] (Fig. 4D bottom). We then incorporated the effect sizes of the sex-spe-
cific gene expression profile with GSEA, identifying pathways that were enriched due 
to sex differences within each cell type. For example, we found that the late estrogen 
response was up-regulated in the excitatory neurons of female mice, and the transmem-
brane transporter activity was up-regulated in the microglia of female mice in compari-
son with those of the male mice (Benjamini–Hochberg false discovery rate < 0.05).

SMART is compatible with diverse ST platforms

To validate the performance of SMART on real ST datasets, we applied SMART 
to a mouse brain ST dataset [27], which was profiled using the 10X Visium platform 
(Fig. 5A). Depending on the tissue type, the Visium platform usually contains 1–10 cells 

Fig. 4  Demonstration of the covariate model of SMART using simulated data in mouse hypothalamic 
preoptic region (N = 6 with 3 female mice and 3 male mice). A Spatial image of an example slice of the 
single-cell MERFISH data. B The SMART-predicted cell type composition for the example slice. C A heatmap 
showing the Pearson correlation coefficients between the predicted and the GT cell type proportions of each 
cell type. D The log2 fold change of gene expression between the female mouse and the male mouse in the 
excitatory neurons (top) and the inhibitory neurons (bottom). Red bars = genes up-regulated in the female 
mice; Blue bars = genes up-regulated in the male mice
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per spot [3]. With marker genes identified from the Mouse Brain Atlas [28] and the 
CellMarker 2.0 database, we deconvolved the mouse brain ST dataset into seven major 
cell types. Then, we used the two-stage model to further deconvolve the neurons into 
excitatory and inhibitory neurons (Fig.  5B). In both stages, we included an unknown 
cell type to represent any novel cell types or cell types that cannot be explained by the 
specified cell markers. SMART successfully identified cell types in brain regions such 

Fig. 5  Application of SMART on a mouse brain ST dataset profiled using the 10X Visium platform. A 
Histology staining image of the tissue. B SMART-predicted cell type composition. C The predicted proportion 
of inhibitory neurons in each spot. D The predicted proportion of oligodendrocytes in each spot. E A 
comparison of the predicted proportion of oligodendrocytes (left) and neurons (right) between the spots in 
the fiber tract region and the spots in the non-fiber tract region. F The predicted proportion of ependymal 
cells in each spot. G A comparison of the predicted proportion of ependymal cells between the spots in the 
ventricular region and the spots in the non-ventricular region. H The predicted proportion of an unknown 
cell type in each spot



Page 11 of 21Yang et al. Genome Biology          (2024) 25:304 	

as fiber tracts, ventricles, cortex, thalamus, and hypothalamus. The regions were anno-
tated based on the anatomical images from the Allen Brain Atlas [29, 30]. The distribu-
tion of the excitatory neurons and the inhibitory neurons in the cortex was consistent 
with literature that the cortical layer 1 (the outer layer) contains mainly the inhibitory 
neurons and that the excitatory neuron is overall more abundant than the inhibitory 
neurons (Fig. 5C) [31, 32]. Also, as expected, the oligodendrocytes were predicted to be 
highly enriched in fiber tracts compared to non-fiber tract regions [33] (t-test P < 0.001, 
Fig. 5D and E); neurons were highly enriched in non-fiber tract regions as opposed to 
fiber tracts (t-test P < 0.001, Fig. 5E). Similarly, we observed a high predicted proportion 
of ependymal cells, which form an epithelial lining for the brain ventricles [34], in ven-
tricular regions compared to non-ventricular regions (t-test P < 0.001, Fig.  5F and G). 

Fig. 6  Application of SMART on a pancreatic ductal adenocarcinoma ST dataset. A Histology staining image 
of the tissue (left) and the regions annotated by histologists from the original study (right). B The predicted 
proportions of ductal cells. C The predicted proportions of acinar cells. D The predicted proportions of cancer 
clone cells. E A comparison of the predicted proportion of ductal cells in the spots of ductal region and the 
spots of the non-ductal region. F A comparison of the predicted proportion of acinar cells in the spots of the 
pancreatic region and the spots of the non-pancreatic region. G A comparison of the predicted proportion of 
cancer clone cells in the spots of the cancerous region and the spots of the non-cancerous region
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Interestingly, the unknown cell type we obtained during the first stage may correspond 
to a cell type in the medial habenula region of the mouse brain (Fig. 5H). This suggests 
that SMART may help identify novel cell types when marker genes are not provided.

