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Abstract 

Epigenetic heterogeneity is a fundamental property of biological systems and is rec-
ognized as a potential driver of tumor plasticity and therapy resistance. Single-cell 
epigenomics technologies have been widely employed to study epigenetic variation 
between—but not within—cellular clusters. We introduce epiCHAOS: a quantitative 
metric of cell-to-cell heterogeneity, applicable to any single-cell epigenomics data 
type. After validation in synthetic datasets, we apply epiCHAOS to investigate global 
and region-specific patterns of epigenetic heterogeneity across diverse biological 
systems. EpiCHAOS provides an excellent approximation of stemness and plasticity 
in development and malignancy, making it a valuable addition to single-cell cancer 
epigenomics analyses.
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Background
Cell-to-cell heterogeneity can be found at multiple levels in all complex biological sys-
tems—ranging from that within populations of genetically diverse individuals, to the 
non-genetic functional heterogeneity between tissues and cell types, and more subtle 
molecular differences between cells within the same cell type [1]. In recent years, this 
phenomenon of inter-cellular heterogeneity has received particular attention in the 
study of cancer as a potential driver of tumor progression and therapy resistance [2–4].

Although cancer formation begins with the clonal expansion of a single transformed 
cell, most tumors ultimately acquire extensive heterogeneity, with a single tumor con-
sisting of several populations of cells with diverse phenotypic characteristics [2, 5]. This 
is partly due to the emergence of genetically distinct subclones. However, epigenetic 
dysregulation is now also recognized as a hallmark of cancer, and it is becoming increas-
ingly evident that profound functional heterogeneity can arise within genetically identi-
cal cellular structures due to changes in the epigenetic landscape, including DNA and 
histone modifications and the larger chromatin architecture [6, 7].
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Outside of malignancy, recent studies have highlighted the essential role of cellular 
heterogeneity in maintaining pluripotency and in shaping differentiation trajectories in 
the developing organism [8]. Generally, multipotency is accompanied by increased sto-
chastic molecular variation or “noise” which is lost as cells differentiate and commit to 
a specific cell fate, in which a more stable transcriptional program is acquired [9]. In the 
context of malignancy, such regulatory heterogeneity or “noise” could similarly act as a 
driving force towards functional intratumor heterogeneity [9]. Here, epigenetic hetero-
geneity could have potentially detrimental implications. By creating a fitness advantage 
and improving a tumor’s ability to adapt to a variety of intrinsic and extrinsic stresses, 
heterogeneity increases the chances that part of the tumor will tolerate a range of thera-
peutic insults and thus represents a major clinical challenge [5]. Moreover, such hetero-
geneity can allow the “division of labor” required for a tumor to function efficiently as a 
system. For example, the functional diversity required to undertake the metastatic cas-
cade—involving degradation of extracellular matrix, invasion into local tissues, survival 
in transit through the bloodstream and ultimate colonization in a distant organ—is an 
unthinkable feat for a homogeneous population of cells, but is likely accomplished by a 
system of phenotypically heterogeneous cells, with each taking on different tasks to the 
benefit of the whole [10, 11].

An appreciation of intratumor heterogeneity is therefore essential to the study of can-
cer; however, this has historically been overlooked due to the inability of traditional bulk 
sequencing approaches to unmask intrinsic variations within cell populations. Since the 
advent of single-cell sequencing technologies, it is now possible to disentangle intratu-
mor and microenvironmental heterogeneity at unprecedented resolution at the genomic, 
transcriptomic, and epigenomic levels [12]. Using technologies such as the Assay for 
Transposase Accessible Chromatin with sequencing (scATAC-seq), the presence of epi-
genetically distinct clusters within tumors—the simplest layer of epigenetic heterogene-
ity—has been demonstrated across a broad range of cancer types [13–16]. However, a 
more complex and underexplored problem is quantifying heterogeneity between cells 
within a given group or cluster.

A few recent studies have incorporated methods to quantify cell-to-cell heterogeneity 
at the transcriptional level using distance-based or entropy-based metrics or to quantify 
transcriptional “noise” using metrics such as the coefficient of variation [17–20]. Others 
have taken advantage of read-level DNA methylation data to devise metrics of epigenetic 
heterogeneity that can be applied to bulk datasets [21–25]. However, such strategies 
have not been extended to single-cell applications and are therefore limited in discerning 
heterogeneity between from heterogeneity within cellular clusters. A metric for quantify-
ing epigenetic heterogeneity in single-cell datasets has so far not been established.

To address this, we developed epiCHAOS (Epigenetic/Chromatin Heterogeneity 
Assessment Of Single cells), a distance-based heterogeneity score designed to quantify 
cell-to-cell epigenetic heterogeneity using single-cell epigenomic data. After systemati-
cally validating epiCHAOS in a range of synthetic and real datasets, we demonstrated 
its ability to capture features of stemness and plasticity in development and malignancy. 
Additionally, we employed epiCHAOS for investigating region-specific and pathway-
specific differences in epigenetic heterogeneity and demonstrated its applicability to a 
range of single-cell epigenomic data types.
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Results
EpiCHAOS reliably quantifies epigenetic heterogeneity in single‑cell epigenomics data

We designed epiCHAOS to assign a heterogeneity score at the level of cell clusters or 
other user-defined groups of interest, e.g., cell types or treatment conditions. Here, we 
initially focused on scATAC-seq data as the most commonly used single-cell epigenom-
ics modality. To establish epiCHAOS scores, data from each cluster were extracted as 
a binarized matrix, representing a peaks-by-cells or tiles-by-cells matrix in the case of 
scATAC-seq. For each cluster, we then computed the distances between all pairs of cells 
using a count-centered version of the Jaccard distance [26] and then took the mean of all 
pairwise distances per cluster as its epiCHAOS score (Fig. 1A).

