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Abstract 

We present MoCHI, a tool to fit interpretable models using deep mutational scan-
ning data. MoCHI infers free energy changes, as well as interaction terms (energetic 
couplings) for specified biophysical models, including from multimodal phenotypic 
data. When a user-specified model is unavailable, global nonlinearities (epistasis) can 
be estimated from the data. MoCHI also leverages ensemble, background-averaged 
epistasis to learn sparse models that can incorporate higher-order epistatic terms. 
MoCHI is freely available as a Python package (https:// github. com/ lehner- lab/ MoCHI) 
relying on the PyTorch machine learning framework and allows biophysical measure-
ments at scale, including the construction of allosteric maps of proteins.
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Background
A fundamental goal in biology is to understand how natural and synthetic polymer 
sequences (DNA, RNA, protein) encode their biophysical properties. Achieving this 
goal will have profound impacts on genetic prediction and biological engineering and 
allow a deeper understanding of molecular evolution. Recent improvements in the 
cost and efficiency of DNA synthesis and sequencing have made it possible to quan-
tify the phenotypic effects of large variant libraries in a single experiment (Fig.  1a). 
The utility of these high-throughput phenotyping methods—variously referred to 
as deep mutational scanning (DMS), massively parallel reporter assays (MPRAs), or 
multiplex assays of variant effect (MAVEs)—is evidenced by their wide application 
for cataloging the effects of natural human genetic variants in the context of disease. 
However, as a general strategy, the approach of exhaustive phenotyping has clear limi-
tations. First, the universe of all possible biological sequences is enormous, meaning 
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that this approach quickly becomes infeasible even for relatively short polymers. This 
highlights the need to learn predictive models of variant effects, which can generalize 
beyond the specific subset of sequences that comprise typical variant libraries. Sec-
ond, measured phenotype scores do not report directly on the underlying biophysical 

Fig. 1 The MoCHI framework and software package for fitting mechanistic models to deep mutational 
scanning (DMS) data. a The fundamental elements of a DMS experiment. First, an input library of sequence 
variants for a given gene is constructed by direct synthesis or mutagenesis. A competition assay then either 
physically separates or enriches the output library for sequences with a molecular function of interest. Finally, 
a quantitative phenotype score is obtained from variant counts before and after selection as determined 
by high-throughput sequencing. b A general framework for fitting custom mechanistic models to DMS 
data using neural networks. Left: Variant sequences are transformed to energies via the additive trait map 
f  ; the global epistasis function g describes the nonlinear relationship between the energetic effects of 
mutations and the molecular phenotype of interest p ; the experimental measurement process h transforms 
the molecular phenotype to the specific units of the DMS assay. Right: Graph representation of an example 
custom model for the inference of two biophysical traits ( φ1 and φ2 ) using data from three DMS experiments 
( y1 , y2 , and y3 ) that report on two related molecular phenotypes ( p1 and p2 ). c Architecture of the MoCHI 
software package indicating the four modules handling data management (“data.py”), model definition 
and fitting (“models.py”), reporting of results (“report.py”), and the implementation of predefined inference 
workflows (“project.py”)
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effects of mutations, which are the basis of molecular function. Indeed, typically a 
very large number of different changes in biophysical properties could underlie the 
same observed change in a molecular phenotype [1].

Whereas machine learning approaches and, in particular, deep learning (DL) models 
have had some success addressing the first limitation [2–4], they have drawbacks when 
it comes to interpretability and extracting mechanistic insight due to their architectural 
complexity. A promising alternative is to explicitly fit mechanistic models to DMS data 
where the model parameters are readily interpretable, corresponding, for example, to 
the inferred biophysical parameters (typically, but not necessarily, thermodynamic 
parameters) of the assayed system. This strategy has been applied to the study of gene 
expression regulation by transcription factors [5–11], the inference of binding affinities 
using ligand titrations [12–14], and to map the energetic and allosteric landscapes of 
protein binding domains [15, 16]. In combination with experimental designs that pro-
vide sufficient data to constrain model fitting, this can allow biophysical measurements 
to be made at unprecedented scale. For example, quantifying the effects of mutations 
on multiple molecular phenotypes and in multiple genetic backgrounds—an approach 
called “multidimensional mutagenesis”—has allowed us to infer changes in the folding 
and binding energies for tens of thousands of mutations in human protein domains [15, 
16]. Neural networks provide a fast and convenient approach to quantitatively study 
genotype-phenotype (G-P) maps and are increasingly being used to model DMS data [7, 
15–20]. Although general-use software tools for this purpose have been developed [7, 
19–25], none as yet permit mechanistic models to be fit to this type of multi-phenotype 
and complex genotype DMS data in a flexible manner (Table 1). To address this need, we 
have developed MoCHI, a software tool that allows the parameterization of arbitrarily 
complex models using DMS data. MoCHI simplifies the task of building custom models 
from measurements of mutant effects on any number of phenotypes.

A further challenge is represented by the fact that the phenotypic outcome of a muta-
tion often depends on the genetic context (or background) in which it occurs. This phe-
nomenon, termed “epistasis” (genetic interactions), is abundant both between as well 
as within genes and therefore taking it into account is critical when building accurate 
models [26]. Epistasis comes in different flavors, either depending on the effect size of 
the combined mutations (global or non-specific epistasis)—manifesting as global non-
linearities in the genotype–phenotype map [7, 20, 27, 28]—or their specific identities 

Table 1 Comparison of MoCHI capabilities to previously developed methods

Feature LANTERN [20] MAVE-NN [7] MoCHI

Global (non-specific) epistasis inference Yes Yes Yes
User-specified mechanistic model fitting No Yes Yes
Pairwise genetic interaction inference (specific epistasis) No Yes Yes
Multidimensional global (non-specific) epistasis inference Yes No Yes
Model fitting to multiple (multimodal) phenotypes Yes No Yes
Simultaneous fitting of global (non-specific) and pairwise 
(specific) epistasis

No Yes Yes

Higher-order genetic interaction inference No No Yes
Ensemble (background-averaged) epistasis inference No Yes Yes
Sparse epistatic model fitting No No Yes
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(specific epistasis). An example of the latter is the pairwise dependency of mutation 
effects at physically contacting positions, for example a salt bridge between two amino 
acid (AA) residues that can be restored by the combination of individually disruptive 
mutations at the two sites [29–31]. Specific epistasis can also involve combinations of 
mutations at more than two positions, yet knowledge of the prevalence and origins of 
this “higher-order” epistasis remains limited [26]. MoCHI allows the simultaneous infer-
ence of pairwise and higher-order interaction terms (energetic couplings) for specified 
biophysical models facilitating deeper investigation of these phenomena. Furthermore, 
when a suitable user-specified mechanistic model defining the source of the global non-
linearity (epistasis) is not available, its shape can be estimated directly from the data.

Finally, quantitative definitions of epistasis vary depending on the formal concept of 
a genetic background (or reference) against which mutation effects (and their interac-
tions) are calculated. The background-relative (or biochemical) view of epistasis implic-
itly assumes there exists a single uniquely relevant genetic background for the system 
under study. However, an alternative definition termed “background-averaged” epista-
sis—also known as “ensemble” or “statistical” epistasis—averages the effects of muta-
tions across many different genetic backgrounds (contexts) [32]. It has been argued that 
this distinction is particularly important for inference within large combinatorial land-
scapes. In these settings, MoCHI can optionally apply mathematical theory of ensem-
ble epistasis to learn sparse models that are both highly predictive and informative of 
the genetic architecture of the underlying biological system [33]. We first describe the 
MoCHI framework and software package for fitting interpretable genotype–phenotype 
models. We then demonstrate key aspects of the tool’s functionality by using it to ana-
lyze a range of different DMS datasets.

Results
A flexible tool to fit interpretable genotype–phenotype models

MoCHI uses the data generated by DMS experiments to learn simple models that accept 
a genotype sequence x (DNA, RNA, protein) as input and output a quantitative phe-
notypic prediction y = F(x) (enrichment ratio, growth rate, cellular fluorescence etc.; 
Fig. 1b). In contrast to DL models, the inferred parameters of the model F  are directly 
interpretable.

In the simplest scenario, the effects of single nucleotide/AA substitutions in the wild-
type (reference) sequence contribute independently to the final prediction. In other 
words, when single mutant effects are additive in multi-mutants, the phenotypic score 
of an arbitrary sequence variant i (of any mutational order) relative to the wild-type 
sequence is simply the sum over nucleotide- or residue-specific effects. This assumption 
is implicit in a linear model where variant sequences are one-hot encoded and the phe-
notypic effects of single substitutions correspond to the coefficients of the model.

However, there are two main reasons why such naïve models tend to perform poorly 
at the task of accurately predicting quantitative scores from DMS experiments. First, 
results from empirical work suggest that pairwise (and possibly higher-order) genetic 
interactions are abundant in biological sequences [34–36]. The mechanistic origins of 
specific epistasis—where the effect of a given mutation depends on the specific genetic 
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background in which it occurs—is an active field of research, but there is evidence that 
it is enriched between sequence positions involved in physical interactions [29–31, 37].

Second, the relationship between the biophysical effect of a mutation and the meas-
ured (observed) phenotype is typically nonlinear. Sources include the thermodynamics 
of protein folding and binding as well as the cooperativity and competition of molecular 
interactions such as transcription factors with DNA. Molecular phenotypes often have 
finite upper and lower limits, for example the quantitative level of inclusion of an alter-
natively spliced exon in an mRNA transcript can only occur in the range 0–100% [38]. In 
addition, many experimental phenotypes such as cellular growth, fluorescence intensity, 
gene expression level, and metabolic flux are subject to analogous upper and lower limits 
[26]. The consequence of these nonlinearities is that the phenotypic outcome of the sum 
of mutation effects at the biophysical level is not equal to the sum of their individual phe-
notypic effects. This “surprise” outcome of mutations—based on their magnitudes and 
the parameters affected but not their specific identities—is known as global epistasis or 
non-specific epistasis. Technical nonlinearities in the relationship between a molecular 
phenotype and observations thereof can also be introduced by the experimental meas-
urement process itself [39]. Regardless of its source, it is important to properly account 
for global epistasis as it can dramatically improve model performance, generalizability, 
and interpretability, reducing the number and type of genetic interaction terms (model 
features/variables) required to explain phenotypic effects, a phenomenon referred to as 
phantom epistasis [38].