In addition to the mouse brain ST dataset, we also validated the performance of 
SMART on an ST dataset generated from the human pancreatic ductal adenocarcinoma 
(PDAC) sample [35] using microarray slides (Fig. 6A). With marker genes derived from 
its sample-matched scRNA-seq dataset generated using the inDrop platform, SMART 
identified sixteen cell types across four distinct tissue regions labeled based on histology 
staining (Fig. 6B–D). As expected, we observed a higher predicted proportion of ductal 
cells in the ductal region than in the non-ductal regions (t-test P < 0.05, Fig. 6E). Also, 
we observed a higher predicted proportion of acinar cells in the pancreatic region [36] 
(t-test P < 0.05, Fig.  6F) and cancer clone cells in the cancerous region (t-test P < 0.05, 
Fig. 6G).

Factors affecting the performance of SMART​

Finally, to assess factors that may affect the results of SMART, we first examined 
whether the total number of spots affects the deconvolution performance. With the sim-
ulated MK dataset, we randomly selected 50, 100, 300, 500, and 1000 spots and applied 
SMART. The results show that interrogation of more spots did not lead to a significant 
decrease in the per-spot RMSE (t-test P > 0.05, Additional file 1: Fig. S9A).

Next, we examined if the number of cells in each spot has any effect on SMART. With 
technological improvement, the resolution has become higher in recent ST platforms 
[37]. Using the NSCLC dataset, we re-simulated the ST data by decreasing the size of 
the contiguous squares to contain, on average, 269, 68, and 17 cells per spot to mimic the 
scenario that higher-resolution platforms usually have more spots with a smaller tissue 
coverage area in each spot. Interestingly, while the change in per-spot RMSE is subtle, 
it decreased with a higher number of cells per spot (t-test P < 0.001, Additional file  1: 
Fig. S9B), suggesting that SMART may perform better on ST platforms with a lower 
resolution.

Most importantly, since the selection of input marker genes can affect the performance 
of SMART, we checked the presence of marker genes in the top 10 SMART-predicted 
cell type-specific genes in the MK dataset when the GT, the TMS, and the literature-
based marker genes were used as input (Additional file 5: Table S4). As expected, most of 
the top 10 predicted genes for each set were also the input marker genes. These marker 
genes contained both genes shared between the marker gene sets and unique marker 
genes in each set. Thus, these data indicate that different marker genes can be used 
with SMART, although the shared marker genes, which are considered more reliable, 
probably impose a greater impact on the overall results. Notably, the top 10 genes also 
contained non-marker genes, indicating the robustness of SMART to the inclusion of 
marker genes that were of reduced quality or missing altogether from the input, so long 
as the overall proportion of such genes is relatively small. Next, we examined how the 
number of marker genes affects the results of SMART by using at most 3, 5, 10, and 
15 marker genes per cell type. As anticipated, SMART demonstrated a lower per-spot 
RMSE as the number of marker genes increased (t-test P < 0.001, Additional file 1: Fig. 
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S9C). This suggests that including more marker genes improves the performance of 
SMART, assuming the quality of the marker genes. The largest decrease in mean per-
spot RMSE occurred between having five marker genes and having ten marker genes 
(7.13% decrease). These data suggest that having approximately ten marker genes per 
cell type may efficiently improve the performance of SMART.

The runtime of SMART increases proportionally with the total library size and the 
number of deconvolved cell types. Thus, for genome-wide datasets, we recommend 
including a gene selection procedure to keep only the marker genes and highly variable 
genes to reduce the runtime. In Additional file 1: Fig. S10, we benchmarked the runtime 
of SMART on randomly selected spots from the MK simulated dataset.