Fig. 1  EpiCHAOS reliably quantifies epigenetic heterogeneity in single-cell epigenomics data. A Schematic 
describing epiCHAOS calculation. Using single-cell epigenomics data in binarized matrix form, epiCHAOS 
scores are assigned per cluster by computing the mean of all pairwise cell-to-cell distances using a 
chance-centered Jaccard index followed by regression-based adjustment for sparsity. μ = mean per cluster. B 
Scatter plot illustrating the correlation between epiCHAOS scores (epiCHAOS) and controlled heterogeneity 
across 100 synthetic datasets. Pearson correlation coefficient and p-value are shown. C Barplots illustrate 
increasing heterogeneity after perturbation of scATAC-seq data from sorted monocytes by either randomly 
adding or randomly removing 10–50% of 1’s. D Boxplot comparing epiCHAOS scores across six simulated 
single-cell ATAC-seq datasets with varying sequencing depths. Data were simulated using scReadSim with 
sequencing depth varying from 50,000 to 100,000 counts. ScATAC-seq data from the hematopoietic stem 
cells subset from the Granja et al. dataset [28] were used as the baseline counts matrix. E Validation of 
epiCHAOS using in silico mixtures of hematopoietic cell types. UMAP embedding illustrates scATAC profiles 
from five selected cell types of human bone marrow [28]. After selecting 500 top differentially accessible 
peaks for each cell type, in silico mixtures of two to five cell types in all possible combinations were created. 
Boxplots show the relationship between epiCHAOS scores (epiCHAOS) and the number of cell types (y-axis) 
after in silico mixing
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To validate the design of epiCHAOS, we generated a range of fully synthetic scATAC-seq 
datasets in which we controlled the levels of heterogeneity, while maintaining a stable total 
count (see the “ Methods” section for details). We showed that the epiCHAOS score is highly 
correlated with the true controlled, artificial heterogeneity (Pearson R = 0.99) (Fig. 1B). Next, 
we verified that heterogeneity can be detected both in cases of increasing and decreasing 
counts representing a genome-wide loss/gain of chromatin accessibility. To achieve this, we 
simulated a series of scATAC-seq datasets in which we incrementally increased heteroge-
neity, while either increasing or decreasing genome-wide chromatin accessibility (see the 
“ Methods” section for details). We showed that epiCHAOS correctly detects differences in 
heterogeneity both in cases where counts are added and removed (Fig. 1C).

To confirm that epiCHAOS does not perceive differences in sparsity as differences in 
heterogeneity, we generated a series of random datasets with varying total numbers of 1’s. 
We found no correlation between epiCHAOS scores and the total number of 1’s between 
datasets (Fig. S2A). In real datasets, however, differences in coverage may be more com-
plex since they are accompanied by differences in the number of missing values represent-
ing false negatives. Thus, we found that higher heterogeneity can be perceived in data with 
lower total number of fragments (Fig. S2B). Genome-wide differences in detected ATAC 
signals can arise from both technical or biological reasons, for example, due to the pres-
ence of quiescent cells or in cells with copy number alterations (CNAs) (Additional file 1: 
Fig. S1A–D), or due to differences in sequencing depth. To exclude any effect of this on 
epiCHAOS scores, we implemented a linear regression-based adjustment for the genome-
wide chromatin accessibility across cell clusters, which gave us a count-adjusted hetero-
geneity score. We showed that this adjusted score is no longer affected by differences in 
genome-wide chromatin accessibility and is robust to the presence of large-scale deletions 
and gains in tumor samples (Additional file 1: Fig. S1A–D). To assess the effect of sequenc-
ing depth, we used the published tool, scReadSim [27]. We found that epiCHAOS was not 
affected by differences in sequencing depth (Fig. 1D).

We further validated epiCHAOS using in silico mixtures of cell types from the human 
hematopoietic system. We selected five distinct cell types from a previously published 
hematopoietic dataset [28] including hematopoietic stem cells (HSCs), monocytes, B-cells, 
CD8-T cells, and plasmacytoid dendritic cells (pDCs). After reducing the peaks matrix to 
regions that are most differentially accessible between cell types (500 peaks for each cell 
type), we created mixtures of two to five cell types in all possible combinations and applied 
epiCHAOS to each individual cell type and mixture. As expected, epiCHAOS scores were 
relatively low in individual cell types and increased with the number of cell types in the 
mixture (Fig. 1E). We also confirmed that epiCHAOS was not influenced by technical noise 
or other potential technical confounders (Additional file 1: Fig. S1E–H, Additional file 2: 
Supplementary Note 1) and is minimally influenced by differences in clustering resolution 
(Additional file 1: Fig. S3, Fig. S4, Additional file 2: Supplementary Note 2).