MoCHI allows the explicit simultaneous modeling of these two types of epistasis 
(global and specific) by formulating the genotype–phenotype map F(x) as a graph con-
sisting of sequential transformations. In the additive trait map f (x) , the effects of indi-
vidual mutations and mutation combinations (genetic interactions) combine additively 
at the energetic level. The resulting sum or inferred biophysical trait φ = f (x) can be 
interpreted in some models as the total Gibbs free energy of the system [5–7, 12, 15, 16]. 
However, as this quantity is typically unobserved, it is also commonly referred to as the 
latent phenotype or fitness potential (Fig.  1b, left). Importantly, f  maps sequences to 
an unbounded physical quantity φ representing the ultimate mechanistic basis of muta-
tion effects, and therefore its parameters can provide deep insight into the system under 
study.

The molecular phenotype p = g(φ) = g(f (x)) is modeled as a nonlinear transforma-
tion of the biophysical trait φ and represents how changes at the energetic level affect 
the probability of molecular events, for example the fraction of molecules in a given state 
(folded, bound, cleaved, spliced, etc.). The mathematical formulation of the function g 
is either determined a priori or it can be estimated directly from the data, an approach 
termed global epistasis (GE) regression originally developed in the evolution literature 
[27, 28, 39, 40] and increasingly implemented using neural networks [7, 17, 18, 20].

Finally, the observed phenotype y = h(p) = h(g(f (x))) is modeled as an affine trans-
formation (two parameter scale and shift) of the molecular phenotype p . The key 
assumption here is that the DMS experimental assay provides a quantitative score for 
each variant that is linearly correlated with the molecular phenotype of interest albeit 
on a different scale or arbitrary units. Therefore, h simply represents a conversion 
between these two unit systems. In order to account for the uncertainty in experimental 
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measurements, MoCHI applies an empirical noise model by weighting the objective 
function with experimental error estimates when available.

A key advantage of MoCHI is the graph-like nature in which custom genotype–phe-
notype models are implemented as neural networks permitting an arbitrary number 
of measured phenotypes to report on an arbitrary number of inferred additive traits 
(Fig. 1b, right). Practically, this allows models to be fit simultaneously to multiple DMS 
datasets that result from assaying/phenotyping the same (or overlapping) variant librar-
ies. For example, the architecture in the right panel of Fig.  1b describes two related 
molecular phenotypes p1 and p2 , where each is assumed to be a different nonlinear 
function of two underlying biophysical traits ( φ1 and φ2 ) as determined by the global 
epistasis functions g1(φ1,φ2) and g2(φ2) . Furthermore, the molecular phenotype p2 is 
assayed independently in two separate experiments, as denoted by y2 and y3 , where any 
systematic (linear) differences between the resulting scores are captured in the inferred 
parameters of the transformations h2 and h3 , thereby obviating the need for any explicit 
inter-experiment normalization prior to modeling.

MoCHI is implemented as a python package and relies on the PyTorch machine 
learning framework for model inference (Fig. 1c), with a “no-coding” option provided 
via a command-line tool. The package is divided into modules for DMS data manage-
ment (sequence feature extraction, definition of cross-validation groups), learning tasks 
(model architecture definition, hyperparameter tuning and fitting), and reporting of 
results (model performance and diagnostics). A fourth module handles project work-
flows involving multiple learning tasks including sparse model inference. In what fol-
lows, we provide examples of MoCHI’s functionality on various empirical datasets.

Fitting biophysical models to DMS data with MoCHI

Although DMS involves perturbations of biomolecules at the biophysical level (by vary-
ing their sequences), functional assays of mutant effects typically involve the quantifi-
cation of a convenient proxy (e.g., fluorescence score) or higher-level phenotype (e.g., 
cell growth rate, Fig. 1b). Mechanistic models that explicitly take into account the global 
nonlinear relationship between the measured (observed) phenotype and the biophysical 
basis of mutation effects have advantages over both linear models in terms of generaliz-
ability and DL models in terms of interpretability.

Although MoCHI imposes no restrictions on the choice/definition of the global epista-
sis function, equilibrium thermodynamic models provide a useful approximation of pro-
tein states under natural conditions. At thermal equilibrium, the Boltzmann distribution 
relates the probability that a system will be in a given state k to the (Gibbs) free energy 
Gk of the state and the temperature of the system T :

where Z =
∑M

m=1e
−Gk/RT is the partition function—with the summation over all pos-

sible states M (e.g., distinct protein conformations and/or interactions)—and R is the 
gas constant. We first consider the simplest possible thermodynamic model of protein 
binding, i.e., a two-state unbound/bound model, where we denote the sum of energies of 

pk =
1

Z
e
−

Gk
RT
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all possible unbound states with the reference value of zero (i.e., Gu = 0 ), the fraction of 
molecules in the bound state is then:

where Z = 1+ e−
�Gb
RT  and �Gb is the energy difference between unbound and bound 

states. Importantly, �Gb implicitly depends upon the AA sequence. Figure 2a summa-
rizes the experimental details of a DMS study in which mutations were introduced in 
FOS and JUN amino acid sequences, two disordered proto-oncoproteins that inter-
act through their leucine zipper domains forming the AP-1 transcription factor com-
plex upon heterodimerization [41]. In leucine zippers, like FOS and JUN, dimerization 
occurs through the formation of an alpha-helical coiled coil in a two-state process, i.e., 
the proteins fold upon binding and there exists no significant population of structured 
monomers [42, 43] (Fig. 2a). The effects of mutation combinations on protein binding 
were quantified by “BindingPCA” (bPCA), a method in which the proximity of two frag-
ments of a reporter enzyme (DHFR) that are fused to the two respective proteins under 
study is coupled to yeast cell growth.

Figure  2c indicates a particular instance of the general genotype–phenotype frame-
work (Fig. 1b), where a neural network is used to fit a two-state thermodynamic model 
(Fig. 2c, global epistasis function, g ) to the bPCA data (Fig. 2c, bottom, target variable, 
y ), thereby inferring the causal changes in free energy of binding (Fig.  2b, left inset, 
weight coefficients) associated with single AA substitutions (Fig. 2c, top, input values, 
x ). Importantly, we assume that these energies are additive, meaning that the total free 
energy change ( ��G ) of an arbitrary variant i (of any mutational order, e.g., double 
mutant) relative to the wild-type sequence is simply the sum over residue-specific ener-
gies ( ��g ) corresponding to all constituent individual (i.e., lowest order) AA changes:

where ��gb,j denotes the binding free energy change of constituent single AA substitu-
tion j of variant i relative to the wild type. We can therefore express the absolute (rather 
than relative) free energy of binding of an arbitrary variant i as:

where �Gb,0 is the binding free energy of the wild type.
The only configuration information strictly required to run MoCHI is a plain text 

model design file that defines the neural network architecture, and which additionally 
includes a path to the pre-processed DMS data for each observed phenotype (table 
rows), including fitness and empirical error estimates as provided by tools such as 
Enrich2 [45], DiMSum [46], mutscan [47], or Rosace [48] (see the “Methods” sec-
tion). MoCHI conveniently handles all low-level data manipulation tasks required for 
model fitting including the definition of training-test-validation data splits and 1-hot 
encoding of sequence features from AA sequences. By default, MoCHI optimizes 
the trainable parameters of the neural network using the PyTorch machine learning 

pb =
e−

�Gb
RT

Z
=

1

1+ e
�Gb
RT

��Gb,i =
∑n

j=1
��gb,j

�Gb,i = �gb,0 +
∑n

j=1
��gb,j
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framework and stochastic gradient descent on a loss function based on a weighted 
and regularized form of mean absolute error (see the “Methods” section). Optionally, 
the user can restrict model fitting to randomly downsampled subsets of the data and/
or variants of a given mutation order, an example of which is presented in Extended 

Fig. 2 Fitting biophysical models to DMS data with MoCHI. a Library design and yeast growth-based 
functional assay used to interrogate the effects of single AA substitutions on the heterodimerization of FOS 
and JUN via BindingPCA (bPCA) [41]. Red cross, yeast growth defect; DHF, dihydrofolate; THF, tetrahydrofolate. 
b Library design and mRNA display-based in vitro assay used to interrogate the effects of all single and 
double AA substitutions in the IgG-binding domain of protein G (GB1) [31]. c, d Two- and three-state 
equilibria, thermodynamic models, neural network architectures, and corresponding MoCHI model design 
tables used to infer the binding and folding free energy changes (∆∆Gf, ∆∆Gb) of the mutant libraries 
depicted in panels a and b, respectively. ∆Gb, Gibbs free energy of binding; ∆Gf, Gibbs free energy of folding; 
Kb, binding equilibrium constant; Kf, folding equilibrium constant; c, standard reference concentration; 
pb, fraction bound; g, nonlinear function of ∆Gb (panel c) or ∆Gf and ∆Gb (panel d); R, gas constant; T, 
temperature in Kelvin. e Nonlinear relationship (global epistasis) between observed BindingPCA fitness 
and inferred changes in free energy of binding. Thermodynamic model fit shown in red. f Performance of 
two-state biophysical model. R2 is the proportion of variance explained. g Nonlinear relationship between 
observed mRNA display fitness and inferred changes in free energies of binding and folding. h Performance 
of three-state biophysical model. i Violin plots showing the distributions of binding free energy changes for 
mutations in different structural/heptad positions in the FOS-JUN heterodimer (see legend). j Comparisons 
of confident model-inferred free energy changes to previously reported in vitro measurements [31, 44]. 
Error bars indicate 95% confidence intervals from a Monte Carlo simulation approach (n = 10 experiments). 
Pearson’s r is shown
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Data Fig.  3a of Ref. [15]. Model coefficients can also be randomly downsampled. 
MoCHI estimates the confidence intervals of model-inferred coefficients and free 
energies using a Monte Carlo simulation approach (see the “Methods” section).