Compare SMART with bulk transcriptomics deconvolution methods

Although SMART does not use spatial information for deconvolution, it works best on 
ST data. To compare the performance of SMART against some of the best-performing 
bulk transcriptomics deconvolution methods [38, 39], in addition to the main bench-
marking analysis (Fig. 2), we also applied Cibersort [40], MuSiC [41], BayesPrism [42], 
DWLS [43], SCDC [44], Bisque [45], and GTM-decon [46] to the simulated MK ST data-
set. All seven methods were run with their default parameters. Since all seven methods 
are reference-based methods, the batch effect between the reference dataset and the ST 
dataset should be considered. Therefore, we performed the evaluation in a more real-
istic setting using the TMS dataset as the reference for Cibersort, MuSiC, BayesPrism, 
DWLS, SCDC, Bisque, and GTM-decon; marker genes derived from the TMS dataset 
were used with SMART. As expected, SMART outperformed all seven methods with a 
smaller per-spot RMSE (Diebold-Mariano P < 0.001), a smaller RMSE across all spots, 
and a stronger correlation across all cell types between the predicted and the GT cell 
type proportions (Additional file 1: Fig. S11), indicating that SMART is more suitable for 
ST datasets than the bulk transcriptomics deconvolution methods.

Discussion
Using multiple simulated and real ST datasets, here, we demonstrated that SMART 
accurately captures the cell type composition and cell type-specific gene expression of 
ST data across various ST platforms, even in comparison with some of the best-per-
forming reference-based methods [16–18]. Using the MK simulated dataset, we showed 
that in an ideal situation, where we used the original single-cell dataset as the reference 
to deconvolve the ST dataset simulated from it, SMART showed comparable and poten-
tially better performance to the reference-based methods. Although methods such as 
RCTD may show a slightly better performance, such ideal conditions rarely exist. In 
a more realistic circumstance where we used an external reference dataset, SMART 
shows significantly lower error compared to reference-based methods, indicating that 
SMART, as a marker-gene-assisted tool, provides more accurate results in real-world 
settings. Without the need to properly process a reference dataset, SMART minimizes 
the impact of batch effects and makes it easier to use compared to most reference-based 
methods. We also demonstrated that, with marker genes collected from the literature 
and public marker gene databases, SMART achieved the best performance compared 
to other marker-gene-assisted methods. The performance was even comparable to the 
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reference-based methods with an ideal reference. Compared to unsupervised topic 
model-based methods such as STdeconvolve, which only uses marker gene information 
after deconvolution to label the cell types, the results of SMART are also more repro-
ducible by including prior knowledge on marker genes during the deconvolution pro-
cess. This is also one of our motivations for developing SMART. The results from the 
NSCLC dataset showed that the two-stage approach might help to further improve 
SMART’s performance in decomposing cell subtypes by optimizing the use of marker 
genes and by recovering falsely allocated gene counts. Finally, we used the MPOA data-
set to demonstrate the ability of SMART-covariate to estimate the condition-specific 
gene expression profile for each cell type by including the condition as a covariate. An 
important assumption in the reference-based methods is that the cell type-specific gene 
expression is constant across sample conditions, and only cell type compositions dif-
fer. However, this assumption is frequently violated in the real world as gene expression 
in samples is modified by disease and treatment, leading to inaccurate deconvolution 
results. SMART surmounts this limitation by enabling the inclusion of covariates that 
can capture the impact of disease status and phenotypes. The covariate model can also 
be combined with the two-stage approach to obtain condition-specific estimates for the 
cell subtypes, and where appropriate, different sets of covariates may be used at each 
stage to estimate the cell subtypes more precisely. In addition, the ability to include cell 
types without marker genes assists in identifying novel cell types, as shown in the analy-
sis of the 10X Visium mouse brain dataset. With the two real ST datasets, we showed the 
compatibility of SMART on high-resolution platforms such as the 10X Visium as well as 
lower-resolution platforms such as the microarray platform used in the PDAC dataset.