EpiCHAOS reflects epigenetic heterogeneity associated with developmental 
plasticity
In order to show that epiCHAOS is a reliable metric that leads to biologically plausible 
results, we initially focused on applications where there was some prior knowledge or 
expectation. For example, previous studies have recognized epigenetic heterogeneity 
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as a feature of uncommitted, multipotent cell states, which decreases in more com-
mitted, differentiated cells [9, 29]. To test if epiCHAOS scores align with this expec-
tation, we applied our score to scATAC-seq data from a range of developmental 
contexts. First, we tested epiCHAOS in the human hematopoietic system [28, 29], 
where we detected the highest epigenetic heterogeneity in progenitor cells including 
hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), common 
myeloid progenitors (CMPs), lympho-myeloid primed progenitor cells (LMPPs), and 
early erythroid cells. In contrast, more differentiated cells of the myeloid, erythroid, 
and lymphoid lineages showed lower epiCHAOS scores (Fig.  2A). Second, in data 
from mouse gastrulation [30], epiCHAOS scores were highest in less differentiated 
cells. This was especially notable in the primitive streak—the point at which cells of 
the epiblast undergo epithelial-to-mesenchymal transition (EMT)—and in primor-
dial germ cells. Low epiCHAOS scores were detected throughout the formation of 
distinct meso-, endo-, and ectodermal lineages (Fig. 2B). In Drosophila embryogen-
esis, we also observed high epigenetic heterogeneity at the earliest multipotent stages 
including undifferentiated cells, blastoderm, and germ cells (Fig.  2C). Among more 
differentiated tissues, we detected high heterogeneity scores in the neuronal compart-
ments, likely due to their extraordinary functional heterogeneity [31]. We confirmed 
using the previously described scATAC-seq tissue atlas that higher heterogeneity in 
neural tissues persists outside of an embryonic context [32] (Additional file 1: Fig. S5).

To validate these observations, we correlated our score with CytoTRACE [33]—a 
scRNA-based metric designed to capture stemness/plasticity—using scRNAseq data 
from hematopoietic cells [28]. EpiCHAOS correlated moderately with CytoTRACE 
scores (Fig. 2D), in some cases following a pattern better representative of the differ-
entiation trajectory than CytoTRACE. For example, epiCHAOS detected higher het-
erogeneity in naive CD8 + and CD4 + T-cells compared to memory T cells. Naive T 
cells are expected to be more developmentally plastic, but are not detected as such by 
CytoTRACE. This suggests that epiCHAOS captures some features of cellular plastic-
ity that might not be detectable at the transcriptional level. Similarly, in gastrulation 
and embryogenesis datasets, epiCHAOS correlated with previously annotated met-
rics of developmental time (Fig. 2E–F). This pattern of epigenetic heterogeneity was 
also in most cases reflected by higher transcriptional heterogeneity in less differenti-
ated cells (Additional file 1: Fig. S6).

Collectively, these data suggested that epiCHAOS can provide an accurate approxi-
mation of epigenetic heterogeneity indicative of developmental plasticity.

EpiCHAOS correlates with features of malignant cell plasticity and aging
To investigate epigenetic heterogeneity in malignancy, we selected two previously 
published scATAC-seq datasets from 16 breast [13] and 16 liver [34] cancer patients. 
We subsetted each dataset for epithelial cells and applied epiCHAOS to the result-
ing epithelial clusters (Fig.  3A, Additional file  1: Fig. S7A–B). To understand what 
features of tumor cells coincide with higher epigenetic heterogeneity, we assigned 
molecular signature scores to each cluster using the scATAC-seq gene score matrices. 
Within each tumor type, we correlated epiCHAOS against each molecular signature.
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Fig. 2  EpiCHAOS reflects epigenetic heterogeneity associated with developmental plasticity. A–C Violin plots 
(left) showing epiCHAOS scores (epiCHAOS) computed in scATAC-seq data from A human hematopoiesis 
[28], B mouse gastrulation [30], and C drosophila embryogenesis [55]. EpiCHAOS scores were computed 
per-cell type as annotated in the original publications. Violins represent the scores computed in five random 
subsamples of 100 cells from each cell type, or once where fewer than 100 cells were available. Plots are 
ordered by epiCHAOS scores and progenitor cells and undifferentiated tissue types are highlighted in 
blue. UMAP embeddings (right) illustrating epiCHAOS scores in the same datasets as in violin plots. UMAPs 
are colored by epiCHAOS scores computed per annotated cell/tissue type. D–F Scatter plots correlating 
epiCHAOS scores (epiCHAOS) with developmental time as defined by D CytoTRACE score, averaged 
across cells (human hematopoietic system), E developmental time in days at sample collection, averaged 
across cells (mouse gastrulation), or F predicted developmental time in hours (Drosophila embryogenesis). 
EpiCHAOS scores represent the average of pseudo-replicates shown in A–C. Linear regression lines are 
displayed with Pearson correlation coefficients and p-values
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In breast cancer, we noticed that epiCHAOS scores were highly correlated with gene 
sets relating to EMT—a process that is considered integral to breast cancer plasticity 
and metastasis [35] (Fig.  3B). EMT-related signaling pathways such as TGF-beta and 
WNT signaling were also correlated with epiCHAOS scores (Additional file  1: Fig. 
S7C). By contrast, gene sets related to estrogen receptor signaling, which are associated 
with better breast cancer prognosis, were anticorrelated with epiCHAOS scores (Addi-
tional file 3: Table S7). Clusters with high epiCHAOS scores also had higher accessibil-
ity at genes within various previously described gene expression signatures of the more 
aggressive invasive and metaplastic breast cancer subtypes (Additional file 1: Fig. S7C). 
Similarly, in liver cancer, EMT-related gene sets as well as previously derived liver cancer 
prognostic signatures were increased in clusters with high epiCHAOS scores (Fig. 3C, 
Additional file 1: Fig. S7C).