This extremely simple thermodynamic model provides an excellent fit to the FOS-
JUN data, faithfully capturing the nonlinear relationship (global epistasis) between 
changes in binding free energy and the observed phenotype scores (Fig.  2e) and 
explaining nearly all of the variance in bPCA fitness (Fig. 2f,  R2 = 0.94 on held out test 
data), strongly supporting the assumption that most changes in free energy of binding 
are additive in double amino acid substitutions. Plotting the distributions of binding 
free energy changes separately for residues in the core, solvent-exposed surface (far 
side) and salt bridge positions shows that mutations in core positions comprising the 
hydrophobic binding interface between FOS and JUN subunits tend to have strongly 
destabilizing effects as expected (Fig. 2i). Salt bridge positions are also more biased 
towards disrupting binding than far side mutants, consistent with their structural role 
in stabilizing the heterodimer (Fig. 2i).

These results show that MoCHI can fit simple mechanistic models to DMS data, 
but to what extent do they reflect biophysical reality? How accurate are the MoCHI-
inferred free energy changes? We address this question using previously published 
in  vitro DMS data for the binding of nearly all single and double amino acid sub-
stitutions of protein G domain B1 (GB1) to IgG-Fc [31, 44] (Fig.  2b). For globular 
proteins like GB1, protein binding can be most simply modeled as a three-state equi-
librium with unfolded, folded, and bound energetic states, where mutations can alter 
the concentration of the bound complex via their effects on fold stability, binding 
affinity, or both (Fig. 2d). The probability of the unfolded and bound state is assumed 
to be negligible. Although many different combinations of folding and binding free 
energy changes could in theory result in the same observed binding phenotype of a 

Fig. 3 Fitting biophysical models to DMS data assaying mutant effects on multiple phenotypes. a Library 
design and doubledeepPCA (ddPCA) functional assays (BindingPCA, bPCA and AbundancePCA, aPCA) used 
to interrogate the effects of all single and a subset of double AA substitutions on the cellular abundance 
and binding of PSD95-PDZ3 to its cognate ligand (CRIPT) [15, 16]. Green tick mark, yeast growth; red cross, 
yeast growth defect; DHF, dihydrofolate; THF, tetrahydrofolate. b Identical to panel a except ddPCA was 
applied to the oncoprotein KRAS to interrogate the effect of mutations on interactions with six different 
binding partners [15]. c, d Three-state equilibria, thermodynamic models, neural network architectures, and 
corresponding MoCHI model design tables used to infer the binding and folding free energy changes (∆∆Gf, 
∆∆Gb) of the mutant libraries depicted in panels a and b, respectively. Target variable predictions for the 
three library blocks assaying KRAS-RAF1 bPCA are depicted; the additional 15 (5 × 3) observed phenotypes 
corresponding to the other 5 binding partners are not shown for simplicity. ∆Gb, Gibbs free energy of 
binding; ∆Gf, Gibbs free energy of folding; Kb, binding equilibrium constant; Kf, folding equilibrium constant; 
c, standard reference concentration; pb, fraction bound; pf, fraction folded;  gf, nonlinear function of ∆Gf;  gfb 
nonlinear function of ∆Gf and ∆Gb; R, gas constant; T, temperature in Kelvin. e Nonlinear relationship between 
observed bPCA fitness and inferred changes in free energies of binding and folding. Thermodynamic 
model fit shown in red. f Performance of three-state biophysical model predictions of bPCA fitness. R2 is the 
proportion of variance explained. g, h Similar to panels e and f but corresponding to KRAS-RAF1 bPCA fitness 
for block 1. i Nonlinear relationship between observed aPCA fitness and inferred changes in free energy of 
binding. j Performance of two-state biophysical model predictions of aPCA fitness. k, l Similar to panels e and 
f but corresponding to KRAS aPCA fitness for block 1. m, n Comparisons of confident model-inferred free 
energy changes to previously reported in vitro measurements [49–51]. Error bars indicate 95% confidence 
intervals from a Monte Carlo simulation approach (n = 10 experiments). Pearson’s r is shown

(See figure on next page.)
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particular variant, the high depth of double mutant data (singles measured in differ-
ent genetic backgrounds) allows biophysical ambiguities to be resolved [1, 52].

The three-state thermodynamic model fit by MoCHI accurately predicts the bind-
ing fitness of double mutants held out during training (R2 = 0.94, Fig. 2g, h), again 
suggesting that mutation effects overwhelmingly combine additively at the energetic 
(biophysical trait) level. We also find excellent agreement between the MoCHI-
inferred folding free energy changes and in vitro measurements [31, 44] (Pearson’s 
r = 0.8–0.92, Fig. 2j), similar to previous analyses [7, 52].

Fig. 3 (See legend on previous page.)
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Multimodal DMS data

The architectural flexibility of neural networks is a major advantage when dealing 
with more complicated DMS experimental designs. MoCHI can easily be configured 
to fit models to multiple DMS datasets reporting on the same or related phenotypes 
in which different or partially overlapping variant libraries are assayed.

We have shown previously that an approach called “multidimensional mutagene-
sis”—whereby the effects of mutations are quantified for multiple molecular pheno-
types and in multiple genetic backgrounds—is an efficient experimental strategy to 
infer en masse the causal biophysical effects of mutations [15, 16]. In a similar way 
that double mutants are useful to constrain mechanistic models [52] (Fig. 2), measur-
ing the effects of mutations on multiple phenotypes helps to disentangle the underly-
ing free energy changes [1].

In Fig.  3, we summarize the results of applying a specific implementation of this 
approach (doubledeepPCA or ddPCA) to map the energetic and allosteric landscapes 
of two well-studied proteins. The effects of all singles and a “shallow” subset of dou-
ble AA substitutions were quantified on binding and intracellular concentration of 
the free proteins using bPCA and a second related assay (AbundancePCA, aPCA) in 
which only one of the interacting proteins is expressed, with the other DHFR frag-
ment being highly expressed (Fig. 3a,b). In aPCA, functional DHFR is reconstituted 
by random encounters, and yeast growth is proportional to the intracellular concen-
tration of the fusion protein over more than three orders of magnitude [53]. Whereas 
mutations destabilizing either binding or folding result in a growth defect in bPCA, 
only those affecting fold stability are detrimental to cell growth in aPCA (Fig. 3a, b).

The experimental design, thermodynamic model, and neural network architecture 
corresponding to ddPCA applied to the third PDZ domain from the adaptor protein 
PSD95 (also known as DLG4) binding to the C-terminus of the protein CRIPT is 
depicted in Fig. 3a, c [15]. In MoCHI, additional measured phenotypes are configured 
by simply adding extra rows in the model design file, in this case specifying a neural 
network architecture where mutation effects on folding free energy are captured in 
a single shared biophysical trait ( �Gf  ) that underlies predictions of both aPCA and 
bPCA fitness scores (Fig.  3c). ddPCA was subsequently applied to assay the effects 
of > 26,000 mutations in the oncoprotein KRAS on abundance and binding to six dif-
ferent interaction partners: three KRAS effector proteins RAF1, PIK3CG, and RAL-
GDS, the guanine nucleotide exchange factor (GEF) SOS1, and two DARPins, K27 
and K55 [16]. KRAS mutagenesis libraries were constructed in three consecutive par-
tially overlapping blocks along the full protein sequence and each assayed indepen-
dently by aPCA and bPCA resulting in a total of 7× 3 = 21 DMS datasets. Figure 3d 
showcases the capabilities of MoCHI in allowing models to be fit simultaneously to 
large numbers of DMS datasets, taking advantage of many independent measure-
ments to constrain the inferred folding and binding free energy changes.

Although DMS data from multiple experiments corresponding to the same meas-
ured phenotype can optionally be normalized to each other explicitly before mod-
eling, MoCHI obviates the need for this by inferring the parameters of an affine 
transformation between molecular phenotype and measured phenotype (Fig. 3d).
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For both proteins, MoCHI fits the DMS data very well and exhibits high predictive per-
formance on held out test data for bPCA (R2 = 0.83 and 0.91 for PSD95-PDZ3 binding 
to CRIPT and KRAS binding to RAF1 respectively, Fig. 3e–h) and aPCA (R2 = 0.76 and 
0.74 for PSD95-PDZ3 and KRAS respectively, Fig. 3i–l). The high correlations of inferred 
binding and folding coefficients with independent in  vitro measurements for PSD95-
PDZ3 [49, 50] (Pearson’s r = 0.7–0.89, Fig. 3m) and KRAS [51] (Pearson’s r = 0.95–0.98, 
Fig. 3n) validates MoCHI as a tool to quantify energetic terms from DMS data.

Furthermore, by analyzing the resulting energetic landscapes in the context of struc-
tural information, specific mutations and residues enriched for large effects on binding 
affinity despite their distance to the binding interface can be readily identified. In both 
PSD95-PDZ3 and KRAS, these maps reveal both known and novel allosteric sites [15, 
16]—representing the transmission of information spatially from one site to another. In 
addition to their biotechnological and medical value (for the prioritization of pockets for 
drug development), comprehensive energetic and allosteric maps provide deep insight 
into protein regulatory mechanisms.