SMART allows shared marker genes between cell types; however, using markers spe-
cific to cell types usually provides better results. Although the deconvolution results 
may not be significantly affected even if a small portion of marker genes are of reduced 
quality or are missing from the input, we recommend that the users consult multiple 
sources to identify and select the most reliable marker genes (i.e., marker genes that have 
been confirmed by multiple sources). While obtaining high-quality marker genes can be 
challenging, SMART only requires a small number of marker genes. As illustrated with 
the NSCLC dataset, we can obtain a good to excellent estimation with as few as three 
marker genes per cell type. The results can be improved efficiently by using approxi-
mately ten marker genes per cell type.

Lastly, we demonstrated that SMART is more suitable for ST data compared to bulk 
transcriptomics deconvolution methods. Similar to other topic model-based methods 
for ST data, SMART assumes that the proportional distribution of cell types across spots 
is heterogeneous and sparse (i.e., some spots have more of cell-type A and others have 
more of cell-type B). Spatial transcriptomics data, which only contains tens or hundreds 
of cells per spot, generally satisfies this assumption. In bulk transcriptomics data, how-
ever, the cell type composition is more homogeneous across the samples with much 
lower sparsity. For example, the 10X Visium platform contains only 1–10 cells on aver-
age, while bulk RNA-seq samples may contain hundreds of thousands of cells. Moreover, 
as a marker-gene-assisted method without needing a reference dataset, SMART works 
best when there are a sufficiently large number of spots (samples). This condition is also 
generally satisfied in ST data compared to bulk transcriptomics data. On the other hand, 
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the bulk transcriptomics deconvolution methods are more specialized for bulk tran-
scriptomics data and therefore, may not provide accurate estimates for ST datasets.

There are also limitations to SMART. Firstly, all the spots are assumed to be inde-
pendent in SMART instead of borrowing spatial information from the adjacent spots. 
However, SMART does include a gene count weighting scheme to borrow gene abun-
dance information from all spots to prevent certain genes from dominating a cell type. 
Moreover, the selection of input marker genes is critical to optimize the performance of 
SMART. To make the tool more accessible, SMART provides several pre-defined lists of 
marker genes for common tissue types.

Conclusion
In summary, we present SMART as a marker-gene-assisted deconvolution method for 
spatial transcriptomics without needing a scRNA-seq reference profile. By incorporat-
ing marker genes for the cell types as guidance, SMART showed improved accuracy, 
stability, and interpretability even when compared with some of the best-performing 
reference-based methods. With the two-stage approach, SMART shows an advantage 
in discriminating the cell subtypes. The covariate model provides insight into the condi-
tion-specific gene expression of each cell type and may be helpful for studying biological 
perturbations. Ultimately, we believe that SMART will be a powerful tool to unravel the 
tissue heterogeneity and identify potential therapeutic targets at a single-cell-type reso-
lution with spatial information.

Methods
Overview of SMART​

SMART builds on the keyword-assisted topic models (keyATM) [47], which are semi-
supervised topic models that integrate prior knowledge to guide the formation of topics. 
By including a small number of keywords for each topic prior to model fitting, keyATM 
accurately infers the proportion of topics within each document and the word frequen-
cies within each topic.

In the context of cell type deconvolution in SMART, the spots correspond to the docu-
ments, the genes correspond to the words, and the cell types correspond to the inferred 
topics. A small number of marker genes for each cell type (keywords) were used as prior 
knowledge to help infer the cell type proportions (topic proportions within each docu-
ment) and the cell type-specific gene expression (word frequencies within each topic) in 
the form of relative gene frequencies.

The ST data is represented as a V × D matrix with V  genes and D spots. The total 
number of RNA molecules in each spot d is Nd . We use wdi to represent the i th mRNA 
molecule in spot d . KeyATM is a generative model based on a mixture of two Dirichlet 
distributions, one for the marker genes only and one for all genes. A key assumption is 
that the marker genes should have a higher expression in a given cell type than the non-
marker genes. The data generation process is as follows:

1) Suppose there are a total of K  cell types and the first K̃  of them are cell types pro-
vided with marker genes.