To support a suspected link between epigenetic heterogeneity and plasticity/stemness, 
we applied epiCHAOS to scATAC-seq data from childhood ependymoma compris-
ing multiple differentiated (astrocytes, ependymal cells, neural progenitor cells, and 

Fig. 3  EpiCHAOS correlates with features of malignant cell plasticity and aging. A Schematic describing 
breast and liver cancer datasets used for epiCHAOS calculation. B–C Dot plots illustrate ordered Pearson 
coefficients after correlation of per-cluster epiCHAOS scores against gene set scores for all Hallmark 
Gene Ontology biological processes in breast (B) and liver cancer (C). Top 5 correlations in each dataset 
are highlighted and labeled below. D UMAP embedding (left) of scATAC-seq data from five primary and 
two metastatic childhood ependymoma tumors [36]. Cells are colored by epiCHAOS scores (epiCHAOS) 
computed for each cell type. Undifferentiated cells are highlighted in red. Violin plot (right) ordered by 
epiCHAOS scores (epiCHAOS) for all malignant and non-malignant cell types annotated in ependymoma 
tumors. Malignant cell types are highlighted in blue. Violins represent the scores computed in five random 
subsamples of 100 cells from each cell type, or once where fewer than 100 cells were available. E Violin plot 
ordered by epiCHAOS scores computed in scATAC-seq data from old (blue; n = 3) and young (black; n = 2) 
mouse HSCs [39]. Violins represent the scores computed in five random subsamples of 100 cells from each 
group
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mesenchymal-like cells) as well as undifferentiated tumor cell types [36]. Here, we 
detected the highest epiCHAOS scores in undifferentiated cell populations, which are 
known to be enriched in more aggressive ependymomas [37, 38] (Fig.  3D). Among 
malignant cell types, the lowest heterogeneity scores were detected in ependymal cells 
(Fig.  3D), which represent the most differentiated ependymoma tumor cells and are 
associated with less aggressive disease [37].

We also wondered whether epiCHAOS would detect increased epigenetic heterogene-
ity associated with organism aging. Using a scATAC-seq dataset from young (2 months) 
and old (24 months) mouse HSCs [39], epiCHAOS detected a global increase in epige-
netic heterogeneity in the aged cells (Fig. 3E, Additional file 3: Table S10), reflecting the 
stochastic loss of epigenetic information which is considered a hallmark of aging [40].

Overall these data support a connection between epigenetic heterogeneity quanti-
fied with epiCHAOS and cancer cell plasticity and aggressiveness, as well as aging in the 
hematopoietic system.

EpiCHAOS reveals elevated levels of epigenetic heterogeneity at PRC2 
targeted regions and promoters of developmental genes
Beyond comparisons of global epigenetic heterogeneity between cell states, we also 
wanted to apply epiCHAOS to investigate differences in epigenetic heterogeneity at vari-
ous classes of genomic loci.

Focusing on the hematopoietic system, we utilized annotated chromatin/transcrip-
tion factor binding sites from the Encyclopedia of DNA Elements (ENCODE) data-
base to investigate differences in heterogeneity across different genomic regions. We 
found that epiCHAOS scores were especially high at Polycomb Repressive Complex 2 
(PRC2) targeted regions, as well as at binding sites for CCCTC-binding factor (CTCF) 
and cohesin (Fig.  4A, Additional file  3: Table  S11). Per-region heterogeneity scores 
tended to be highly correlated between different hematopoietic cell types (Additional 
file 1: Fig. S8A). We validated this finding by comparison to DNA methylation varia-
tion in hematopoietic cells as an independent measure of epigenetic heterogeneity. At 
the DNA methylation level, epigenetic heterogeneity was similarly highest at PRC2 
targets, while binding sites for CTCF and cohesin were also among the most variable 
regions (Fig. 4B). Visualization of peaks-by-cells matrices at examples of regions with 
high and low epiCHAOS scores reflected the reported differences in heterogeneity 
(Fig. 4C). To understand whether this finding translates to the transcriptional level, 
we also calculated transcriptional noise for each gene in HSCs based on the coeffi-
cient of variation. Consistent with previous reports [41, 8], and in line with their epi-
genetic heterogeneity, we found that transcriptional noise was significantly higher at 
PRC2-targeted genes compared to non-PRC2 targets (Additional file 1: Fig. S9A).