Inferring the shape of global epistasis and pairwise genetic interactions

Although mechanistic models have advantages in terms of interpretability (as shown 
above), the causes of global epistasis are often not well understood. In these situations, 
MoCHI allows global nonlinearities to be estimated directly from DMS data. We use 
two previously published combinatorial DMS datasets to demonstrate that global and 
specific sources of epistasis can be correctly distinguished and inferred simultaneously 
without prior hypotheses. In the first study, the authors assayed the effects on splicing of 
all combinations of 12 mutations that occurred during the evolution of an alternatively 
spliced human exon, exon 6 of the FAS gene [38]. A minigene library of 210 × 3 = 3,072 
exon mutant sequences was transfected and expressed in HEK293 cells, whereafter FAS 
exon 6 inclusion levels were determined by RT-PCR and deep sequencing (Fig. 4a) [38].

To estimate global nonlinearities, MoCHI uses a sub-network composed of a sum of 
sigmoidal functions (see the “Methods” section), a bottleneck architecture previously 
used by others [7, 17, 18]. Each consecutive layer of the sub-network—by default a sin-
gle layer consisting of 20 neurons—performs a linear transformation of the outputs of 
the previous layer and then applies a sigmoid function to the result. Although this sub-
network consists of additional trained model weights, they simply specify the parame-
ters of a unidimensional nonlinear function g mapping mutation-induced changes in the 
inferred additive trait (fitness potential, φ ) to changes in the measured phenotype (exon 
inclusion level, Fig. 4a). Unlike the additive trait map f  (Fig. 1b) whose output φ depends 
on the specific identities of mutations (and combinations thereof ), the output of the 
global epistasis function g depends only on the magnitude of φ . Therefore, the shape of 
g is a reflection of the peculiarities of the measured phenotype and/or functional assay 
rather than the underlying genetics of the system (captured by f ).

The MoCHI-inferred nonlinear trend has a clear upper bound indicating that 
most assayed variants promote near-maximal exon inclusion and therefore further 
improvements in splicing efficiency have no (or very little) impact on measured 
inclusion fitness levels (Fig.  4c). This non-mechanistic model, which incorporates 
all 1st and 2nd order epistatic coefficients (pairwise genetic interactions), performs 
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extremely well on held-out test data (R2 = 0.97, Fig.  4d), and the lack of bias in 
the residuals suggest that global nonlinearities in the data have been adequately 
accounted for by the inferred trend (Additional file  1: Fig. S1a-c). The authors of 
the original study used a mechanistic model of splice site competition to model the 
FAS exon 6 DMS data, which revealed 7 significant pairwise interactions between 

Fig. 4 Simultaneous modeling of global and specific epistasis. a Library design of all combinations of 12 
mutations separating FAS exon 6 in primate species, functional assay reporting on exon inclusion in HEK293 
cells by mRNA sequencing [38] and neural network architecture and corresponding MoCHI model design 
tables used to infer the shape of global epistasis due to splice-site competition. Both 1st and 2nd order 
epistatic coefficients as well as a sub-network ( g(φ) ) composed of a sum of sigmoids (see the “Methods” 
section) to infer unidimensional global epistasis are shown. b Library design of all combinations of 14 
mutations separating the tRNA arginine-CCU tRNA (tRNA-Arg(CCU)) in post-whole-genome duplication 
yeast species, S. cerevisiae growth competition assay reporting on cellular fitness [34] and neural network 
architecture used to analyze this DMS dataset (bidimensional global epistasis). Red cross, yeast growth defect. 
c Inferred nonlinear relationship between observed inclusion fitness and the underlying additive trait ( φ ). d 
Performance of 2nd order MoCHI model predictions of inclusion fitness. e Nonlinear relationship between 
observed cellular fitness and inferred changes in additive traits φ1 and φ2 (see panel b). Sum of sigmoids 
model fit shown in red. f Performance of 2nd order MoCHI model predictions of cellular fitness as a function 
of mutations in the tRNA-Arg(CCU). g The magnitude of pairwise genetic interaction terms (2nd order 
coefficients) versus linear sequence distance separating the individual mutated positions in FAS exon 6. Red 
points indicate the top specific pairwise genetic interactions as described in [38] (see inset). h Correlation 
between all 1st and 2nd order coefficients from a non-mechanistic model where global epistasis was inferred 
directly from the data (panel a) to those from a mechanistic model of splicing competition [38] (see the 
“Methods” section). i Comparison of model coefficients (1st and 2nd order, see legend and panel j) between 
inferred additive traits φ1 and φ2 . Genetic interaction terms (2nd order coefficients) potentially restoring 
Watson–Crick base-pair interactions (see panel j) are indicated in red. Interactions between mutations in 
proximal positions (within 5 bp) that compensate individual changes in G/C content are indicated in yellow. 
The top 5 terms for each additive trait are labeled. j Secondary structure of S. cerevisiae tRNA-Arg(CCU) 
indicating variable positions (closed circles) combinatorially mutated in the DMS experiment described in 
panel b. Three Watson–Crick base pairing (WCBP) interactions involving pairs of these positions ([1, 71], [2,70] 
and [6,66]) are indicated in red. Two proximal G/C compensating interactions are indicated in yellow
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mutations in neighboring positions [38]. The proximity of interacting mutations is 
likely due to their co-occurrence within splicing factor motifs.

Does the non-mechanistic MoCHI model recover these same findings? Compar-
ing the magnitude of 2nd order coefficients to linear distance in the exon sequence 
for the model in Fig. 4a recapitulates these results where proximal mutations tend to 
be strongly coupled (Fig. 4g). The top 5 pairwise interactions all involve mutations 
within 5 bp in the linear sequence and the 7 previously reported significant pairwise 
interactions all occur within the top 11 in the non-mechanistic model (Fig. 4g, see 
inset). Lastly, we used MoCHI to fit a mechanistic model of splicing competition to 
the same data (see the “Methods” section), and direct comparison of the inferred 
coefficients between the two models shows that they are highly correlated (Pear-
son’s r = 0.98, Fig. 4h, Additional file 1: Fig. S1e-h). These results demonstrate that 
MoCHI can simultaneously account for both global and specific epistasis even in the 
absence of a mechanistic hypothesis. Importantly, coefficients from a linear model 
do not recapitulate these results (Additional file 1: Fig. S1d,h–l).

We performed a similar analysis on a second DMS dataset where the authors 
assayed the effects of mutation combinations in a conditionally essential yeast gene 
(tRNA-Arg(CCU)) on cell growth (Fig.  4b). The library was designed to cover all 
5184 ( 26 × 34 ) combinations of the 14 nucleotide substitutions observed in ten 
positions in post-whole-genome duplication yeast species [34]. First, we specified 
a model with unidimensional global epistasis and up to 2nd order epistatic coeffi-
cients. This model explains roughly 50% of total fitness variance (R2 = 0.51, Addi-
tional file 1: Fig. S2a).

However, with two additive traits (bidimensional global epistasis), model perfor-
mance on held-out data is significantly improved (Fig.  4b, e, f,  R2 = 0.68). In this 
model, mutations and pairwise interactions have independent effects on both φ1 
and φ2 , and the molecular phenotype is given by p = g(φ1,φ2) , where g  is a nonlin-
ear surface inferred from the data (Fig. 4e, see the “Methods” section). We fit mod-
els allowing for either up to third-order interactions or higher numbers of additive 
traits using both MoCHI and LANTERN [20], but performance was not improved 
in all cases (Additional file  1: Fig. S2b-f ). Comparing coefficients between the two 
inferred additive traits ( φ1 and φ2 ) shows that whereas first-order terms are over-
whelmingly detrimental (Fig. 4i, black points), many of the top pairwise terms on φ1 
are likely compensatory, involving pairs of mutations that restore Watson–Crick (or 
wobble) base pairing interactions that are disrupted when introduced individually 
(Fig. 4i, red points, Fig. 4j, red lines). On the other hand, the largest positive pairwise 
interactions on φ2 involve pairs of mutations that compensate for local changes in 
GC content (Fig. 4i, yellow points, Fig. 4j, yellow lines).

The improved performance of this model which separates interaction terms with 
distinct structural context into two different additive traits suggests two dominant 
sources of global epistasis underlying mutation effects on the measured phenotype, 
i.e., competent tRNA structure and function. These results are consistent with the 
authors’ own analyses [34] although they did not attempt to control for multidimen-
sional global nonlinearities in the data and were therefore unable to disentangle the 
two different mechanistic bases of pairwise mutation effects as we do here.
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Sparse models incorporating higher-order epistatic terms

A major open question in the field of synthetic biology is how important genetic inter-
actions beyond second-order (pairwise) terms are for the task of molecular design and 
genetic prediction. In contrast to pairwise genetic interactions, quantifying higher-order 
interactions is more experimentally challenging and hence their abundance and origin 
is less well understood. Various methods have been developed to directly calculate epi-
static coefficients from phenotypic measurements, but one particular representation, 
termed background-averaged (or ensemble) epistasis, has been suggested to be the most 
informative for constructing sparse models [32].

Recent work has shown that encoding (or embedding) sequences in this alternative 
basis and fitting penalized regression models allows accurate genetic prediction even in 
the presence of a limited number of (random) phenotypic measurements [35]. The math-
ematical formalism of background-averaged epistasis handling binary genetic sequences 
(with a maximum of two alleles per position) [54] relies on the Walsh-Hadamard trans-
form [55, 56] but has been recently extended to handle genetic landscapes of arbitrary 
shape and complexity [33, 57]. MoCHI can optionally be configured to use this theory, 
and we demonstrate its functionally by way of reanalyzing a previously published combi-
natorial DMS dataset (Fig. 5a–d).