2) For each mRNA molecule i in spot d , we draw the cell type variable zdi from the 
topic distribution:
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θd represents the cell type proportions within each spot d.
3) If the sampled cell type k is a “no-marker” cell type, we draw the mRNA molecule 

wdi from the standard gene distribution:

φk
i.i.d.
∼ Dirichlet(β) represents the standard gene frequencies for all genes within cell 

type k with V  dimensions.
4) If the sampled cell type contains marker genes, we first draw a Bernoulli random 

variable sdi with success probability πk for mRNA molecule i in spot d

If the variable equals 1, the mRNA molecule wdi is drawn from the gene frequencies 
for cell type k with marker genes φ̃k

i.i.d.
∼ Dirichlet(β̃) ; if the variable equals 0, wdi is 

drawn from the standard gene frequencies for cell type k , φk . That is,

φ̃k is a V  dimensional vector with positive values for the marker genes and zeros for the 
non-marker genes. β and β̃  are hyperparameters that make the prior means for the fre-
quency of marker genes higher than those of non-marker genes.

5) And,

η̃1 and η̃2 were set to sample α from smaller values so that the spots are more dominant 
by cell types with marker genes.

Figure  1 shows a graphic representation of this generative process. By integrating 
out the latent variables (θ ,φ, φ̃,π) , keyATM uses a collapsed Gibbs sampling algo-
rithm to sample from their posterior distribution. It also uses an inverse gene fre-
quency weighting strategy to help prevent highly expressed genes from dominating 
the inferred cell types. The resulting θ matrix represents the cell type proportions for 

zdi
indep.
∼ Categorical (θd)

wdi|zdi = k
indep.
∼ Categorical (φk)

for k ∈ {K̃ + 1, K̃ + 2, . . . ,K }

sdi|zdi = k
indep.
∼ Bernoulli (πk)for k ∈ {1, 2, . . . , K̃ }

where πk
i.i.d.
∼ Beta (γ1, γ2) for k ∈ {1, 2, . . . , K̃ }

wdi|sdi, zdi = k
indep.
∼

{
Categorical(φk) if sdi = 0

Categorical
(

φ̃k

)

if sdi = 1

for k ∈ {1, 2, . . . , K̃ }

θd
i.i.d.
∼ Dirichlet(α) for d = 1,2, . . . ,D

α
indep.
∼

{
Gamma

(
η̃1, η̃2

)
for k ∈ {1, 2, . . . , K̃ }

Gamma(η1, η2) for k ∈ {K̃ + 1, K̃ + 2, . . . ,K }
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each spot; a final gene frequency φ∗
k combining φ and φ̃  ,, represents the cell-type spe-

cific gene expression, and is given by

for each gene v . More information regarding the sampling algorithm is available in Addi-
tional file 1: Supplementary Methods.

The two‑stage approach

To better estimate the composition of cell subtypes of a major cell type k , we take 
SMART one step further to perform a two-stage deconvolution as follows:

1)	 Deconvolve the spatial transcriptomics data into major cell types with the base 
model of SMART.

2)	 Calculate the total library size (sum of the gene counts) at each spot Nd.
3)	 Calculate the library size for the cell type of interest k at each spot Ndk = Ndθdk , 

where θdk is the cell type proportion of cell type k of a spot d.
4)	 Calculate the counts for each gene in cell type k at each spot d with Ndkφk , where φk 

is the relative gene frequency for cell type k.
5)	 Identify another cell type m with the highest similarity by calculating the PCC or the 

Euclidian distance between the relative gene frequency of the cell types. This cell type 
m can also be user-defined.

6)	 Calculate the gene counts for cell type m at each spot d as in steps 3 and 4.
7)	 Perform the second round of deconvolution on the sum of the gene counts for cell 

type k and m . By including the cell type m , we aim to recover any gene counts that 
were potentially misclassified in stage one.

The two-stage approach includes a “no-marker” cell type in both stages to represent 
any data that cannot be explained by the cell types with marker genes.

The SMART‑covariate model

SMART-covariate extends the base model and builds on the keyATM covariate model. 
Instead of step 5) in the base model, the covariate model uses the following cell type 
distribution:

xd is an M-dimensional covariate matrix for each spot d . � is an M × K  matrix of coef-
ficients and �mk is the ( m, k ) element of �.