To further understand the characteristics of regions displaying high epigenetic 
heterogeneity, we computed epiCHAOS scores at promoter-associated scATAC-seq 
peaks over a range of gene sets. Gene sets with the highest heterogeneity scores were 
enriched for developmental processes such as cell fate commitment, cell fate speci-
fication, and somatic stem cell division (Fig.  4D, Additional file  3: Table  S12). Per-
gene-set heterogeneity scores were correlated between cell types (Additional file  1: 
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Fig. S8B); however, certain gene sets showed more cell-type-specific heterogeneity 
patterns. For example, we noted that genes related to cell fate specification which 
were among the most heterogeneous gene sets in HSCs, ranked lower in heterogene-
ity in more differentiated cell types (Additional file 1: Fig. S9B). Similarly, promoters 
of bivalent genes ranked among the most heterogeneous gene sets in HSCs and less 
so in more differentiated cell types (Fig. 4E).

We wondered whether certain genomic regions contributed to the differences in 
heterogeneity we had observed between hematopoietic stem/progenitors and more 
differentiated cell types. Comparing HSCs to monocytes we found that the largest 
increase in heterogeneity in HSCs was at Enhancer of Zeste 2 (EZH2) binding sites, 
followed by BRF2 and KAP1 binding sites (Fig.  4F). Comparison of HSCs to differ-
entiated B-cells and CD8 T-cells yielded a similar pattern, suggesting that epigenetic 

Fig. 4  EpiCHAOS reveals elevated levels of epigenetic heterogeneity at PRC2 targeted regions and 
promoters of developmental genes. A Ordered dot plot showing epiCHAOS scores (epiCHAOS) computed 
across region sets for each ENCODE chromatin factor binding site in hematopoietic stem cells, ordered by 
epiCHAOS scores. The top 20 region sets (cell type and binding site) are labeled. B Scatter plot comparing 
epiCHAOS scores (epiCHAOS) with DNA methylation variation at each transcription factor binding site as in 
A. PRC2 targets (binding sites for EZH2/SUZ12, red), CTCF targets (orange), and cohesin binding sites (binding 
sites for RAD21/SMC3, blue) are highlighted. X-axis represents the average of per-CpG methylation variances 
across 10 individuals at all CpGs overlapping with the respective region set. Values are scaled to a 0–1 range. 
C Heatmaps show examples of high-epiCHAOS (EZH2 binding sites) and low-epiCHAOS (FOS binding sites) 
regions in the peaks matrix of scATAC-seq data from HSCs. D Ordered dot plot showing epiCHAOS scores 
(epiCHAOS) computed across promoters for each gene ontology biological process in hematopoietic stem 
cells, ordered by epiCHAOS scores. E Bar plot comparing epiCHAOS ranks for the set of bivalent genes 
across different hematopoietic cell types. The higher the rank indicates that the selected gene set has higher 
epiCHAOS scores compared to other gene sets in that celltype. Ranks were -log(10) transformed for display. 
F Volcano plot illustrates differential heterogeneity between hematopoietic stem cells and monocytes. 
Differential heterogeneity was tested for each ENCODE TFBS (binding sites measured in K562 cells). For 
each TFBS, the -log10(p-value) obtained by permutation test is displayed on the y-axis, and the difference in 
epiCHAOS scores between the two cell types is displayed on the x-axis
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heterogeneity at these key genomic regions might contribute to maintaining pluripo-
tency (Additional file 1: Fig. S9C–D).

EpiCHAOS is applicable to single‑cell epigenomics data from any modality
After demonstrating epiCHAOS’ capability in scATAC-seq data, we wanted to test 
its application to other epigenomics layers. For this, we first applied epiCHAOS to 
single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) 
DNA methylation data from mouse gastrulation [42]. Here we observed the highest 
epigenetic heterogeneity in the epiblast compared to more differentiated germ layers 
(Fig.  5A), as well as a moderate correlation between promoter-wide DNA methyla-
tion-based and ATAC-based epiCHAOS scores from the same cells (Fig. 5B).

Next, we utilized single-cell targeted analysis of the methylome (scTAM-seq) [43] data 
from mouse hematopoiesis [44]. In line with our previous observations at the level of 
chromatin accessibility (Fig.  2A), we found that DNA methylation-based heterogene-
ity was increased in more primitive hematopoietic progenitor cells such as HSCs and 
early MPPs compared to more differentiated progenitors such as GMPs and pre-B 
cells (Fig.  5C). Notably, we found a continuous decrease of epiCHAOS scores along 