In this study, the authors used a bacterial system and FACS-seq to quantify the flu-
orescence brightness of all 213 = 8, 192 mutants linking red and blue variants of the 
Entacmaea quadricolor fluorescent protein in order to examine epistasis up to the 13th 
order [35] (Fig. 5a, b). An analysis of background-averaged epistasis using both epista-
sis decomposition [32] and L1 (Lasso) penalized regression [35] suggests the existence 
of significant higher-order specific epistasis but that remarkably few interactions are 
required to predict the phenotypic measurements with high accuracy. We conducted 
a similar analysis using MoCHI by embedding amino acid sequence features in the 
background-averaged epistasis basis (as opposed to one-hot encoding) and including 
up to 6th-order epistatic terms, but without global epistasis, i.e., a penalized multiple 
linear regression where g(φ) = φ (Fig. 5a). The results recapitulate the reported spar-
sity in epistatic coefficient space, with the model explaining almost all phenotypic vari-
ance (R2 = 0.93, Additional file 1: Fig. S3a), while the vast majority of all possible 4096 
terms have values near zero (Fig. 5c). Indeed, a new model including only the top 100 
coefficients ranked by magnitude—including pairwise and higher-order terms up to 
5th order (Fig. 5c, inset)—exhibits only a modest reduction in predictive performance 
(R2 = 0.91, Fig. 5d).

Therefore, a relatively low number of higher-order epistatic terms are sufficient to 
explain the observed variance in brightness fitness, but are they required? For com-
parison, we fit a non-mechanistic model to the same data, allowing unidimensional 
global epistasis and incorporating all first and second-order epistatic coefficients. We 
were surprised to find that MoCHI recovers a strong global nonlinearity in the data, 
suggesting that brightness fitness has finite upper and lower limits dictated by either 
the underlying protein biophysics of fluorescence and/or due to specific technical 
constraints/biases intrinsic to the experimental measurement procedure (Fig. 5e). The 
observation that this comparatively simple model explains more phenotypic variance 
(R2 = 0.94) with fewer epistatic terms (92 coefficients, Fig. 5f )—none of them beyond 
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second-order—suggests that there is likely very little, if any, detectable higher-order 
epistasis in this dataset when properly accounting for global epistasis.

Inspecting second-order terms in this model reveals that the top 9 terms all either 
involve interactions between mutations of the chromophore (L63) and mutations 

Fig. 5 Sparse models incorporating specific higher-order epistatic terms. a Library design of all combinations 
of 13 mutations separating red and blue variants of the fluorescent Entacmaea quadricolor protein eqFP611, 
functional assay reporting on fluorescence brightness in bacteria by FACS-seq [35] and neural network 
architecture and corresponding MoCHI model design tables used to fit a model incorporating up to 6th 
order background-averaged epistatic coefficients (see the “Methods” section). b Crystal structure of the blue 
variant (TagBFP) of eqFP611 (PDB: 3M24) and 13 positions (12 shown) that differ in the red variant (mKate2) 
that were mutated in the DMS experiment described in [35]. c Epistatic coefficients (all orders) ranked by 
magnitude where the epistatic order of the top 100 coefficients is shown (see inset). d Performance of sparse 
MoCHI model incorporating the top 100 epistatic coefficients including terms up to 6th order. e Inferred 
nonlinear relationship between observed brightness fitness and the underlying additive trait ( φ ) using only 
1st and 2nd order epistatic terms. f Performance of MoCHI model incorporating global epistasis and all 92 
1st and 2nd order epistatic coefficients. g Crystal structure of eqFP611 (PDB: 3M24) showing chromophore 
(yellow) and proximal mutated residues (green). Note: labeled as L63 is the N-[(5-hydroxy-1H-imidazole-2-yl)
methylidene]acetamide chromophore, which is formed by the post-translational modification of the 
tripeptide Leu63-Tyr64-Gly65 [58]. h The magnitude of pairwise genetic interaction terms (2nd order 
coefficients) versus inter-residue distance (minimal side-chain heavy atom distance in 3D space). The top 
5 coefficients are labeled. Yellow points indicate coupling terms corresponding to direct physical contacts 
(minimal side chain heavy atom distance < 5 Å) involving the chromophore. Green points indicate coupling 
terms involving pairs of chromophore-proximal residues (see panel g). Error bars indicate 95% confidence 
intervals from a Monte Carlo simulation approach (n = 10 experiments)
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at physically contacting residues (minimal side chain heavy atom distance < 5  Å) or 
interactions between these chromophore-proximal residues (Fig.  5g, h). This illus-
trates the importance of taking into account global epistasis in model fitting and the 
utility of MoCHI when it comes to building both highly accurate and interpretable 
genotype–phenotype models. One caveat is that correctly inferring global epistasis 
requires the availability of sufficient numbers of measured variants and, practically, 
in situations of data sparsity, incorporating higher-order epistatic terms may result in 
models with improved performance (Additional file 1: Fig. S3b-e).

Discussion
Here, we have presented MoCHI, a flexible open-source package for fitting user-speci-
fied mechanistic models to deep mutational scanning data and for simultaneously quan-
tifying pairwise and higher-order genetic interactions between mutations (epistasis). 
MoCHI offers a number of important advantages over previous general-purpose soft-
ware tools for modeling DMS data [7, 19, 20], as summarized in Table 1. Nn4dms [19], 
ECNet [22], DeepSequence [23], Tranception [24], GVP-MSA [21], and related methods 
[25] fit non-mechanistic (black box) models which present major challenges for interpre-
tation. LANTERN [20] maps DMS data into low-dimensional feature space facilitating 
interpretation but does not fit the parameters of specified biophysical models or calcu-
late specific interactions between variants. MAVE-NN [7] can fit biophysically interpret-
able models to DMS data but does not currently handle multidimensional (multimodal) 
phenotypes nor calculate higher-order specific interactions between variants. MoCHI 
addresses these limitations allowing users to fit mechanistic models to multidimensional 
phenotypic data. MoCHI can also learn global nonlinearities of arbitrary dimension 
from the data, if required.

Another key feature of MoCHI is its ability to simultaneously infer global and specific 
epistasis, including both pairwise and higher-order terms. We have illustrated above 
how this can result in much simpler—but still highly predictive—models than previous 
approaches and models where both the global nonlinearities and specific genetic inter-
actions between mutations are mechanistically interpretable. For example, re-analysis 
of a high-dimensional fluorescent protein combinatorial mutagenesis dataset above 
allowed us to show that when global nonlinearities are correctly accounted for, higher-
order genetic interactions are no longer required for accurate genetic prediction and 
protein engineering.

Based on our analyses, we expect that accurate inference of biophysical parameters 
from DMS data typically requires at least ten times more experimental measurements 
(e.g., from independent genetic backgrounds) than model coefficients. However, the 
impact of experimental noise, the number of phenotypes (in the case of multimodal 
learning), and the dimensionality of any inferred global nonlinearities on any such rule 
of thumb should be investigated in the future. In general, we suggest users be guided by 
parsimony and to favor models with fewer parameters. Identifying systematic biases in 
the residuals (difference between observed and fitted values) is a useful step in model 
evaluation. Additionally, metrics such as the Akaike information criterion (AIC) can be 
used to compare model quality.
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Conclusions
The combination of MoCHI and DMS allows biophysical measurements to be made at 
unprecedented scale. Indeed, MoCHI has allowed us to interrogate the fundamental 
genetic architecture of proteins, revealing it to be both simple and intelligible and allow-
ing accurate prediction of the effects of combining many different mutations using fully 
interpretable thermodynamic models [36]. The combination of mutational scanning and 
model fitting is also allowing the systematic mapping of allosteric sites in proteins. This 
will allow the comprehensive identification of genetically validated surface pockets to 
target to inhibit or activate many different proteins important for medicine and biotech-
nology [15, 16].

Methods
Data management

MoCHI requires a table describing the neural network model design (“model_design”) 
and including file paths to the DMS data for each measured phenotype. Figures 2, 3, 4, 
and 5 include examples of model design files for different modeling projects. Rows in 
the model design file indicate different observed phenotypes to be jointly modeled and 
columns specify:

• trait: One or more free text, comma-separated additive trait names
• transformation: A global epistasis function
• phenotype: A free text phenotype name
• file: A file path to variant fitness and error estimates for the corresponding phenotype

DMS data files for each phenotype include sequence variant strings (“aa_seq” or “nt_
seq”), together with their observed/measured phenotype scores (“fitness”) and associated 
empirical error estimates (“sigma”). “MochiData” objects handle data pre-processing 
of one or more DMS datasets for each phenotype (“FitnessData”) and one-hot encod-
ing sequence features including specified interaction terms (“max_interaction_order,” 
Fig. 1c).

The modeling task can be restricted to a subset of variants of a given mutation order 
(“order_subset”) and/or input variants can be downsampled to a given number or frac-
tion of the total available if desired (“downsample_observations”). The user can also 
specify a subset of epistatic terms that should be fit per additive trait if required (“fea-
tures”), or alternatively, coefficients can be randomly sampled without replacement up 
to a given number or fraction of the total available (“downsample_interactions”). An 
example of downsampling is presented in Extended Data Fig. 3a of Ref. [15].

MoCHI defines data splits for K-fold cross-validation according to the specified num-
ber of folds of equal size as well as the validation:test set size ratio. By default, a random 
30% of variants is held out during model training, with 10% representing the test data 
(“k_folds = 10”) and 20% representing the validation data (“validation_factor = 2”). Vali-
dation data is used to evaluate training progress and optimize hyperparameters (batch 
size, learning rate, L1 and L2 regularization penalties). Test data is used to assess final 
model performance. The held-out (test and validation) data can also be restricted to a 
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user-specified subset of variants of a given mutation order if desired (“holdout_orders”). 
In order to capture the uncertainty in fitness estimates, the training data is replaced with 
a random sample from the fitness error distribution of each variant (“training_resam-
ple = True”). The validation and test data is left unaltered. Finally, embedding sequence 
features in the background-averaged (ensemble) epistasis feature space is performed as 
previously described [33], if required (“ensemble = True”).