Simulating ST data

To mimic the spots of ST data, we collected pre-annotated single-cell resolution ST data 
and cut the spatial image into contiguous squares. To start with, the bottom and left 

φ∗
kv = (1− πk)φkv + πk φ̃kv

θd
indep.
∼ Dirichlet

(

exp(�Txd

)

) for d = 1,2, . . . ,D

where �mk
i.i.d.
∼ N (µ, σ 2)
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edges of the bottom-left square were aligned with the bottom and the left edge of the 
spatial image. Then, the squares were created by drawing boundaries in increments of 
a selected value based on the datasets until they reached the top and right edge of the 
spatial image. Any squares with less than two cells were removed from the simulated 
dataset. Squares overlapping with the spatial image’s edges were also removed. The gene 
counts of cells within the coordinate of each square were aggregated together to obtain 
the gene expression of this simulated spot. The GT cell type proportions at each spot 
can be calculated by counting the number of cells of each cell type in each square. The 
GT cell type-specific gene expression can be obtained by averaging the gene expression 
of cells of the same cell type in the original single-cell ST dataset. Finally, the GT gene 
markers for each cell type can be obtained through a differential expression analysis 
between one cell type and the rest. The differential expression analysis was performed 
with a Wilcoxon rank-sum test, and the Benjamini–Hochberg procedure was used to 
correct for multiple hypotheses testing. A false discovery rate < 0.05 was used as the 
threshold for significant marker genes. The resulting markers were also filtered by fold 
changes > 2 to select markers of high confidence. The marker genes were further pruned 
to keep marker genes specific to each cell type. Marker genes from the CellMarker 2.0 
database were used if no GT marker genes were identified at the set threshold.

Deconvolution using SMART and existing methods

To make the comparison between marker-gene-assisted methods and reference-based 
methods more comparable, the single-cell ST data used to simulate the ST datasets were 
used as the reference profile for reference-based methods, and the marker genes identi-
fied from the reference datasets were used for marker-gene-assisted methods. For the 
MK dataset, an external TMS reference dataset was also used to evaluate the deconvolu-
tion performance when an ideal reference is unavailable.

In SMART, the input ST data could be either gene counts or un-transformed normal-
ized gene expression rounded to integers. A list of gene symbols for marker genes of 
each cell type was used as the supplemental input to guide cell type inference. By includ-
ing the marker genes prior to deconvolution, the resulting cell type proportions and cell 
type-specific gene expression were automatically labeled with cell type names, improv-
ing the results’ interpretability. In addition to cell types with marker genes, SMART also 
allows the inclusion of unknown cell types without specifying any marker genes, which 
may be helpful in identifying novel cell types. The GSEA in SMART-covariate was per-
formed using the R package “fGSEA” [48].

As an unsupervised reference-free method, STdeconvolve used the ST data as the only 
input. The resulting cell type proportions and cell type-specific gene expression matrices 
contained no cell type names. These unlabeled cell types were subsequently annotated 
with a name through a GSEA by comparing the inferred cell type-specific gene expres-
sion profile against the marker genes using the R package “liger” [49] as recommended 
by the authors.

CARDfree requires marker genes as the input in addition to the ST data. In all the 
analyses, the same gene markers used in SMART were used as the input for CARDfree. 
The inferred cell types, however, were not annotated with any cell type names. The same 
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gene set enrichment analysis approach used in STdeconvolve was applied to label the cell 
types with cell type names.

The reference-based methods (RCTD, cell2location, spatialDWLS, CARD) were per-
formed using the recommended settings according to the guidelines on their websites. 
These methods require a reference single-cell RNA-sequencing dataset as the input 
instead of a list of gene symbols used in marker-gene-assisted methods. More detailed 
information on running these methods can be found in Additional file 1: Supplementary 
Methods.

Runtime evaluation

To benchmark the runtime of SMART, we randomly selected 50, 100, 200, 500, and 1000 
spots from the simulated MPOA dataset. Using all 135 genes available in the dataset, the 
library size at each spot ranges from 3700 to 4000 gene counts. The runtime was meas-
ured using R package “tictoc” on a machine with an i7-4771 3.5 GHz CPU with 8 GB of 
RAM.
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