Fig. 5  EpiCHAOS is applicable to single-cell epigenomics data from any modality. A Barplots comparing 
epiCHAOS scores (epiCHAOS) across different lineages of mouse gastrulation using scNMT-seq DNA 
methylation data from Argelaguet et al. [42] Methylation data summarized across promoters, gene-bodies 
or CpG islands were used for epiCHAOS computation. Epiblast is colored in blue. B Scatter plot comparing 
promoter-wide epiCHAOS scores across different gastrulation lineages using single-cell DNA methylation 
[epiCHAOS (DNAm)] and ATAC-seq [epiCHAOS (ATAC)] data from the same cells as in A. Linear regression line 
is shown with Pearson correlation coefficient and p-value. C UMAP embedding generated from scTAM-seq 
DNA methylation data from Scherer et al. [44]. Hematopoietic progenitor state and epiCHAOS scores are 
annotated. GMP, granulocyte monocyte progenitor; EryP, erythroid progenitor; MEP, myeloid/erythroid 
progenitor; MPP, multipotent progenitor; HSC, hematopoietic stem cell; MkP, megakaryocyte progenitor. D 
EpiCHAOS scores calculated using scCHIP-seq data for H3K27me3 from Grosselin et al. [42, 45]. Cells were 
derived from a PDX breast cancer model, separated based on sensitivity or resistance to capecitabine. Ten 
subsamples of 100 cells each were taken per condition. Boxplot shows comparison of epiCHAOS scores 
(epiCHAOS) between sensitive and resistant cells
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the myeloid differentiation trajectory (HSC, MPP3, MPP4, GMP), while erythroid pro-
genitors had elevated levels of heterogeneity in line with the scATAC-seq data shown in 
Fig. 2A.

Finally, applying epiCHAOS to H3K27me3 single-cell chromatin immunoprecipitation 
sequencing (scChIP-seq) data from a previous study of breast cancer therapy resistance 
[45], we detected higher epigenetic heterogeneity in therapy-resistant compared to sen-
sitive cells, supporting the idea that intratumor epigenetic heterogeneity may serve as a 
driver of treatment resistance (Fig. 5D).

We conclude that epiCHAOS is applicable to all single-cell epigenomics data types 
and not restricted to scATAC-seq data. This proves its utility across a wide range of epi-
genomic studies and enables the comparison of heterogeneity in multi-modal datasets.

Discussion
Single-cell sequencing technologies offer unparalleled possibilities for studying epig-
enomic heterogeneity in development and disease. However, few studies have tackled 
the question of how cell-to-cell heterogeneity can be quantified at the level of cell popu-
lations, beyond the presence of distinct cell states. For instance, with current metrics, 
one is unable to rank clusters or groups of cells by their heterogeneity levels. Here we 
introduce epiCHAOS: a quantitative metric for intercellular epigenetic heterogene-
ity computed at the single-cell level. We demonstrate how epiCHAOS can be used to 
provide unprecedented insights into the patterns of epigenomic variation across a wide 
range of applications including development and malignancy.

The sparsity of single-cell epigenomics data makes it particularly challenging to ana-
lyze and interpret in a continuous form, and binarization has become standard practice 
as a way to minimize the effect of sparsity and to reduce overall noise. We therefore spe-
cifically designed epiCHAOS for application to binary data. A limitation of this approach 
is that information about quantitative differences in accessibility between cells is lost, 
such that certain patterns of biological heterogeneity might be obscured. Nevertheless, 
we have demonstrated the functionality of our method by applying epiCHAOS to vari-
ous scATAC-seq datasets to investigate both global and region-specific heterogeneity, 
where our results are consistent with existing biological paradigms. Our findings across 
a range of developmental contexts align with the accepted notion that less differenti-
ated and more developmentally plastic cell types have higher heterogeneity compared 
to more differentiated and functionally specialized ones—a phenomenon that has never 
been demonstrated in single-cell epigenomics data [9, 29]. We also find that epigenetic 
heterogeneity is increased with age in the hematopoietic system, reflecting the expected 
stochastic decay of epigenetic regulation [40]. Moreover, we provide evidence to support 
epigenetic heterogeneity as a hallmark of plasticity in cancer, paving the way for more 
detailed pan-cancer analyses in this domain.

Our findings regarding the preferential heterogeneity of specific genomic regions—in 
particular, the elevated cell-to-cell heterogeneity of polycomb binding sites—are also in 
agreement with previous studies of transcriptional noise and DNA methylation-based 
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heterogeneity. For example, Kar et  al. have previously shown that PRC2 targets dis-
play higher cell-to-cell variation in gene expression, with a low transcriptional burst 
frequency giving rise to oscillations between on and off states over time [41]. Kumar 
et al. [8] also demonstrated that polycomb target genes are heterogeneously expressed 
within colonies of pluripotent stem cells. This heterogeneity may be due to the associa-
tion of PRC2 targets with bivalent chromatin states—characterized by the presence of 
both active and repressive histone marks. Faure et al. [46] also previously showed that 
genes with bivalent chromatin exhibit higher transcriptional noise. Similarly, Feinberg 
& Irizarry have demonstrated that DNA methylation stochasticity is increased at devel-
opmental genes—many of which are also PRC2 targets [47]. Here we demonstrate that 
these patterns of variability can be observed at the epigenetic level between single cells 
and that they appear not only to be the most heterogeneous regions, but also the regions 
that are most preferentially heterogeneous in stem compared to more differentiated 
cells. It is notable that PRC2 targeted regions are also known to exhibit increased epige-
netic variation across multiple cancers, compared to normal tissues [48]. This supports 
the idea that epigenetic heterogeneity at these regions might be a driving force in tumor 
evolution and raises interesting questions about the frequent disruption of PRC2 com-
plex components in cancer [49].