Neural network architecture

“MochiModel” objects make use of the PyTorch “ModuleList” class to create the neu-
ral network architecture defined in the model design table on-the-fly. The number of 
additive trait layers is determined by the number of unique string values in the “trait” 
column, the number of linear output layers is given by the number of model design table 
rows, and the manner in which these layers are connected is defined by the global epista-
sis functions specified in the “transformation” column (Fig. 1b). A key novelty of MoCHI 
is that it allows multiple phenotype measurements for the same (or overlapping) variant 
libraries to be jointly modeled. Rather than modeling a multivariate output with poten-
tial missing values, for each input sequence predictions are made for all phenotypes, and 
the final univariate output vector is then selected to match the source phenotype repre-
senting the target variable during optimization.

MoCHI provides a handful of global epistasis (activation) functions that can be used 
out-the-box (“Linear,” “ReLU,” “SiLU,” “Sigmoid,” “SumOfSigmoids,” “TwoStateFraction-
Folded,” etc.), but users are also able to supply their own custom uni- or multi-dimen-
sional transformations in a python script following a template described in the repository 
documentation and supplied to MoCHI during runtime (“custom_transformations”).

In order to infer global epistasis from the data, similar to previous work [7, 17, 18], by 
default MoCHI implements the “SumOfSigmoids” function as a sub-network consisting 
of one input layer, in which the number of neurons is determined by the corresponding 
additive trait dimensionality (1 neuron for unidimensional global epistasis, 2 for bidi-
mensional global epistasis etc.), a single hidden layer (20 neurons), and one output layer 
(one neuron). All layers in the sub-network have sigmoidal activations:

The size and number of hidden layers can be customized (“sos_architecture”) as well as 
the activation function of the output layer (“sos_outputlinear”).

MoCHI assumes that nonlinearities (global epistasis) arise only in the relationship 
between biophysical parameters (free energies) and the molecular phenotype of interest. 
Nonlinearities at the level of the experimental assay can be included in the formulation 
of the mechanistic model (as a user-defined custom transformation) if these are known 
or experimentally characterized. In this way, the global epistasis model would potentially 
capture all sources of global epistasis. Nonlinearities at the level of the DMS assay can 
also potentially be inferred from the data (see Fig. 5e), but note that in this case it is not 
possible to identify their source, i.e., distinguish global epistasis introduced by the DMS 
assay from that introduced by the molecular phenotype. Inference of constituent nonlin-
ear functions in a serial transformation represents an underdetermined problem.

outi =
1

1+ e−inputi



Page 20 of 26Faure and Lehner  Genome Biology          (2024) 25:303 

Empirical noise model

MoCHI performs model inference accounting for empirical noise ( σn ) in observed phe-
notype estimates ( yn ) as supplied by the user and provided by tools such as Enrich2 
[45], DiMSum [46], mutscan [47], or Rosace [48]. MoCHI can be configured to train the 
parameters of genotype–phenotype models assuming a Gaussian noise model:

where ŷn is the predicted phenotype score of variant n . When empirical error esti-
mates are not available or measurement noise is negligible, the user can supply arbitrary 
small “dummy” fitness errors (e.g., 1e-6), which will effectively disable empirical noise 
modeling.

Loss function

Let θ = (θf , θg , θh) denote the parameters of the genotype–phenotype model 
F = h(g(f (x)) , where θf  , θg and θh represent the parameters of the additive trait map, 
global epistasis function and affine transformations, respectively, as described in the 
first section of the Results. MoCHI optimizes the parameters θ of the neural network 
using stochastic gradient descent on a loss function given by:

where Llike is proportional to the negative log likelihood of the model:

and N  is the batch size. Lreg provides for regularization of θf  , the parameters of the addi-
tive trait map:

where �1 and �2 are the L1 and L2 regularization penalties, respectively. So, in the case 
of a Gaussian noise model (“loss_function_name = GaussianNLL”), the loss function is 
given by:

where c is invariant in θ as it is simply a function of user-supplied empirical noise 
estimates:

MoCHI can alternatively use a loss function based on a weighted and regularized 
form of mean absolute error (“loss_function_name = WeightedL1”) as described pre-
viously [15, 16]:
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1√
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n
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which has a similar form to that in the case of a Gaussian noise model but is expected 
to be less sensitive to outliers in observed phenotype estimates and is therefore the 
default option. In order to penalize very large free energy changes (typically associ-
ated with extreme fitness scores), by default �2 is set to 10−6 (“l2_regularization_fac-
tor = 0.000001”) representing light regularization.

Model training

MoCHI performs a grid search over the supplied hyperparameter space defined by sup-
plied lists of batch sizes (“batch_size”), learning rates (“learn_rate”) and L1 (“l1_regu-
larization_factor”) and L2 (“l2_regularization_factor”) regularization penalties. Optimal 
hyperparameters are defined as those resulting in the smallest validation loss after 100 
training epochs (“num_epochs_grid = 100”).

By default, models are then trained for a maximum of 1000 epochs (“num_
epochs = 1000”) using the Adam optimization algorithm with an initial learning rate of 
0.05 (“learn_rate = 0.05”). MoCHI reduces the learning rate exponentially (“scheduler_
gamma = 0.98”) if the validation loss has not improved in the most recent ten epochs 
compared to the preceding ten epochs. In addition, MoCHI stops model training early 
(“early_stopping = True”) if the WT free energy terms over the most recent ten epochs 
have stabilized (standard deviation ≤ 10−3).

Uncertainties in model coefficients

For mechanistic biophysical models, free energies are calculated directly from 
model parameters as follows: �G = θRT  , where T = 303K  (“temperature = 30”) and 
R = 0.001987  kcalK−1   mol−1. MoCHI estimates the confidence intervals of model-
inferred coefficients and free energies using a Monte Carlo simulation approach. The 
variability of inferred free energy changes is calculated between separate models fit 
using data from (i) independent random training-validation-test splits and (ii) inde-
pendent random samples of fitness estimates from their underlying error distribu-
tions (if “training_resample = True”). Users should be cautious when interpreting 
and comparing inferred parameters between non-mechanistic models as they may 
be non-identifiable unless gauge and diffeomorphic modes of models are fixed, as 
explained previously [7].

Package structure

“MochiProject” objects manage an inference project/campaign, which may involve 
one or more inference tasks (“MochiTask”) and are the entry point for the command-
line tool or a typical workflow in a custom python script. “MochiTask” objects man-
age a collection of models (“MochiModel”) for a specific training task and input 
dataset (“MochiData”). For example, a grid search over three batch sizes followed by 
tenfold cross-validation with the optimal batch size would result in a collection of 13 
fitted models.

“MochiReport” objects output simple diagnostic plots to help users evaluate learn-
ing and model fit: (i) per-epoch loss curve for all cross-validation folds, (ii) observed 

L[θ ] = 1/N
∑N−1

n=0

∣∣yn − ŷn
∣∣σ−1

n + �1

∣∣∣∣θf
∣∣∣∣2 + �2

∣∣∣∣θf
∣∣∣∣2
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phenotype versus additive trait showing model fit for unidimensional epistasis, (iii) 
predicted versus observed model performance plot separately for each phenotype, 
(iv) per-epoch wild-type coefficient and residual plots for all additive traits.

DMS datasets

FastQ files from previously published DMS experiments were re-processed with DiM-
Sum v1.3 [46] (https:// github. com/ lehner- lab/ DiMSum) using default settings with 
minor adjustments, except for the eqFP611 fluorescent protein DMS experiment for 
which we used the author-processed fitness estimates (brightness scores) [35]. Experi-
mental design files and command-line options required for running DiMSum on these 
datasets are available on GitHub (https:// github. com/ lehner- lab/ mochi ms). In all cases, 
adaptive minimum Input read count thresholds based on the corresponding number of 
nucleotide substitutions (“fitnessMinInputCountAny” option) were selected in order to 
minimize the fraction of reads per variant related to sequencing error-induced “variant 
flow” from lower order mutants.

We used MoCHI v1.1 (https:// github. com/ lehner- lab/ MoCHI) to fit all models 
described here. Model design files and command-line options required for running 
MoCHI on these datasets are available on GitHub (https:// github. com/ lehner- lab/ mochi 
ms). For the FOS-JUN dataset [41], we retained variants with a mean of at least 50 reads 
in the Input, configured unidimensional global epistasis according to a 2-state thermo-
dynamic model, and held out a random subset of double aa mutants in the validation 
and test sets (“holdout_orders = 2”). The GB1 [31], PSD95-PDZ3 [15], and KRAS [16] 
datasets were analyzed as previously described [15, 16], i.e., fitting 3-state thermody-
namic models and holding out a random subset of double aa mutants in the validation 
and test sets.

For the FAS exon 6 dataset [38], we fit a non-mechanistic model including all first 
and second-order (pairwise) interaction terms (“max_int = 2”). We fit a mechanistic 
model similarly, except we supplied a custom global epistasis function to match that 
in the original publication to model percentage spliced-in (PSI) estimates for FAS 
exon 6:

where k6 and k7 are the splicing efficiency parameters for competing exons 6 and 7, 
respectively, and A is the molecular effect of mutation, i.e., individual mutations intro-
duce an A-fold change in splicing efficiency. To model the multiplicative (rather than 
additive) effect of mutation combinations, we replace A with eφ and set k6 to a reference 
value of unity ( k6 = 1):

where φ is the additive trait and k7 is a global parameter inferred during model training.
For the tRNA dataset [34], we retained variants with fitness estimates in all six bio-

logical replicates (4526 variants) and fit a model including all first and second-order 
(pairwise) interaction terms (“max_int = 2”) with bidimensional global epistasis (two 

inclusion fitness ∝ log(PSI) = log

(
k6A

k7 + k6A

)

inclusion fitness ∝ log(PSI) = log

(
eφ

k7 + eφ

)

https://github.com/lehner-lab/DiMSum
https://github.com/lehner-lab/mochims
https://github.com/lehner-lab/MoCHI
https://github.com/lehner-lab/mochims
https://github.com/lehner-lab/mochims
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additive traits) as a sum of sigmoids with two hidden layers in the corresponding sub-
network each having 20 neurons (“sos_architecture = 20,20”). For comparison, we fit 
models with either 3–5 inferred additive traits or including up to 3rd order interactions 
(“max_int = 3”).

For the eqFP611 dataset [35], we first fit a Lasso regression model (“l1_regulari-
zation_factor = 0.1,0.01,0.001”) including up to sixth-order (“max_int = 6”) back-
ground-averaged epistatic coefficients (“ensemble = True”) and no global epistasis. 
For the sparse model, we supplied the top 100 coefficients by magnitude to MoCHI 
(“features”) and fit a similar model without L1 regularization (“l1_regularization_
factor = 0”). For comparison, we fit an alternative model including all first and sec-
ond-order (pairwise) interaction terms (“max_int = 2”) with unidimensional global 
epistasis as a sum of sigmoids with two hidden layers in the corresponding sub-net-
work each having 20 neurons (“sos_architecture = 20,20”). Finally, we additionally fit 
these models using a randomly downsampled subset of 1000 variants from the origi-
nal DMS dataset (“downsample_observations = 1000”) to evaluate the effect of data 
sparsity on the results.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 024- 03444-y.

Additional file 1: Supplementary figures 1-3. Supplementary figures related to Fig. 4 and Fig. 5.

Additional file 2: Table S1. Supplementary Table 1. Inferred additive trait parameters (and free energies) from all 
models.

Additional file 3. Review history.

Acknowledgements
We thank all members of the Lehner Lab for helpful discussions and suggestions.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 3.

Authors’ contributions
B.L. and A.J.F. conceived the project. A.J.F. conducted software development and data analysis. A.J.F. wrote the first draft 
of the manuscript which was edited by B.L.

Funding
This work was funded by European Research Council (ERC) Advanced grant (883742), the Spanish Ministry of Science 
and Innovation (LCF/PR/HR21/52410004, EMBL Partnership, Severo Ochoa Centre of Excellence), the Bettencourt Schuel-
ler Foundation, the AXA Research Fund, Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR, 2017 SGR 1322), 
and the CERCA Program/Generalitat de Catalunya. A.J.F. was funded by a Ramón y Cajal fellowship (RYC2021-033375-I) 
financed by the Spanish Ministry of Science and Innovation (MCIN/AEI/https://doi.org/10.13039/501100011033) and the 
European Union (NextGenerationEU/PRTR).

Data availability
Source code of the general-purpose software tool (Python package) that is the topic of this manuscript (MoCHI v1.1) is 
available at https:// github. com/ lehner- lab/ MoCHI. All other source code including DiMSum and MoCHI configuration 
files, scripts to perform all downstream analyses of MoCHI-fitted models, and model comparisons to reproduce all figures 
in the manuscript is available at https:// github. com/ lehner- lab/ mochi ms. An archive of this repository is also publicly 
available on Zenodo at https:// zenodo. org/ doi/https:// doi. org/ 10. 5281/ zenodo. 13285 580 [59]. All software is released 
under the MIT License, which permits unrestricted use, modification, and distribution. Inferred additive trait parameters 
(and free energies) from all models are provided in Table S1. The FOS-JUN DMS data is available with GEO accession 
GSE102901 [60]; the GB1 DMS data is available in Table S2 of Olson et al. 2014 [31]; the PSD95-PDZ3 DMS data is available 
with GEO accession GSE184042 [61]; the KRAS DMS data is available with SRA accession PRJNA907205 [62]; the FAS exon 
6 DMS data is available with GEO accession GSE111316 [63]; the tRNA-Arg(CCU) DMS data is available with GEO acces-
sion GSE99418 [64]; the eqFP611 DMS data is available with SRA accession PRJNA560590 [65].

https://doi.org/10.1186/s13059-024-03444-y
https://doi.org/10.13039/501100011033
https://github.com/lehner-lab/MoCHI
https://github.com/lehner-lab/mochims
https://zenodo.org/doi/
https://doi.org/10.5281/zenodo.13285580


Page 24 of 26Faure and Lehner  Genome Biology          (2024) 25:303 

Declarations
Ethics approval and consent to participate
Ethical approval was not needed for the study.

Competing interests
A.J.F. and B.L. are founders, employees, and shareholders of ALLOX.

Received: 5 February 2024   Accepted: 21 November 2024

References
 1. Li X, Lehner B. Biophysical ambiguities prevent accurate genetic prediction. Nat Commun. 2020;11:4923.
 2. Bryant DH, Bashir A, Sinai S, Jain NK, Ogden PJ, Riley PF, et al. Deep diversification of an AAV capsid protein by 

machine learning. Nat Biotechnol. 2021;39:691–6.
 3. Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. Low-N protein engineering with data-efficient deep learning. 

Nat Methods. 2021;18:389–96.
 4. Freschlin CR, Fahlberg SA, Romero PA. Machine learning to navigate fitness landscapes for protein engineering. Curr 

Opin Biotechnol. 2022;75:102713.
 5. Kinney JB, Murugan A, Callan CG Jr, Cox EC. Using deep sequencing to characterize the biophysical mechanism of a 

transcriptional regulatory sequence. Proc Natl Acad Sci U S A. 2010;107:9158–63.
 6. Forcier TL, Ayaz A, Gill MS, Jones D, Phillips R, Kinney JB. Measuring cis-regulatory energetics in living cells using 

allelic manifolds. Elife. 2018;7:e40618. https:// doi. org/ 10. 7554/ eLife. 40618.
 7. Tareen A, Kooshkbaghi M, Posfai A, Ireland WT, McCandlish DM, Kinney JB. MAVE-NN: learning genotype-phenotype 

maps from multiplex assays of variant effect. Genome Biol. 2022;23:98.
 8. Mogno I, Kwasnieski JC, Cohen BA. Massively parallel synthetic promoter assays reveal the in vivo effects of binding 

site variants. Genome Res. 2013;23:1908–15.
 9. Belliveau NM, Barnes SL, Ireland WT, Jones DL, Sweredoski MJ, Moradian A, et al. Systematic approach for dissecting 

the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl Acad Sci U S A. 2018;115:E4796–805.
 10. Gertz J, Siggia ED, Cohen BA. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature. 

2009;457:215–8.
 11. Fiore C, Cohen BA. Interactions between pluripotency factors specify cis-regulation in embryonic stem cells. 

Genome Res. 2016;26:778–86.
 12. Adams RM, Mora T, Walczak AM, Kinney JB. Measuring the sequence-affinity landscape of antibodies with massively 

parallel titration curves. Elife. 2016;5:e23156. https:// doi. org/ 10. 7554/ eLife. 23156.
 13. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. Deep mutational scanning of SARS-CoV-2 

receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182:1295–310.e20.
 14. Phillips AM, Lawrence KR, Moulana A, Dupic T, Chang J, Johnson MS, et al. Binding affinity landscapes constrain 

the evolution of broadly neutralizing anti-influenza antibodies. Elife. 2021;10:e71393. https:// doi. org/ 10. 7554/ 
eLife. 71393.

 15. Faure AJ, Domingo J, Schmiedel JM, Hidalgo-Carcedo C, Diss G, Lehner B. Mapping the energetic and allosteric 
landscapes of protein binding domains. Nature. 2022;604:175–83.

 16. Weng C, Faure AJ, Escobedo A, Lehner B. The energetic and allosteric landscape for KRAS inhibition. Nature. 2023; 
Available from: https:// doi. org/ 10. 1038/ s41586- 023- 06954-0.

 17. Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS, Sharonov GV, et al. Local fitness landscape of the green 
fluorescent protein. Nature. 2016;533:397–401.

 18. Pokusaeva VO, Usmanova DR, Putintseva EV, Espinar L, Sarkisyan KS, Mishin AS, et al. An experimental assay of 
the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 
2019;15:e1008079.

 19. Gelman S, Fahlberg SA, Heinzelman P, Romero PA, Gitter A. Neural networks to learn protein sequence-function 
relationships from deep mutational scanning data. Proc Natl Acad Sci U S A. 2021;118:e2104878118. https:// doi. org/ 10. 
1073/ pnas. 21048 78118.

 20. Tonner PD, Pressman A, Ross D. Interpretable modeling of genotype-phenotype landscapes with state-of-the-art 
predictive power. Proc Natl Acad Sci U S A. 2022;119:e2114021119.

 21. Chen L, Zhang Z, Li Z, Li R, Huo R, Chen L, et al. Learning protein fitness landscapes with deep mutational scanning 
data from multiple sources. Cell Syst. 2023;14:706–21.e5.

 22. Luo Y, Jiang G, Yu T, Liu Y, Vo L, Ding H, et al. ECNet is an evolutionary context-integrated deep learning framework 
for protein engineering. Nat Commun. 2021;12:1–14.

 23. Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation capture the effects of muta-
tions. Nat Methods. 2018;15:816–22.

 24. Notin P, Dias M, Frazer J, Marchena-Hurtado J, Gomez A, Marks DS, et al. Tranception: protein fitness prediction with 
autoregressive transformers and inference-time retrieval. 2022; Available from: https:// arxiv. org/ abs/ 2205. 13760

 25. Hsu C, Nisonoff H, Fannjiang C, Listgarten J. Learning protein fitness models from evolutionary and assay-labeled 
data. Nat Biotechnol. 2022;40:1114–22.