Understanding how epigenetic heterogeneity is shaped throughout tumor evolu-
tion, including initiation, progression, remission, and relapse, and deciphering its role 
in the progression to metastasis and therapy response could have important transla-
tional implications. EpiCHAOS could be used for example to investigate how epigenetic 
heterogeneity influences therapeutic resistance, or whether metastatic cells are epige-
netically more heterogeneous than primary tumors. Moreover, epiCHAOS might also 
inspire strategies for guiding single-cell clustering and evaluating the similarity/vari-
ability across clusters in single-cell epigenomics data. Our method should therefore be 
especially valuable to cancer researchers, particularly those interested in plasticity and 
stemness, where the role of epigenetic heterogeneity remains underexplored. Beyond 
these questions, epiCHAOS should also yield novel biological insights outside of the 
cancer field, for instance in developmental biology, aging, and immunity, and in other 
disease states in which plasticity programs are activated, such as wound healing and 
fibrosis.

Conclusions
EpiCHAOS provides a quantitative metric of cell-to-cell epigenetic heterogeneity, 
complementing single-cell epigenomics studies of cancer and development. We have 
shown that epiCHAOS offers an excellent approximation of stemness and plasticity 
in various developmental contexts, as well as in cancer. Comparison of epiCHAOS 
scores at different genomic regions highlighted increased heterogeneity of polycomb 
targets and developmental genes. EpiCHAOS is applicable to a variety of single-cell 
epigenomics data types including measurements of chromatin accessibility, DNA 
methylation, and histone modifications.
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Methods

Calculating epiCHAOS scores

Heterogeneity scores were calculated for each given cluster or otherwise defined 
group of cells using a binarized matrix of scATAC or other single-cell epigenom-
ics data. First pairwise distances were calculated between all cells within the cluster 
using a chance-centered version of the Jaccard index which controls for differences 
in the relative number of ones and zeros [26]. Afterwards, the mean of all pairwise 
distances per cluster was computed. To remove any further effect of sparsity a linear 
regression model of the raw heterogeneity scores was fitted against the total number 
of detected accessible peaks, averaged across cells in the respective cluster, and the 
residuals of this model were taken as the adjusted scores. Finally, the scores were 
transformed to an interval of 0–1, and subtracted from 1 to convert the similarity 
metric to a distance metric.

ScATAC-seq data from the Hep-1 liver cancer cell line [50] was used to test 
whether epiCHAOS scores correlate with measures of technical noise. Cells were 
stratified into bins (20 bins of 100 cells each) based on various quality control met-
rics: FRIP scores, TSS enrichment scores, and nucleosome ratio, which were calcu-
lated using ArchR [51].

DNA CNAs were inferred in the Hep-1 cell line using epiAneuFinder [52] with a 
windowSize = 100,000 and minFrags = 20,000. To investigate the influence of CNAs 
on epiCHAOS scores, the most prominent examples of large subclonal copy num-
ber gains (gain on chromosome 5) and deletions (deletion on chromosome 13) were 
selected by visual inspection, and cells were stratified based on the presence or 
absence of each alteration. EpiCHAOS scores were calculated across peaks in the 
affected chromosome and compared between cells with diploid or alternative states. 
To correct for CNAs when applying epiCHAOS to cancer datasets, a per-chromo-
some count-corrected epiCHAOS score was derived, where epiCHAOS scores were 
calculated per chromosome, implementing a linear regression-based adjustment for 
the total coverage on that chromosome, and then the average of per-chromosome 
scores was taken as the global epiCHAOS scores.

Unless otherwise specified, epiCHAOS was calculated using the entire peaks-
by-cells matrix. To allow a more robust comparison between groups, epiCHAOS 
scores were calculated on five random subsamples of 100 cells from each group/
cluster, except in groups/clusters which contained fewer than 100 cells. Since the 
scNMT-seq data contained fewer than 100 cells in most groups, epiCHAOS scores 
were calculated only once for each cell type. ENCODE Transcription Factor Binding 
Site (TFBS) regions from the LOLA core database [53] were used for comparisons of 
heterogeneity at different genomic regions, for which scATAC peaks matrices were 
subsetted to obtain peaks overlapping with each genomic region. Similarly, for com-
parisons across gene sets, data were subsetted for peaks overlapping with promoters 
of each gene set using the GO:BP gene sets from MsigDB [54].

Generating synthetic datasets with controlled heterogeneity

To test the performance of epiCHAOS, synthetic datasets were generated in silico in a 
way that simulates the structure of binarized scATAC-seq peak matrices. First, a series 
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of 100 synthetic datasets with controlled heterogeneity was created, in which each data-
set has an equal total count. To do this a random binary matrix was created, which 
would represent the first dataset in the series. In each subsequent dataset, homogeneity 
was incrementally introduced by removing a set number of 1’s from selected n rows and 
adding them to different selected n rows, in such a way that a constant number of 1’s is 
maintained, while heterogeneity decreases.

To test situations where the genome-wide chromatin accessibility is increasing or 
decreasing, binarized data from an example scATAC-seq dataset were perturbed to cre-
ate datasets of increasing heterogeneity with either addition or removal of 1’s. Specifi-
cally, 10, 20, 30, 40, and 50% of 1’s were selected at random and replaced by 0’s, and 
corresponding numbers of 0’s were selected at random and replaced by 1’s.

To test that epiCHAOS is not influenced by differences in sparsity, a series of 100 
random binary datasets was generated with each dataset having equal dimensions and 
incrementally increasing the total number of 1’s. Their epiCHAOS scores were then 
computed and tested for a correlation with their total count.

As an additional validation approach, semi-synthetic scATAC-seq datasets were cre-
ated by mixing data from distinct cell types. Using scATAC-seq data from human bone 
marrow [28], five cell types were selected: HSCs, monocytes, CD8-CM T cells, B-cells, 
and plasmacytoid DCs. The top 500 differentially accessible peaks for each cell type were 
identified and used to create in silico mixtures of two to five cell types in all possible 
combinations.

Simulating scATAC‑seq data with varying sequencing depth

The scReadSim package was used to simulate scATAC-seq data of varying sequencing 
depths [27]. A subset of scATAC-seq data from HSCs from the Granja et al. dataset was 
used as input [28]. Data were reduced to 10,000 randomly selected peaks for ease of 
processing. Simulated scATAC-seq matrices comprising each 500 cells were generated 
with sequencing depth ranging from 50,000 to 100,000 counts, in increments of 10,000. 
EpiCHAOS scores were calculated across matrices on five subsamples of 100 cells from 
each condition.

scATAC‑seq data processing and analysis  Publicly available scATAC-seq datasets for 
human hematopoiesis [28], mouse gastrulation [30], drosophila embryogenesis [55], 
breast cancer [13], liver cancer [34], ependymoma [36], HSC aging [39], and liver can-
cer cell lines [50] were downloaded from the respective publications. For analyses in 
developmental datasets and in ependymoma processed counts matrices were used as 
provided by the authors, where cell types were previously annotated. For breast and 
liver cancer datasets fragments files were downloaded, processed, and analyzed using 
ArchR [51]. Cells with TSS enrichment scores less than 4 or a number of fragments 
higher than 1000 were removed, and doublets were filtered out using default param-
eters. Iterative LSI was performed followed by clustering using the Seurat method. 
Gene score matrices were generated using ArchR and used for subsetting cancer data-
sets for epithelial cells based on epithelial cellular adhesion molecule (EPCAM) scores. 
After reclustering epithelial cells, peak calling was performed using macs2 [56]. To 
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assign gene set/pathway scores to each cluster, gene set annotations were obtained 
from MSigDB using the msigdbr R package [54]. Gene scores were first averaged across 
all cells within each cluster, and then the mean score of all genes within a given gene 
set was computed to assign gene set scores per cluster.

Differential heterogeneity analysis

Differential heterogeneity analyses were performed for each region using a permu-
tation approach, whereby the difference in epiCHAOS scores between two selected 
cell types was compared with that between pairs of 1000 randomly computed groups 
sampled from the same pool of cells. P-values were calculated as the quantile of the 
distribution of sampled permutations for which the difference in heterogeneity scores 
was greater than that between the two test groups.

DNA methylation variation

Enhanced reduced representation bisulfite sequencing data (ERRBS) from Adelman 
et al. [57] was used to calculate DNA methylation variability by computing variance 
per CpG site in HSC-enriched lineage-negative (Lin − CD34 + CD38 −) samples 
across the eight male donors. To address the issue of data sparsity, a maximum quan-
tile threshold of 0.005 was established for missing values per site. Any sites that 
surpassed this threshold were removed. For each ENCODE TFBS, the average of vari-
ances was calculated for all CpG sites overlapping with the respective regions.

scRNA‑seq analyses

Publicly available scRNAseq datasets for human hematopoiesis [28], mouse gastrula-
tion [30], and drosophila embryogenesis [55] were downloaded from the respective 
publications and analyzed using Seurat. Cell-to-cell transcriptional heterogeneity 
was calculated by computing pairwise Euclidean distances according to the meth-
ods of Hinohara et  al. [19]. Developmental potential was calculated per cell using 
CytoTRACE [33] and assigned as a mean per cell type for downstream analyses. 
Transcriptional noise per gene was estimated using the coefficient of variation as pre-
viously described [58]. A list of PRC2-target genes used for comparison of transcrip-
tional noise was obtained from Ben-Porath et al. [59].

scCHIP‑seq analysis

scCHIP-seq counts matrices representing 50 kb non-overlapping bins of H3K27me3 
from human breast cancer patient-derived xenograft cells that were sensitive or 
resistant to Capecitibine (HBCx-95 and HBCx-95-CapaR) were downloaded from 
GSE117309 and processed as described by Grosselin et  al. [45]. Cells having a total 
number of unique reads in the upper percentile were removed as outliers, and 
genomic regions not represented in at least 1% of all cells were filtered out. Data cor-
responding to non-standard chromosomes and the Y chromosome were excluded. 
Cells with a total number of unique reads less than 1600 were removed. Counts 
matrices were binarized and cells from each condition were subsampled to select ten 
groups of 100 cells each for epiCHAOS calculation.
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scNMT‑seq and scTAM‑seq analysis

scNMT-seq DNA methylation and ATAC data from mouse gastrulation [42], sum-
marized across promoters, gene bodies, and CpG islands, were accessed using the 
SingleCellMultiModal R package. scTAM-seq data from mouse hematopoiesis were 
obtained from Scherer et  al. [44], downloaded from https://​figsh​are.​com/​ndown​
loader/​files/​42479​346, and analyzed using Seurat.
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