 26. Domingo J, Baeza-Centurion P, Lehner B. The causes and consequences of genetic interactions (epistasis). Annu Rev 
Genomics Hum Genet. 2019;20:433–60.

 27. Otwinowski J, McCandlish DM, Plotkin JB. Inferring the shape of global epistasis. Proc Natl Acad Sci U S A. 
2018;115:E7550–8.

 28. Sailer ZR, Harms MJ. Detecting high-order epistasis in nonlinear genotype-phenotype maps. Genetics. 2017;205. 
Available from: https:// pubmed. ncbi. nlm. nih. gov/ 28100 592/. Cited 2024 Jan 14.

https://doi.org/10.7554/eLife.40618
https://doi.org/10.7554/eLife.23156
https://doi.org/10.7554/eLife.71393
https://doi.org/10.7554/eLife.71393
https://doi.org/10.1038/s41586-023-06954-0
https://doi.org/10.1073/pnas.2104878118
https://doi.org/10.1073/pnas.2104878118
https://arxiv.org/abs/2205.13760
https://pubmed.ncbi.nlm.nih.gov/28100592/


Page 25 of 26Faure and Lehner  Genome Biology          (2024) 25:303  

 29. Schmiedel JM, Lehner B. Determining protein structures using deep mutagenesis. Nat Genet. 2019;51:1177–86.
 30. Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP, Sander C, et al. Inferring protein 3D structure from deep 

mutation scans. Nat Genet. 2019;51:1170–6.
 31. Olson CA, Wu NC, Sun R. A comprehensive biophysical description of pairwise epistasis throughout an entire pro-

tein domain. Curr Biol. 2014;24:2643–51.
 32. Poelwijk FJ, Krishna V, Ranganathan R. The context-dependence of mutations: a linkage of formalisms. PLoS Comput 

Biol. 2016;12:e1004771.
 33. Faure AJ, Lehner B, Pina VM, Colome CS, Weghorn D. An extension of the Walsh-Hadamard transform to 

calculate and model epistasis in genetic landscapes of arbitrary shape and complexity. PLoS Comput Biol. 
2024;20:e1012132.

 34. Domingo J, Diss G, Lehner B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature. 
2018;558:117–21.

 35. Poelwijk FJ, Socolich M, Ranganathan R. Learning the pattern of epistasis linking genotype and phenotype in a 
protein. Nat Commun. 2019;10:4213.

 36. Faure AJ, Marti-Aranda A, Hidalgo C, Beltran A, Schmiedel JM, Lehner B. The genetic architecture of protein stability. 
Nature. 2024;634:995–1003.

 37. Stiffler MA, Poelwijk FJ, Brock KP, Stein RR, Riesselman A, Teyra J, et al. Protein structure from experimental evolution. 
Cell Syst. 2020;10:15–24.e5.

 38. Baeza-Centurion P, Miñana B, Schmiedel JM, Valcárcel J, Lehner B. Combinatorial genetics reveals a scaling law for 
the effects of mutations on splicing. Cell. 2019;176:549–63.e23.

 39. Otwinowski J, Nemenman I. Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter. 
PLoS One. 2013;8:e61570.

 40. Sailer ZR, Shafik SH, Summers RL, Joule A, Patterson-Robert A, Martin RE, et al. Inferring a complete genotype-phe-
notype map from a small number of measured phenotypes. PLoS Comput Biol. 2020;16:e1008243.

 41. Diss G, Lehner B. The genetic landscape of a physical interaction. Elife [Internet]. 2018;7. Available from: https:// doi. 
org/ 10. 7554/ eLife. 32472.

 42. Patel L, Abate C, Curran T. Altered protein conformation on DNA binding by Fos and Jun. Nature. 1990;347:572–5.
 43. Thompson KS, Vinson CR, Freire E. Thermodynamic characterization of the structural stability of the coiled-coil 

region of the bZIP transcription factor GCN4. Biochemistry. 1993;32:5491–6.
 44. Nisthal A, Wang CY, Ary ML, Mayo SL. Protein stability engineering insights revealed by domain-wide comprehen-

sive mutagenesis. Proc Natl Acad Sci U S A. 2019;116:16367–77.
 45. Rubin AF, Gelman H, Lucas N, Bajjalieh SM, Papenfuss AT, Speed TP, et al. A statistical framework for analyzing deep 

mutational scanning data. Genome Biol. 2017;18:150.
 46. Faure AJ, Schmiedel JM, Baeza-Centurion P, Lehner B. DiMSum: an error model and pipeline for analyzing deep 

mutational scanning data and diagnosing common experimental pathologies. Genome Biol. 2020;21:207.
 47. Soneson C, Bendel AM, Diss G, Stadler MB. mutscan-a flexible R package for efficient end-to-end analysis of multi-

plexed assays of variant effect data. Genome Biol. 2023;24:132.
 48. Rao J, Xin R, Macdonald C, Howard M, Estevam GO, Yee SW, et al. Rosace: a robust deep mutational scanning analy-

sis framework employing position and mean-variance shrinkage. bioRxiv. 2023. Available from: http:// biorx iv. org/ 
lookup/ doi/ 10. 1101/ 2023. 10. 24. 562292.

 49. Calosci N, Chi CN, Richter B, Camilloni C, Engström A, Eklund L, et al. Comparison of successive transition states 
for folding reveals alternative early folding pathways of two homologous proteins. Proc Natl Acad Sci U S A. 
2008;105:19241–6.

 50. Laursen L, Kliche J, Gianni S, Jemth P. Supertertiary protein structure affects an allosteric network. Proc Natl Acad Sci 
U S A. 2020;117:24294–304.

 51. Kiel C, Serrano L, Herrmann C. A detailed thermodynamic analysis of Ras/effector complex interfaces. J Mol Biol. 
2004;340:1039–58.

 52. Otwinowski J. Biophysical inference of epistasis and the effects of mutations on protein stability and function. Mol 
Biol Evol. 2018;35:2345–54.

 53. Levy ED, Kowarzyk J, Michnick SW. High-resolution mapping of protein concentration reveals principles of pro-
teome architecture and adaptation. Cell Rep. 2014;7:1333–40.

 54. Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. Should evolutionary geneticists worry about higher-order epistasis? 
Curr Opin Genet Dev. 2013;23:700–7.

 55. Beer T. Walsh transforms. Am J Phys. 1981;49:466–72.
 56. Stoffer DS. Walsh-Fourier analysis and its statistical applications. J Am Stat Assoc. 1991;86:461.
 57. Park Y, Metzger BPH, Thornton JW. The simplicity of protein sequence-function relationships. bioRxiv. 2023; Available 

from: https:// doi. org/ 10. 1101/ 2023. 09. 02. 556057.
 58. Subach OM, Malashkevich VN, Zencheck WD, Morozova KS, Piatkevich KD, Almo SC, et al. Structural characteriza-

tion of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem Biol. 
2010;17:333–41.

 59. Faure A, Lehner B. MoCHI: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis 
and allostery from deep mutational scanning data. Github. 2024. https:// zenodo. org/ doi/ 10. 5281/ zenodo. 13285 580.

 60. Diss G, Lehner B. The genetic landscape of a physical interaction. GSE102901. Gene Expression Omnibus. https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE10 2901. 2018.

 61. Faure AJ, Domingo J, Schmiedel JM, Hidalgo-Carcedo C, Diss G, Lehner B. Global mapping of the energetic and 
allosteric landscapes of protein binding domains. GSE184042. Gene Expression Omnibus. https:// www. ncbi. nlm. nih. 
gov/ geo/ query/ acc. cgi? acc= GSE18 4042. 2021.

 62. Weng C, Faure AJ, Escobedo A, Lehner B. The energetic and allosteric landscape for KRAS inhibition. PRJNA907205. 
Sequence read archive. https:// www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 907205. 2024.

https://doi.org/10.7554/eLife.32472
https://doi.org/10.7554/eLife.32472
http://biorxiv.org/lookup/doi/10.1101/2023.10.24.562292
http://biorxiv.org/lookup/doi/10.1101/2023.10.24.562292
https://doi.org/10.1101/2023.09.02.556057
https://zenodo.org/doi/10.5281/zenodo.13285580
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102901
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102901
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184042
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184042
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA907205


Page 26 of 26Faure and Lehner  Genome Biology          (2024) 25:303 

 63. Baeza-Centurion P, Miñana B, Schmiedel J, Valcárcel J, Lehner B. Combinatorial genetics reveals a scaling law for the 
effects of mutations on splicing. GSE111316. Gene Expression Omnibus. https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE11 1316. 2019.

 64. Domingo J, Diss G, Lehner B. Pairwise and higher order genetic interactions during the evolution of a tRNA. 
GSE99418. Gene Expression Omnibus. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE99 418. 2018.

 65. Poelwijk FJ, Socolich M, Ranganathan R. Learning the pattern of epistasis linking genotype and phenotype in a 
protein. PRJNA560590. Sequence Read Archive. https:// www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 560590. 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111316
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111316
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99418
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA560590

	MoCHI: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis, and allostery from deep mutational scanning data
	Abstract 
	Background
	Results
	A flexible tool to fit interpretable genotype–phenotype models
	Fitting biophysical models to DMS data with MoCHI
	Multimodal DMS data
	Inferring the shape of global epistasis and pairwise genetic interactions
	Sparse models incorporating higher-order epistatic terms

	Discussion
	Conclusions
	Methods
	Data management
	Neural network architecture
	Empirical noise model
	Loss function
	Model training
	Uncertainties in model coefficients
	Package structure
	DMS datasets

	Acknowledgements
	References


